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Abstract In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We
prove that a C*-algebra A has Goldie dimension n if and only if the dimension of the center of its
local multiplier algebra is n. In this case, A has finite-dimensional center and its primitive spectrum is
extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of
n prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that
has the projection property and a strictly full element, admits a full projection and a non-zero densely
defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension
(not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.
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1. Introduction

Noetherian and/or Artinian C*-algebras as well as C*-algebras with Krull dimension are
defined and studied in [20, 34, 35, 40, 41]. In this article, we define and study C*-algebras
with Goldie dimension as a generalization of all of these classes (see Figure 1), and then
extend the main results obtained in [41] and present some new results and applications.
In abstract algebra, Alfred Goldie used the notion of uniform modules to construct a

measure of dimension for modules, now known as the Goldie dimension (or the uniform
dimension) of the module. The basic idea is to measure the number of ‘building blocks’
in a direct sum of non-zero submodules of M. The Goldie dimension (unlike the Krull
dimension) in some cases behaves like dimension of a vector space (e.g., Cn is a C*-
algebra with Goldie dimension n, while it has Krull dimension 0). We refer the reader to
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Figure 1. Classes of C*-algebras with (and without) Goldie dimension.

[8, Chapters 1 and 2], [16], [17, Chapters 1 and 3], [18, Chapter 5], [25, Section 6] and
[27, Chapter 2], for results on the Goldie dimension and extending (or, CS) modules, in
algebraic settings.
Our main motivation for defining the Goldie dimension for C*-algebras is to bridge

between algebraic and topological properties of a large class of non-simple C*-algebras.
Here, we work with (closed) two-sided ideals instead of one-sided ideals (as in the algebraic
setting). We show that C*-algebras with Goldie dimension share some basic properties of
C*-algebras with Krull dimension (obtained in [41]) and their local multiplier algebra and
primitive ideal space can be described. We show that the Goldie dimension of a C*-algebra
(if exists) is the same as the dimension of the center of its local multiplier algebra.
In particular, a C*-algebra with Goldie dimension has finite-dimensional center and is
boundedly centrally closed (compare with [41, Corollary 2.9 and Proposition 2.11]). We
also give a classification theorem (based on the Kirchberg–Phillips classification theorem)
for a subclass of C*-algebras with Goldie dimension (see Corollary 2.11 and Theorems
2.9 and 2.20).
The paper is organized as follows. In § 2, we define a notion of the Goldie dimension

for C*-algebras (Definition 2.2), which is shown to be well-defined (Lemma 2.1), and
conclude that every C*-algebra with Goldie dimension has a closed essential ideal which
is a finite direct sum of prime C*-algebras (extending [41, Theorem 2.8]). We study the
perseverance of the Goldie dimension under passing to hereditary C*-subalgebras, exten-
sions and Morita equivalence. We show that the Goldie dimension is not preserved under
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taking quotients (unlike the Krull dimension) and crossed products in general. We provide
conditions for these to happen (Theorem 2.7(iv) and Corollary 2.13). We give necessary
and sufficient conditions for a C*-algebra to be have Goldie dimension (Theorems 2.7(1),
2.9 and 2.24). One of the advantages of C*-algebras with Goldie dimension is that they
have extremally disconnected primitive spectrum (Theorem 2.9) and they can have com-
pact ideals, full projections and non-zero (densely defined lower semi-continuous) traces,
under certain conditions (Theorem 2.14). We introduce complete-Goldie C*-algebras and
“extending” C*-algebras, and show that all complete-Goldie graph C*-algebras have real
rank zero, and all extending C*-algebras with Goldie dimension are decomposable into
a finite direct sum of prime C*-algebras (Corollary 2.17, and Theorem 2.24(iii)). This
shows that every Hilbert C*-module, over an AW*-algebra or an extending C*-algebra
with Goldie dimension n, decomposes into a direct sum of n ideal submodules (as in the
case of Hilbert spaces; see Theorem 2.26).

2. Goldie dimension for C*-algebras

In this section, we define the Goldie dimension for C*-algebras and obtain the main
properties of C*-algebras with Goldie dimension.
In the following results, by an ideal, we always mean a closed two-sided ideal, unless

otherwise specified. For an ideal I (resp. C*-subalgebra B) in a C*-algebra A, we write
I E A (resp. B ≤ A). If I is an essential ideal in a C*-algebra A, then we write I Ee A.
We denote the center of a C*-algebra A by Z (A). Also, for a C*-algebra A, let Id(A)
denote the lattice of closed ideals of A.
Let us first recall the notion of chain conditions for C*-algebras. Chain conditions

on a C*-algebra are defined in its set of closed (two-sided) ideals. A C*-algebra A is
called Noetherian if it satisfies the ascending chain condition for closed ideals, that is,
for any ascending chain I1 ⊆ I2 ⊆ I3 ⊆, . . . of closed ideals of A, there is a positive
integer n such that Ii = In, for all i ≥ n. The dual notion to a Noetherian C*-algebra
is that of an Artinian C*-algebra, which satisfies the descending chain condition for
closed ideals. Clearly, every C*-algebra with finitely many closed ideals is Noetherian and
Artinian, including simple and finite-dimensional C*-algebras. On the other hand, there
are infinitely many mutually non-isomorphic Noetherian (Artinian) C*-algebras with
infinitely many closed ideals [20, 40]. Recall that a Noetherian (Artinian) topological
space is a space that satisfies the ascending (descending) chain condition for its open
subsets. In the Noetherian case, a topological space is Noetherian if every open set is
compact. Let Prim(A) be the set of primitive ideals in a C*-algebra A. Then, Prim(A)
is a topological space with the Jacobson (or hull-kernel) topology [9, 20]. In [20], it
was shown that a C*-algebra is Noetherian (Artinian) if and only if Prim(A) is so as
a topological space. Note that the definition of Notherian (and Artinian) C*-algebras
differs from the definition of Noetherian (and Artinian) rings, which is defined on the
set of one-sided ideals. Also the definition of a Noetherian C*-algebra differs from the
definition of a Noetherian Banach algebra, which is defined by a chain condition on the
set of closed left ideals. In the latter definition, every Noetherian Banach algebra is finite-
dimensional. This is also true (under the new definition based on ideals, rather than left
ideals) for commutative C*-algebras, but not in general (see [20, Theorem 3.1]). Note that
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being Artinian (resp. Noetherian) is stable under taking hereditary C*-subalgebras and it
passes to closed ideals and quotients, and also it is preserved under extension and Morita
equivalence (see [34, Lemma 2.2 and Corollary 2.5] and [35, Proposition 1.1]).
Recall that, the Krull dimension of a C*-algebra measures how close the C*-algebra

is to being Artinian (see [41, Definition 2.1], for a detailed definition). The proof of the
following lemma is similar to that of Theorem 2.8 in [41].

Lemma 2.1. Let A be a C*-algebra and it contains an essential ideal I of the form⊕n
i=1 Ii, where each Ii is a prime C*-algebra. Then,
(i) Every direct sum of non-zero ideals of A has at most n summands.
(ii) Let J =

⊕m
i=1 Ji be an ideal in A, where each Ji is a prime C*-algebra. Then,

J Ee A if and only if m= n.

Definition 2.2. A C*-algebra A is said to have Goldie dimension n (n ∈ N), writ-
ing G.dim(A) = n, if it contains an essential ideal which is the direct sum of n prime
C*-algebras. If such an ideal exists, we call it a G-ideal in A and say that A is a C*-algebra
with Goldie dimension (or A has Goldie dimension, or A is a Goldie C*-algebra).
Otherwise, we say A is a C*-algebra without Goldie dimension (or A does not have
Goldie dimension).

Note that G.dim(A) is well-defined, by Lemma 2.1. See Examples 2.21, 2.23 and 2.25,
for examples of G-ideals in certain C*-algebras with Goldie dimension. We use the con-
vention that for a C*-algebra A, G.dim(A) = 0 if and only if A = {0}. Also, every
C*-algebra A with Krull dimension contains an essential ideal that is a finite direct sum
of critical ideals [41, Theorem 2.8], here called a K -ideal in A.
Recall that the local multiplier algebra Mloc(A) of a C*-algebra A is the C*-direct limit

of the multiplier algebras M (I ), where I ranges over all (closed) essential ideals of A [2,
Definition 2.3.1].

Remark 2.3. (a) A C*-algebra is prime if and only if G.dim(A) = 1. Indeed, if
G.dim(A) = 1, then A contains an essential ideal IA that is a prime C*-algebra. But
in [2, Propositions 3.3.2 and 2.3.6(i)], it was shown that a C*-algebra is prime if and
only if its local multiplier algebra is prime, and also the local multiplier algebra of a C*-
algebra is isomorphic to the local multiplier algebra of any of its essential ideals. Thus
Mloc(A) ∼= Mloc(IA), and hence A is prime. The converse is clear.
(b) For an ideal I in a C*-algebra A with Goldie dimension n, I Ee A if and only if

G.dim(A) = G.dim(I). Because, if I Ee A and
⊕n

i=1 Ii is a G-ideal in A, (n ∈ N), then
for each i, (1 ≤ i ≤ n), I ∩ Ii 6= {0}. Thus,

⊕n
i=1(I ∩ Ii) is an essential ideal of prime

C*-algebras in I, and so G.dim(I)=n. For the converse, let G.dim(A) = G.dim(I) but I
is not essential. Then, there is an ideal J in A such that I ∩ J = {0}. Also I contains an
essential ideal which is the direct sum of n prime C*-algebras, say K. Then, K ⊕ J is a
direct sum of n +1 summands, which is a contradiction.
(c) Let A and B be C*-algebras with Goldie dimension. Then,

G.dim(A⊕B) = G.dim(A) + G.dim(B).

Indeed, if IA =
⊕m

i=1 I
A
i and IB =

⊕n
i=1 I

B
i are G-ideals in A and B, respectively, then

IA ⊕ IB Ee A⊕B, by [41, Lemma 2.6(iii)]. Thus, G.dim(A⊕B) = m+ n.
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Definition 2.4. An ideal I in a C*-algebra A is said to be essentially closed, writing
I Ee.c A, if whenever J is an ideal in A such that I Ee J then I= J.

Every direct summand of a C*-algebra is essentially closed. In particular, for every
C*-algebra A, the trivial ideals {0} and A are essentially closed. Also, if an ideal in
a C*-algebra is injective, then it is also essentially closed. Indeed, according to [19,
Proposition 4.8], a C*-algebra is injective if and only if it has no proper essential exten-
sion, (a proper essential extension of an ideal I in a C*-algebra A means the existence of
a C*-subalgebra B of A that I EeB but I 6=B. Thus unlike a proper ideal in A, a proper
essential extension can be equal to the C*-algebra A). It is worth mentioning that an
essentially closed ideal is not necessarily an essential ideal (see Example 2.23(b)). In a
C*-algebra, the only ideal that is both essentially closed and essential is the C*-algebra
itself.

Lemma 2.5. Let A be a C*-algebra and I, J and K be ideals in A. Then, the following
assertions hold: (i) (Modular Law) I + (J ∩ K) = (I + J) ∩ (I + K). In particular, if
I ⊆ J , then I + (J ∩K) = J ∩ (I +K).
(ii) If I E J and J/I Ee A/I, then J Ee A.
(iii) If I E J Ee A and I Ee.c A, then J/I Ee A/I.

Proof. For (i) and (ii), see [9, II.5.1.4(iv)] and [18, Proposition 5.6(c)]. For (iii), let
Ī E A/I. Then, there is an ideal K ⊇ I in A such that Ī = K/I. If (J/I) ∩ (K/I) = 0,
then (J ∩K)/I = 0, and so J ∩K = I. Since J Ee A, I = (J ∩K)Ee (A∩K) = K. But
I Ee.c A. Thus I =K, and hence K/I = 0. �

Lemma 2.6. The relation ‘Ee.c’ is transitive.

Proof. Let A be a C*-algebra and I, J and K be ideals in A such that I Ee.c J and
JEe.cK. First, for JEK, there is an ideal J

′
in K such that (J⊕J ′)EeK, by [41, Lemma

2.7]. Since JE(J⊕J ′)EeK and JEe.cK, Lemma 2.5(iii) shows that ((J⊕J ′)/J)Ee(K/J).
Thus

(J/I)⊕ ((I ⊕ J ′)/I) = ((J ⊕ J ′)/I)Ee (K/I),

by Lemma 2.5(ii). Similarly, for I E J , there is an ideal I
′
in J such that (I ⊕ I ′)Ee J ,

and so ((I ⊕ I ′)/I)Ee (J/I). Therefore,

((I ⊕ I ′ ⊕ J ′)/I) = ((I ⊕ I ′)/I)⊕ ((I ⊕ J ′)/I)

Ee (J/I)⊕ ((I ⊕ J ′)/I)

Ee (K/I).

Now, to show that I Ee.c K, let I Ee LEK. Since I ∩ (I ′ ⊕ J ′) = 0, L ∩ (I ′ ⊕ J ′) = 0.
By Lemma 2.5(i), we have

L ∩ (I ⊕ I ′ ⊕ J ′) = I ⊕ (L ∩ (I ′ ⊕ J ′)) = I.

This means that (L/I) ∩ ((I ⊕ I ′ ⊕ J ′)/I) = 0. Thus L/I = 0, and so I =L. �
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For the following theorem, we use the concepts in Section 2 of [40]. For more details
on the theory of graph C*-algebras, we refer the reader to [3].

Theorem 2.7. (i) A C*-algebra has Goldie dimension if and only if it contains no
infinite direct sum of non-zero ideals.
(ii) Every C*-algebra with Krull dimension has Goldie dimension. The converse does

not necessarily hold.
(iii) Goldie dimension passes to hereditary C*-subalgebras and is preserved under

extension and Morita equivalence of C*-algebras.
(iv) Let A be a C*-algebra and I C A. Then, I Ee.c A if and only if both I and A/I

have Goldie dimension and G.dim(A) = G.dim(I) + G.dim(A/I).

Proof. (i) If A has Goldie dimension n, then by Lemma 2.1(i), every direct sum of
non-zero ideals of A has at most n summands. For the converse, we first show that A
contains an ideal that is a prime C*-algebra. If not, since A is not prime, there are ideals
I 1 and I ′1 in A such that I1∩I ′1 = {0}. Also I 1 is not a prime C*-algebra. Thus, there are
ideals I 2 and I ′2 in I 1 such that I2 ∩ I ′2 = {0}. By continuing this process, we will have
a direct sum as I1 ⊕ I2 ⊕ I3 ⊕ . . ., that is a contradiction. Therefore, A (and also each of
its ideals) has an ideal that is a prime C*-algebra. Now, similar to the first paragraph of
the proof of Theorem 2.8 in [41], we can show that A contains an essential ideal which is
a finite direct sum of prime C*-algebras, and so has Goldie dimension.
(ii) Let A be a C*-algebra with Krull dimension. Then, A contains an essential ideal

that is a finite direct sum of critical ideals. But every critical C*-algebra is prime [41,
Lemma 2.3(vi)]. Thus, A has Goldie dimension. For the next assertion, let S = {ni}i∈N

be a sequence of natural numbers ni ≥ 2, and consider the following directed graph G:

Here, (ni) means that there are ni loops at each vertex wi. Since the graph G is downward
directed and satisfies Condition (K) (and hence (L)), C∗(G) is prime [1, Proposition 3.1].
Thus G.dim(C∗(G)) = 1. On the other hand, C∗(G) is without Krull dimension. Indeed,
having Krull dimension passes to quotients [41, Lemma 2.3(i)], while if we consider the
saturated hereditary subset H = {w1}, then [3, Theorem 2.1.6(b)] implies that,

C∗(G)/IH ∼= C∗(G \H) ∼=
⊕

ni∈S\{n1}

Oni
,

where Oni
is the Cuntz algebra, and so C∗(G)/IH does not have Krull dimension.
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(iii) We first show that if B is a hereditary C*-subalgebra of a C*-algebra A with
Goldie dimension, then G.dim(B) ≤ G.dim(A).
Suppose that L := ABA (the closed two sided ideal generated by B) and IdL(A) is

the set of closed ideals in A contained in L. Then, there is a bijection as follows:

Φ : Id(B) → IdL(A); J 7→ AJA,

(see [9, p. 90]), hence Id(B) ∼= IdL(A) ∼= Id(L). But G.dim(L) ≤ G.dim(A), by (i). Now,
since L has Goldie dimension, so is B.
For the second assertion, let I be an ideal in a C*-algebra A. We show that if I and

A/I have Goldie dimension, then G.dim(A) ≤ G.dim(I) + G.dim(A/I).
According to [41, Lemma 2.7], there is an ideal K in A such that I ⊕K Ee A, and

K ∼= K/(I ∩K) ∼= (I ⊕K)/I ≤ A/I,

(see [9, p. 84]). Thus,

G.dim(A) = G.dim(I ⊕K)

= G.dim(I) + G.dim(K)

≤ G.dim(I) + G.dim(A/I).

The last assertion holds, because two Morita equivalent C*-algebras have isomorphic
lattices of closed ideals [36, Theorem 3.22], and so have the same Goldie dimension.
(iv) Note first that there is an ideal Z in A such that I ⊕Z Ee A. Furthermore, I and

Z have Goldie dimension, by (iii).
Now, let I Ee.c A. Then since I E I ⊕Z Ee A, by Lemma 2.5(iii), ((I ⊕Z)/I)Ee (A/I).

Thus,

G.dim(A/I) = G.dim((I ⊕ Z)/I) = G.dim(Z/(I ∩ Z)) = G.dim(Z),

hence,

G.dim(A) = G.dim(I ⊕ Z) = G.dim(I) + G.dim(A/I).

For the converse, suppose that I Ee L E A. We show that I =L. Since I E A and
((I ⊕ Z)/I)E (A/I), both I and (I ⊕ Z)/I have Goldie dimension and G.dim(I ⊕ Z) ≤
G.dim(I) + G.dim((I ⊕ Z)/I), by the proof of (ii). Thus,

G.dim(I) + G.dim(A/I) = G.dim(A)

= G.dim(I ⊕ Z)

≤ G.dim(I) + G.dim((I ⊕ Z)/I).

Therefore, G.dim((I ⊕ Z)/I) = G.dim(A/I), and hence ((I ⊕ Z)/I) Ee (A/I), by
Remark 2.3(b). Since L ∩ Z = {0},

((I ⊕ Z)/I) ∩ (L/I) = ((I ⊕ Z) ∩ L)/I = (I ⊕ (Z ∩ L))/I = {0},
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by Lemma 2.5(i). This shows that (L/I) = {0}, and so I =L. �

In particular, all the C*-algebras introduced in [41, Example 3.2(a–j)] have Goldie
dimension.

Remark 2.8. (a) The graph C*-algebra C∗(G), introduced in Theorem 2.7(ii), shows
that Goldie dimension is not preserved under quotients.
(b) Let A be a C*-algebra with a non-trivial essentially closed ideal I. Then,

G.dim(A) = 2 if and only if both I and A/I are prime C*-algebras. In fact, if G.dim(A) =
2, then since I Ee.c A, Theorem 2.7(iv) shows that G.dim(I) + G.dim(A/I) = 2. Since
I is non-trivial, we conclude that G.dim(I) = 1 and G.dim(A/I) = 1. The converse is
clear.
(c) Let A be a C*-algebra A with Goldie dimension, B be a simple C*-algebra, with

A or B nuclear. Then, A ⊗ B has Goldie dimension (because Id(A) ∼= Id(A ⊗ B)). In
particular, A⊗ K and Mn(A) have Goldie dimension.

Let A be a C*-algebra, Ice be the set of all closed essential ideals in A and,

C(A) = alg−lim−→I∈Ice
C(Prim(I)) and Cb(A) = alg−lim−→I∈Ice

Cb(Prim(I)).

Then, C (A) (resp. Cb(A)) is called the (resp. bounded) extended centroid of A and we have
C(A) = Z(Qs(A)) (resp. Cb(A) = Z(Qb(A))), where Qs(A) (resp. Qb(A)) is the (resp.
bounded) symmetric algebra of quotients of A (see [2, Proposition 2.2.5 and Theorem
2.2.8]).

Theorem 2.9. Let A be a C*-algebra and n ∈ N. Then, G.dim(A) = n if and only if
Z(Mloc(A)) ∼= Cn.

Proof. Let G.dim(A) = n and IA =
⊕n

i=1 Ii be a G-ideal in A. Then,

Z(Mloc(A)) ∼= Z(Mloc(IA)) ∼=
n⊕

i=1

Z(Mloc(Ii)) ∼= Cn,

(see [2, Propositions 2.3.6 and 3.3.2]).
For the converse, let Z(Mloc(A)) ∼= Cn and C (A) be the extended centroid of A.

According to [8, Theorem 10.3.41], Z(Mloc(A)) ∼= Cn if and only if C(A) ∼= Cn, if and
only if A has exactly n minimal prime ideals, say P1, P2, . . . , Pn. Since C (A) is finite
dimensional,

C(A) = Cb(A) = Z(M(A)) = Z(Mloc(A)),

see [2, Propositions 2.2.13 and pp. 71 and 94]. Thus, A is boundedly centrally closed.
But a C*-algebra A is boundedly centrally closed if and only if for every ideal J in A,
annA(J) = eA, for a projection e ∈ Z(M(A)) [2, Remark 3.2.7]. Now, let e1, e2, . . . , en be
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the minimal central projections in Mloc(A). Then, we can write (by changing the index,
if necessary),

annA(P1) = e1A, annA(P2) = e2A, . . . , annA(Pn) = enA.

Let Ji := annA(Pi) = eiA, i ∈ {1, 2, . . . , n}. In this case, J1, J2, . . . , Jn are non-zero ideals
in A. Since

Mloc(Ji) = eiMloc(A),

and every projection ei is minimal, we have Z(Mloc(Ji)) = C, and so every Ji is a prime
C*-algebra [2, Proposition 3.3.2]. Since

⊕n
i=1 Ji Ee A, we conclude that A has Goldie

dimension n. �

A C*-algebra A is boundedly centrally closed if Z(M(A)) = Z(Mloc(A));
see [2, Definition 3.2.1 and Proposition 3.2.3]. Also, a topological space is
extremally disconnected if the closure of any open subset is still an open subset, equiv-
alently, every bounded continuous complex-valued function on a dense open subset can
be (uniquely) extended to a bounded continuous function on the whole space (see, [15,
Section 1H] and the proof of Proposition 3.2.4 [2]). Note that, in [2, Proposition 3.2.4],
it was shown that a C*-algebra A is boundedly centrally closed if and only if Prim(A) is
extremally disconnected. Moreover, in the proof of above theorem, it was observed that
for a C*-algebra A with Goldie dimension, we have,

Z(M(A)) = Z(Mloc(A)).

Therefore, the following corollary holds.

Corollary 2.10. Let A be a C*-algebra with Goldie dimension. Then, Prim(A) is
extremally disconnected.

This result is an extension of [41, Proposition 2.11(i)] (without assumption of having
a full projection).
Let us denote denote the class of all C*-algebras for which Mloc(A) = A by Ml. All

simple and unital C*-algebras, AW*-algebras, and any finite direct sum of these, belong
to Ml.

Corollary 2.11. Every C*-algebra with Goldie dimension has finite dimensional
center. The converse also holds when the C*-algebra belongs to Ml.

Proof. Let A be a C*-algebra with Goldie dimension n. Then, Z(A) ⊆ Z(Mloc(A)) ∼=
Cn, by Theorem 2.9 and [2, Lemma 3.2.2(i)]. Thus, Z (A) is finite dimensional.
If dim(Z(A)) = n and A ∈ Ml, then dim(Z(Mloc(A))) = n, and hence G.dim(A) = n,

by Theorem 2.9. �

The converse direction in the above corollary does not hold in the general. For instance,
if A :=

⊕∞
i=1 Ai, where Ai = K, and A1 is the unitization of A, then Z(A) = {0} and

Z(A1) = C, but A does not have Goldie dimension, by Theorem 2.7(i).
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As an application, an AW*-algebra has Goldie dimension if and only if it has finite-
dimensional center. Also, a unital C*-algebra A with Prim(A) Hausdorff, has such a
property. Indeed, if A has also finite-dimensional center, then Prim(A) is finite, because
C(Prim(A)) ∼= Z(A), by the Dauns-Hofmann theorem [36, Theorem A.34].
Note that for the C*-algebra A :=

⊕∞
i=1 Ai, where for all i, Ai = K, we have

Mloc(A) = M(A) =
∞⊕
i=1

B,

and hence Z(Mloc(A)) is infinite-dimensional, which of course is confirmed by
Theorem 2.9.
Recall that a C*-algebra A is of type I if the von Neumann algebra generated by the

range of any (non-degenerate) representation is of type I (i.e., in its lattice of projections,
every non-zero central projection dominates a non-zero abelian projection).

Corollary 2.12. (i) Let X be a compact and Hausdorff space. Then, C(X) has Goldie
dimension if and only if |X| < ∞.
(ii) A C*-algebra of type I has Goldie dimension if and only if it has Krull dimension

zero.

Proof. (i) Suppose C (X ) has Goldie dimension. By Corollary 2.11, every commutative
C*-algebra with Goldie dimension is finite-dimensional. Thus, the cardinal of X is finite.
Conversely, if |X| < ∞, then Prim(C(X)) ∼= X [9, p. 60], and hence C (X ) is Artinian.
Now since K.dim(C(X)) = 0, C (X ) has Goldie dimension, by Theorem 2.7(ii).
(ii) Let A be a C*-algebra of type I and has Goldie dimension. A C*-algebra is of type

I if and only if it is Morita equivalent to a commutative C*-algebra [7, Theorem 2.2].
Furthermore, Goldie dimension is preserved under Morita equivalence of C*-algebras.
Thus, there is a finite dimensional C*-algebra B such that A ∼M B, and so Prim(A) is
finite. This implies that K.dim(A) = 0. The converse is clear. �

In particular, C(T) is a C*-algebra without Goldie dimension.
Note that Goldie dimension is not preserved under taking crossed products in general.

Let α denote the action of the group Z on the unit circle T, by rotations through multiples
of a fixed angle 2πθ, where θ is irrational, and (C(T) oα Z,T, α̂) be the dual system of
(C(T),Z, α) (see [46, p. 190]). The irrational rotation C*-algebra A = C(T) oα Z is a
simple C*-algebra [9, Example II.10.4.12(i)]. On the other hand,

G.dim(Aoα̂ T) = G.dim(C(T)⊗K(L2(Z))) = G.dim(C(T)),

by the Takai duality theorem [46, Theorem 7.1], and so A oα̂ T does not have Goldie
dimension.

Corollary 2.13. Let G be a finite group acting by α : G → Aut(A) on a unital C*-
algebra A with Goldie dimension. If α has Rokhlin property, then the maximal crossed
product Aoα G and the fixed point algebra Aα have Goldie dimension.
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Proof. Since A is unital, G is finite and α is a Rokhlin action, the surjective map

Id(Aoα G) → Id(A)G : J 7→ J ∩A,

is a lattice isomorphism by [42, Section 1.2 and Theorem 1.30]. Thus, A oα G has also
Goldie dimension, by Theorem 2.7(i). Also, [9, Theorem II.10.4.18] implies that there is
a projection p ∈ M(Aoα G) such that

Aα ∼= p(Aoα G)p,

and hence Aα has Goldie dimension, by Theorem 2.7(iii). �

For a subset S of a C*-algebra A, ASA denotes the closed two sided ideal generated by
S, and we simply write AaA, when S = {a}. An element a ∈ A is called full if A = AaA
([9], p. 91). Let A be a C*-algebra, a ∈ A+ and ε> 0. Then (a − ε)+ := hε(a), where
hε : R+ → R+ is given by:

hε(t) = max{(t− ε), 0}.

Given a, b ∈ A+, we say that a is Cuntz subequivalent to b (and write a - b), if there is
a sequence {xk}∞k=1 ⊆ A such that x∗

kbxk → a in norm. We say that a and b are Cuntz
equivalent (and write a ∼cu b), if a - b and b - a [23]. An element a ∈ A is strictly full
if (a− ε)+ is full for some ε> 0, and hence for all sufficiently small ε> 0 [28, p. 46].
An ideal J in a C*-algebra A is called a compact ideal if whenever (Jλ)λ∈Λ is an

increasing net of ideals in A such that A =
⋃

λ∈Λ Jλ, then J = Jλ for some λ (see
[32, Remark 2.2]). A C*-algebra A has the projection property , if each of its ideals has
an increasing approximate unit consisting of projections (see [31, Definition 1]). Note
that for the projection property, according to [11, Definition 4.8], the assumption of the
approximate unit to be increasing is necessary.
Denote by Tlsc(A) the cone of linear traces on a C*-algebra A whose domain is the

Pedersen ideal Ped(A) of A. We can identify Tlsc(A) with the set of densely defined
lower semi-continuous traces on A (see [39, Definition 2.12]). Let S◦ (resp. Sc) denote
the interior (resp. the complement) of a subset S of Prim(A) (in the hull-kernel topology).

Theorem 2.14. Let A be a C*-algebra with Goldie dimension containing a strictly
full element. Then, the following assertions hold:
(i) Let Prim(A) be non-Hausdorff and J E A. Then, there is a compact ideal Ĵ in A

such that:⋂
I∈U

I = J ⊆ Ĵ =
⋂

I∈U◦
I; where U := {I ∈ Prim(A) | J ⊆ I} and U◦ 6= ∅,

and Ĵ has a strictly full element and a maximal ideal.
(ii) Let A be exact. If A is purely infinite (resp. stably finite and has the projection

property), then it has a full projection p (resp. q) and Tlsc(A) = {0} (resp. Tlsc(A) 6= {0}
and for any τ ∈ Tlsc(A), τ(q) 6= 0).
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Proof. First note that there is a lattice isomorphism φ between the ideal lattice Id(A)
of A and the lattice O(Prim(A)) of open subsets of Prim(A) such that corresponding to
an ideal J ∈ Id(A), we have the following open set,

hull(J)c = {I ∈ Prim(A) | J ⊆ I}c = Prim(A/J)c = Prim(J),

and, conversely, corresponding to an open set V ⊆ Prim(A), we have the following ideal,

ker(V c) =
⋂

I∈V c

I,

(see [32, Remark 2.2] and [13, Proposition 3.2.1]).
Moreover, Prim(A) is compact. Indeed, let x be a strictly full element in A, (Jλ)λ∈Λ be

an increasing net of ideals in A such that A =
⋃

λ∈Λ Jλ. Then, (x− ε)+ is a full positive
element in A for some ε> 0, and since

(x− ε)+ ∈ Ped(A) ⊆
⋃
λ∈Λ

Jλ,

there is λ0 such that (x− ε)+ ∈ Jλ0 . Hence Jλ0 = A. This implies that A is compact as
an ideal, and so Prim(A) is compact.

For (i), since Prim(A) is extremally disconnected, Prim(J) is a closed and open subset.

But Prim(A) is compact. Thus, Prim(J) is compact-open, and hence its corresponding

ideal, say Ĵ , is compact and we have,

Ĵ = ker((Prim(J))c) =
⋂

I∈(Prim(J))c

I

and

(Prim(J))c = ((Prim(J))c)◦ = {I ∈ Prim(A) | J ⊆ I}◦ = U◦.

Of course, corresponding to the open set Prim(J ) we have

J = ker((Prim(J))c) =
⋂
I∈U

I.

Note that U◦ 6= ∅. Otherwise Prim(J)
c
= ∅, and so Prim(J) = Prim(A). On the

other hand, according to [15, Section 6M(2)], a compact space X is extremally discon-
nected if and only if X = βY for every dense subspace Y, where βY is the Stone-Čech
compactification of Y. Thus,

Prim(A) = βPrim(J),
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and hence Prim(A) is Hausdorff, which is a contradiction. Now, since U◦ 6= ∅, we have

J ⊆ Ĵ . Let (zλ)λ∈Λ be an approximate unit for Ĵ , and Ĵλ := ĴzλĴ . Then, φ(Ĵλ) =

Prim(Ĵλ) and

Ĵ =
⋃
λ∈Λ

Ĵλ =
∑
λ∈Λ

Ĵλ.

Since φ is a lattice isomorphism, φ(Ĵ) =
⋃

λ∈Λ Prim(Ĵλ). Since φ(Ĵ) = Prim(Ĵ) is

compact, there are λ1, λ2, . . . , λn in Λ such that, φ(Ĵ) =
⋃n

i=1 Prim(Ĵλi), and,

Ĵ =
n∑

i=1

Ĵλi =
n∑

i=1

Ĵzλi Ĵ .

Thus, z =
∑n

i=1 zλi is a full positive element in Ĵ .

According to [33, Proposition 4.4.4] (or [9, Proposition II.6.5.5(i)]), for z ∈ Ĵ , there is

a lower semicontinuous real function ž on Prim(Ĵ), given by:

I 7→ ‖z/ker(π)‖,

where I E Ĵ and π is an irreducible representation of Ĵ such that I = ker(π), by [33,
Proposition 4.4.2] (recall that unitarily equivalent representations have the same kernel).

Since Prim(Ĵ) is compact, by [14, Theorem 7.4.14] (which states that any lower
semicontinuous function on a compact space attains its minimum value), there is

K ∈ Prim(Ĵ) such that,

ž(K) = ‖z/ker(π)‖ = infI∈Prim(Ĵ)ž(I) > 0.

Note that, since z is full, it does not belong to any proper (primitive) ideal and there-
fore does not belong to the kernel of any non-zero irreducible representation, and hence
‖z/ker(π)‖ > 0. Since

z = limn→∞(z − 1/n)+.

and žn → ž uniformly, where zn = (z − 1/n)+, for 0 < ε < ž(K), there is n0 ∈ N such
that, for all n ≥ n0 and all I ∈ Prim(A),

|‖zn/ker(π)‖ − ‖z/ker(π)‖| < ε,

hence,

0 < ‖z/ker(π)‖ − ε < ‖zn/ker(π)‖.

This implies that zn is full in Ĵ , for all n ≥ n0, and hence z a strictly full element in Ĵ .
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For the last assertion of (i), let Ω be the set of all proper ideals in Ĵ and Ω0 be a chain
in Ω. Since the set of all ideals in a C*-algebra is a complete lattice,

I0 :=
∨

I∈Ω0

I =
⋃

I∈Ω0

I

is an ideal in Ĵ . Since Ĵ is a compact ideal, I0 ( Ĵ (because if I0 = Ĵ , then for an I ∈ Ω0

we have Ĵ = I, that is a contradiction). Hence I 0 is a proper ideal in Ĵ , and in fact an
upper bound for Ω0. Thus, by Zorn’s Lemma, Ω has a maximal ideal. This implies that
Ĵ has a maximal ideal.
For (ii), first let A be exact and purely infinite. Since x is a strictly full element in A, for

some ε0 > 0, x - (x− ε0)+. Now by the last two paragraphs of the proof of Proposition
2.7(i ⇒ ii) in [32] (which does not indeed need the assumption of separability), there is a
projection p in A such that x ∼cu p, and so p is full in A. But Prim(A) = Prim(A⊗K)
and A ⊗ K is purely infinite and has also a full projection, of the form (p ⊗ e), where
e is a rank-one projection in K. Moreover, in [39, Theorem 2.15] it was shown that an
exact C*-algebra A with Prim(A) compact, admits a non-zero densely defined lower
semi-continuous trace if and only if the stabilization of A does not contain a full properly
infinite projection. Thus, we have Tlsc(A) = {0}.
Now for the second case, suppose that A is exact and stably finite and has the pro-

jection property. Then, A has an increasing approximate unit consisting of projections,
say (qλ)λ∈Λ. Let Aλ := AqλA. Then, (Aλ)λ∈Λ is an increasing net of ideals in A. Since

A =
⋃

λ∈Λ Aλ, we have A = Aλ0
, for some λ0 ∈ Λ. Thus, qλ0 (resp. qλ0 ⊗ e) is a full

projection in A (resp. A⊗K). Note that since A is stably finite, every projection in A⊗K
is finite. Hence Tlsc(A) 6= {0}, again by [39, Theorem 2.15].
Also, suppose that τ ∈ Tlsc(A). Then, τ(qλ0) 6= 0. Otherwise, qλ0 ∈ ker(τ). On the

other hand,

qλ0 ∈ Ped(A) = dom(τ),

where dom(τ) is the domain of τ (see [39, Definition 2.12]). Now, since qλ0 is full in A,
ker(τ) = dom(τ) and hence τ is zero, which is a contradiction. �

Definition 2.15. A C*-algebra A is said complete-Goldie, if all its quotients have
Goldie dimension.

All C*-algebras with Krull dimension are complete-Goldie. The graph C*-algebra
C∗(G), introduced in Theorem 2.7(ii), is a Goldie C*-algebra, but it is not complete-
Goldie.
Question 2.16. Is there a complete-Goldie C*-algebra that does not have Krull

dimension?

Corollary 2.17. Let E be a graph and A = C∗(E) be a complete-Goldie graph C*-
algebra. Then E satisfies Condition (K). In particular, RR(A) = 0.
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Proof. The C*-algebra C(T) does not have Goldie dimension, by Corollary 2.11 (or
Corollary 2.12). Furthermore, for a complete-Goldie C*-algebra, Goldie dimension is pre-
served under Morita equivalence of C*-algebras and passes to ideals and quotients, by
Theorem 2.7(i) and Definition 2.22. The first assertion now follow from [40, Lemma 3.3].
The second assertion holds, because in [21, Theorem 2.5], it was shown that if E is a
directed graph, then C∗(E) satisfies Condition (K) if and only if the real rank of C∗(E)
is zero. �

In particular, every purely infinite complete-Goldie graph C*-algebra A is O∞-stable
and have nuclear dimension one. Indeed, since RR(A) = 0, A has an approximate unit
consisting of projections. Furthermore, [24, Theorem 9.1] implies that a nuclear and
separable C*-algebra with an approximate unit consisting of projections is O∞-stable if
and only if it is strongly purely infinite, and a separable C*-algebra of real rank zero
is strongly purely infinite if and only if it is purely infinite. Recall that every graph
C*-algebra is separable and nuclear [3, p. 65]. Thus A ∼= A ⊗ O∞. Moreover, in [10,
Theorem A], it was shown that every O∞-stable, nuclear and separable C*-algebra, has
nuclear dimension one. Therefore, A has nuclear dimension one. We refer the reader for
the notion of nuclear dimension of a C*-algebra to [47].

Lemma 2.18. The local multiplier algebra of an Artinian, purely infinite and separable
C*-algebra is purely infinite.

Proof. Let A be an Artinian, purely infinite and separable C*-algebra. Then, for
an n ∈ N, there are the 0-critical (or simple) C*-algebras Ai, (1 ≤ i ≤ n), such that
A =

⊕n
i=1 Ai, by [41, Lemma 2.3(v) and Theorem 2.8]. Thus Mloc(A) =

⊕n
i=1 Mloc(Ai).

But, for every i, (1 ≤ i ≤ n), Mloc(Ai) = M(Ai). Hence Mloc(A) = M(A). By Zhang’s
theorem [49, Theorem 1.2(ii)], every purely infinite and simple C*-algebra has real rank
zero. Furthermore, in [48, Theorem 1.3(b)], it was shown that the corona algebra of a
simple and σ-unital C*-algebra of real rank zero is purely infinite. Thus, every M(Ai)/Ai

is purely infinite. Now being purely infinite is preserved under extensions. Therefore, every
Mloc(Ai) = M(Ai) is also purely infinite. This shows that Mloc(A) is purely infinite. �

Recall that a Kirchberg algebra is a purely infinite, nuclear, separable and simple C*-
algebra [38]. Let Σ(A) = {[p] | p ∈ P (A)} be the dimension range Σ(A) of a C*-algebra
A [37, p. 124].

Lemma 2.19. For every countable direct sum A of Kirchberg algebras, we have
K0(A) = Σ(A).

Proof. Let A =
⊕

λ∈Λ Aλ, where Λ is a countable direct set and every Aλ is a
Kirchberg algebra, and Ω be the collection of finite subsets of Λ, directed by inclusion.
Then

A = lim−→F

⊕
λ∈F

Aλ,

where F ∈ Ω [9, Example II.8.2.2(ii)]. According to [34, Proposition 3.4(ii)], every
Noetherian, purely infinite and separable C*-algebra has the ideal property (i.e., its
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ideals are generated by thier projections). Moreover, the ideal property and purely infi-
nite are preserved under inductive limits (see [30, Proposition 2.3] and [23, Proposition
4.18]). Also, since Λ is countable, A is separable. Thus, A is a purely infinite and
separable C*-algebra with the ideal property. Now, [32, Lemma 3.8] implies that
K0(A) = Σ(A). �

Every Artinian C*-algebra A has a K -ideal JA that is a direct sum of m simple (or
0-critical) ideals, by [41, Lemma 2.3(v) and Theorem 2.8]. On the other hand, every
prime C*-algebra has only one (non-zero) simple ideal (if any). Thus, every Artinian and
prime C*-algebra A has a unique simple (essential) ideal JA. Now, if A is a C*-algebra
with Goldie dimension n and with an Artinian G-ideal IA =

⊕n
i=1 Ii, then every direct

summand Ii of IA is Artinian and prime. Thus every Ii has a unique simple ideal Ji. We
call the ideal JA :=

⊕n
i=1 Ji a G0-ideal in A. Of course, JA Ee A, by [41, Lemma 2.6].

For each class of C*-algebras that can be classified, an appropriate Elliott invariant is
used, commonly shown as Ell(.). In the following theorem, using Lemma 2.19, we set,

Ell(.) := (K0(.),K1(.)) = (Σ(.),K1(.)),

for the stable case and,

Ell(.) := (K0(.), [1]0,K1(.)) = (Σ(.), [1]0,K1(.)),

for the unital case.

Theorem 2.20 Let A and B be C*-algebras with Goldie dimension n, each containing
an Artinian G-ideal. Suppose that all direct summands of G0-ideals JA and JB are
separable, nuclear, purely infinite and in the UCT class and for n ≥ 2, are also stable
and with non-zero simple Kj-groups, j = 0, 1. Then, Ell(JA) ∼= Ell(JB) implies that
Mloc(A) ∼= Mloc(B), and Mloc(A) and Mloc(B) are purely infinite. Furthermore, if JA

and JB belong to Ml, then

Ell(A) ∼= Ell(B)if and only if A ∼= B.

Proof. Let JA
∼=

⊕n
i=1 J A

i and JB
∼=

⊕n
i=1 J B

i be G0-ideals in A and B. Then, all
ideals J A

i and J B
i are Kirchberg algebras in the UCT class.

Recall that according to Zhang’s Dichotomy [49, Theorem 1.2(i)], every σ-unital, purely
infinite and simple C*-algebra is either unital or stable. Furthermore, according to the
Kirchberg–Phillips classification theorem [38, Theorem 8.4.1(ii)], the pair (K0(.),K1(.))
(resp. the triple (K0(.), [1]0,K1(.))) is a complete invariant for stable (resp. unital)
Kirchberg algebras in the UCT class.
Let n =1. Then, JA and JB are Kirchberg algebras in the UCT class that are

either stable or unital. Therefore (in both stable and unital cases), Ell(JA) ∼= Ell(JB)
if and only if JA

∼= JB , and hence Ell(JA) ∼= Ell(JB) implies that, Mloc(A) ∼=
Mloc(JA) ∼= Mloc(JB) ∼= Mloc(B). Of course, Mloc(A) and Mloc(B) are purely infinite,
by Lemma 2.18.
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Let n > 1 and all J A
i and J B

i are also stable and with non-zero simple Kj-groups
(j = 0, 1). Then, Ell(JA) ∼= Ell(JB) implies that

n⊕
i=1

Kj(J A
i ) ∼=

n⊕
i=1

Kj(J B
i ),

[45, Propositions 6.2.1 and 7.1.11(4)]. Since all J A
i and J B

i have non-zero simple Kj-
groups (j = 0, 1), by changing the index, if necessary, Kj(J A

i ) ∼= Kj(J B
i ), and hence

J A
i

∼= J B
i , for any i ∈ {1, 2, . . . , n}. This means that,

Mloc(JA) ∼=
n⊕

i=1

Mloc(J A
i ) ∼=

n⊕
i=1

Mloc(J B
i ) ∼= Mloc(JB),

and hence Mloc(A) ∼= Mloc(B). Also, Mloc(A) and Mloc(B) are purely infinite, again
according to Lemma 2.18.
For the last assertion (for every n ≥ 1), since JA,JB ∈ Ml,

A ≤ Mloc(A) ∼= Mloc(JA) = JA,

and so A = JA. Similarly, B = JB . This implies that Ell(A) ∼= Ell(B) if and only if
A ∼= B, by previous assertion. �

Example 2.21. For every prime number p, let

be the graph introduced on p. 496 of [40]. The graph C*-algebra C∗(Fp+1) is Artinian,
prime, purely infinite [5, Proposition 5.3], separable and nuclear [3, p. 65]. The ideal
corresponding to the saturated hereditary subset H = {w1} is IH [3, Theorem 2.1.6(a)]
that is minimal and essential. Since

IH ∼M C∗(EH) ∼= Op+1

[3, Theorem 2.1.6(c)], the Brown–Green–Rieffel theorem [36, Theorem 5.55] implies
that IH and C∗(EH) are stably isomorphic. But the UCT class is closed under stable
isomorphism [12, Remark 7.3]. Thus IH is in the UCT class. Now, let

A := C∗(Fp+1)⊗ B.

Then, the ideal IA = C∗(Fp+1) ⊗ K [29, Theorem 1.3] is an Artinian G-ideal and
JA = IH ⊗ K is a simple G0-ideal in A. Thus, A is a non-separable and non-nuclear
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C*-algebra with Goldie dimension one and with infinitely many ideals. The ideal JA is
stable, separable, nuclear, purely infinite and in the UCT class and with simple K 0-group

K0(JA) ∼= K0(IH) ∼= K0(Op+1) ∼= Zp,

and K 1-group K1(JA) = {0} [37, Exercises 4.5 and 8.10]. Moreover, Mloc(A) is also
purely infinite.

Next, we study the decomposability of C*-algebras with Goldie dimension.

Definition 2.22. A C*-algebra A is said extending, if every essentially closed ideal
in A is a direct summand.

Equivalently, a C*-algebra is extending if and only if for every I E A there exists an
ideal J in A such that it is a direct summand of A and IEeJ . Indeed, if A is an extending
C*-algebra, I E A and Ω = {K | I Ee K E A}, then by Zorn’s Lemma, Ω has a maximal
member J. Now, according to Definition 2.4 and maximality, J is essentially closed. Since
A is extending, J is a direct summand. Converesly, let I Ee.c A. Then for I EA, there is
a direct summand K such that I Ee K. Thus I =K, and so I is a direct summand.

Example 2.23. (a) For every n ∈ N≥2, the C*-algebra C∗(G) (resp. B = C∗(G)⊕ B)
is extending and with Goldie dimension one (resp. two) that are separable and nuclear
(resp. non-separable and non-nuclear) with infinitely many ideals. In general, a direct
sum of simple (prime) C*-algebras is an extending C*-algebra.
(b) For n1, n2 ∈ N≥2, consider the following graph:

The graph E 1 is row-finite and satisfies Condition (K), and so there is a lattice isomor-
phism from the lattice of saturated hereditary subsets of E 1 onto the lattice of ideals of
C∗(E1), by [5, Theorem 4.1] and [6, Corollary 3.8]. The only non-empty saturated hered-
itary subsets of E 1 are H1 = {w1}, H2 = {w2} and E0

1 . Thus, C
∗(E1) has only three

non-zero ideals IH1
, IH2

and C∗(E1) (and so it is Artinian and Noetherian). Clearly, IH1
(resp. IH2

) is essentially closed and isomorphic with the Cuntz algebra On1
(resp. On2

).
Moreover, since the sum of two closed ideals in a C*-algebra is itself a closed ideal, we
must have,

C∗(E1) ∼= IH1
⊕ IH2

.

Of course, the only G-ideal (also K -ideal) in C∗(E1) is itself. Thus, C∗(E1) is a C*-
algebra with Goldie dimension two (and with Krull dimension zero) which is extending
but not prime. It is worth mentioning that the essentially closed ideals IH1

and IH2
are

not essential ideals in C∗(E1).

Theorem 2.24. Let A be a C*-algebra. Then, the following conditions are equivalent:
(a) A has Goldie dimension.
(b) Every ascending (resp. descending) chain of essentially closed ideals of A stabilizes.
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If, in addition, A is extending, then conditions (a) and (b) above are equivalent to:
(c) A is a finite direct sum of prime C*-algebras.

Proof. (a ⇒ b): Let A has Goldie dimension and J1 $ J2 $ J3 $ . . . be a strictly
ascending sequence of essentially closed ideals in A. Then for i, j ∈ N, (i � j), we have
Ji $ Jj and, in addition, Ji Ee.c Jj . Thus, Ji and Jj/Ji have Goldie dimension and,

G.dim(Jj) = G.dim(Ji) + G.dim(Jj/Ji),

by Theorem 2.7(iv), and hence G.dim(Ji) � G.dim(Jj). Thus, we have a strictly
ascending sequence,

G.dim(J1) � G.dim(J2) � G.dim(J3) � . . . ,

which is a contradiction. The descending case is proved similarly.
(b ⇒ a): Let A does not have Goldie dimension. Thus, A contains an infinite direct sum

of non-zero ideals, say
⊕∞

i=1 Ii, (see Theorem 2.7(i)). We set Jn :=
⊕∞

i=n Ii, (n ∈ N).
First, we prove the ascending case. Since I1 ∩ J2 = {0}, by Zorn’s Lemma, the set

Ω = {K |K E A and K ∩ J2 = {0}} has a maximal member L1. Thus, L1 Ee.c A,
by maximality. Since (L1 ⊕ I2) ∩ J3 = {0}, Similarly to the previous part, there is an
essentially closed ideal L2 ⊇ L1⊕I2. Also, since (L2⊕I3)∩J4 = {0}, there is an essentially
closed ideal L3 ⊇ L2 ⊕ I3. By continuing this process, we will have a strictly ascending
sequence L1 $ L2 $ L3 $ . . . of essentially closed ideals in A, which contradicts the
assumption.
Now, we prove the assertion in the descending case. Let K1 = A. Since I1 ∩ J2 = {0},

there is an ideal K2 ⊇ J2 such that K2Ee.cK1. Also, since I2∩J3 = {0}, there is an ideal
K3 ⊇ J3 such that K3 Ee.c K2. Note that the relation Ee.c is transitive, by Lemma 2.6,
and hence K 3 is also essentially closed in K1 = A. By continuing this process, we get a
strictly descending sequence L1 % L2 % L3 % . . . of essentially closed ideals in A, which
is a contradiction.
(c ⇒ a): Let A be an extending C*-algebra and A =

⊕n
i=1 Ai, where each Ai is a

prime C*-algebra and n ∈ N. Then,

G.dim(A) =
n∑

i=1

G.dim(Ai) = n.

(a ⇒ c): Let A be an extending C*-algebra with Goldie dimension. Thus, A contains
an ideal I 1 that is a prime C*-algebra, and there are an ideal J 1 and a C*-subalgebra
B1 of A such that A = J1 ⊕ B1 and I1 Ee J1. Then B1 is also extending. Because if L1

is an essentially closed ideal in B1, then since B1 is a direct summand of A (and so is
essetially closed in A), L1 is essentially closed in A, by transitivity. But A is extending,
and hence L1 is a direct summand of A (and so of B1). Furthermore, J 1 is a prime
C*-algebra (G.dim(J1) = G.dim(I1) = 1). Now, since G.dim(B1) ≤ G.dim(A), B1 has
also Goldie dimension. By repeating the previous process after a finite number of times,
the assertion is obtained. �
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Example 2.25. For n, n1, n2 ∈ N≥2, consider the following graph E 2:

The only non-empty saturated hereditary subsets of E 2 are H1 = {w1}, H2 = {w2},
H3 = {w1, w2} and E0

2 . The graph C*-algebra C∗(E2) has Goldie dimension two, but it
cannot be written as a finite direct sum of prime C*-algebras, and hence is not extending,
by Theorem 2.24. In fact, its only G-ideal in C∗(E2) is IH3

(∼= IH1
⊕ IH2

), which is the
direct sum of two prime C*-algebras.

A Hilbert C*-module X over a C*-algebra A (or a Hilbert A-module) is a vector
space over C and a right A-module with a compatible A-valued inner product 〈. . .〉A
(see [36, Definition 2.8], for a detailed definition). A Hilbert A-module X is called full if
〈X,X〉A = A. Let LA(X) be the C*-algebra of adjointable operators on X and KA(X)
the closed linear span of the set of all elementary operators θx,y : X → X given by
θx,y(z) = x〈y, z〉;x, y, z ∈ X [26, 36]. For an ideal I in A, an ideal submodule for X,
denoted by XI, is defined by,

XI := span{x.a : x ∈ X , a ∈ I} = {x.a : x ∈ X , a ∈ I},

(see [4, Definition 1.1 and Proposition 1.2]). Let π : A → A/I and q : X → X/XI be
the quotient maps. Then, X/XI with the right action q(x)π(a) = q(xa) and the inner
product 〈q(x), q(y)〉 = π(〈x, y〉) is a Hilbert A/I-module [4].
If A ⊆ B is an inclusion of C*-algebras with a common identity and a faithful canonical

conditional expectation E : B → A, and

‖x‖2E = ‖E(x∗x)‖

is the norm induced by the inner product 〈x, y〉A = E(x∗y), then, XE := B
‖.‖E is a

Hilbert A-module. A conditional expectation E : B → A is said to have finite index if
there exists z1, z2, . . . , zn ∈ B such that x =

∑n
i=1 ziE(z∗i x), x ∈ B [22, 44].

Theorem 2.26. (i) Every Hilbert C*-module X over a C*-algebra A with Goldie
dimension n that is extending or an AW*-algebra is decomposed into a direct sum of
n ideal submodules.
(ii) Let A ⊆ B be an inclusion of C*-algebras with a common identity and a conditional

expectation E : B → A that is faithful and of finite index. Then, A has Goldie dimension
if and only if KA(XE)(= LA(XE)) has Goldie dimension.

Proof. (i) First we show that if X is a Hilbert C*-module over a C*-algebra A, I and
J are two closed ideals in A, and XI and XJ be the associated ideal submodules, then

XI +XJ = XI+J and XI ∩XJ = XI∩J .
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Since XI +XJ is closed in X [43, Lemma 2.12] and, for every ideal K in A, XK = {x.k :
x ∈ X , k ∈ K}, we have XI +XJ = XI+J . Note that every ideal submodule in an ideal
submodule of X is also an ideal submodule in X. If π0 : I → (I + J)/J is the restriction
map of the quotient map

π : I + J → (I + J)/J,

then Ker(π0) = I∩J . Let q0 : XI → (XI+XJ)/XJ be the restriction map of the quotient
map

q : XI +XJ → (XI +XJ)/XJ .

Then q0 is a π0-morphism (see [4, Definition 2.1]), since

〈q0(x), q0(y)〉 = 〈q(x), q(y)〉 = π(〈x, y〉) = π0(〈x, y〉),

for all x, y ∈ XI . Thus, [4, Theorem 2.3] implies that,

XI ∩XJ = Ker(q0) = XKer(π0)
= XI∩J .

Now, let A be a C*-algebra with Goldie dimension n that is extending or is an AW*-
algebra. If A is extending, then it is a direct sum of n prime C*-algebras, by Theorem 2.24
and Lemma 2.1. If A is an AW*-algebra and IA =

⊕n
i=1 Ii a G-ideal in A, then

A = Mloc(A) =
n⊕

i=1

Mloc(Ii),

where every Mloc(Ii) is a prime C*-algebra [2, Proposition 3.3.2]. In both cases, there
are prime C*-algebras A1, A2, . . . , An in A such that A =

⊕n
i=1 Ai. Thus,

XA = X⊕n
i=1 Ai

=
n⊕

i=1

XAi
.

(ii) First note that since E has finite index, there exists z1, z2, . . . , zn ∈ B such that,

x =
n∑

i=1

ziE(z∗i x) =
n∑

i=1

θzi,zi(x); x ∈ B.

Since B is ‖.‖E -dense in XE , K(XE) is unital, with 1K(XE ) =
∑n

i=1 θzi,zi , and hence
KA(XE) = M(KA(XE)) = LA(XE). Furthermore, observe that XE is full. Indeed, the
elements in a C*-algebra A can be expressed as linear combinations of positive elements,
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and every positive element is in the form a∗a(= E(a∗a) = 〈a, a〉A), for an a ∈ A. Thus,

A ⊆ span{E(x∗y) |x, y ∈ XE} = 〈XE , XE〉A.

Now, since every full Hilbert A-module X is a KA(X)-A-imprimitivity bimodule
[36, Proposition 3.8], we have KA(XE) ∼M A. Therefore, the assertion holds, by
Theorem 2.7(iii). �

Theorem 2.26(ii) shows that Corollary 2.2.14 of [44] (if A is simple, then KA(XE) is
simple), is also true for C*-algebras with Goldie dimension. Note that KA(XE) is exactly
C∗〈B, eA〉, by the remark on p. 40, Definition 2.2.10 and Lemma 2.2.9 of [44].
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