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A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS
ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC

LONGYUN DING AND XU WANG

Abstract. In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that
admit a compatible complete left-invariant metric. We denote this hierarchy by α-CLI and L-α-CLI where
α is a countable ordinal. We establish three results:

(1) G is 0-CLI iff G = {1G};
(2) G is 1-CLI iff G admits a compatible complete two-sided invariant metric; and
(3) G is L-α-CLI iff G is locally α-CLI, i.e., G contains an open subgroup that is α-CLI.
Subsequently, we show this hierarchy is proper by constructing non-archimedean CLI Polish groupsGα

and Hα for α < �1, such that:
(1) Hα is α-CLI but not L-�-CLI for � < α; and
(2) Gα is (α + 1)-CLI but not L-α-CLI.

§1. Introduction. A Polish group is non-archimedean if it has a neighborhood
basis of its identity element consisting of open subgroups. By a theorem of Becker
and Kechris (cf. [1, Theorem 1.5.1]), a Polish group is non-archimedean iff it is
homeomorphic to a closed subgroup of S∞, the group of all permutations of N

equipped with the pointwise convergence topology. A metric d on a group G is
left-invariant if d (gh, gk) = d (h, k) for all g, h, k ∈ G . A Polish group is CLI if it
admits a compatible complete left-invariant metric.

Malicki [5] defined a notion of orbit tree TG for each closed subgroup G of S∞,
and showed that G is CLI iffTG is well-founded. Moreover, he proved that the heights
of orbit trees of all CLI closed subgroups of S∞ are cofinal in �1. Malicki proved
that the family of all CLI groups is coanalytic non-Borel based on this cofinality.
After that, Xuan defined a different kind of orbit trees and showed that, a closed
subgroup of S∞ is locally compact iff its orbit tree has finite height (cf. [6, Theorem
3.7]). It is worth noting that both kinds of orbit trees defined by Malicki and Xuan
are all defined on closed subgroups of S∞ rather than directly on non-archimedean
Polish groups. As a result, two topologically isomorphic closed subgroups of S∞
can have completely different orbit trees, and even the rank of their orbit trees can
be different. This suggests that one cannot use ranks of orbit trees directly to define
a hierarchy.

In this article, for a given non-archimedean CLI Polish group G, we use a
neighborhood basis of the identity 1G to define a new type of orbit trees. This
differs from the approach which employs a closed subgroup of S∞ topologically
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2 LONGYUN DING AND XU WANG

isomorphic to G. More specifically, let G = (Gn) be a decreasing sequence of open
subgroups of G with G0 = G , such that (Gn) forms a neighborhood basis of 1G . We
will define a well-founded tree TX (G)

G and denote its rank by �(G). We let rank(G) be
the ordinal given by max{� : �(G) ≥ � · �}. Then we shall prove that the following
are independent from the choice of G: (a) the value of the ordinal rank(G); and (b)
whether �(G) is a limit ordinal or not. These facts allow us to form a well-defined
hierarchy on the class of non-archimedean CLI Polish groups: given an ordinal
α < �1,

(1) if �(G) ≤ � · α, we say G is α-CLI;
(2) if �(G) ≤ � · α +m for somem < �, i.e., rank(G) ≤ α, we say G is L-α-CLI.

It is clear that, if G is L-α-CLI, then it is also (α + 1)-CLI.
The following theorem shows that the hierarchy classifies non-archimedean CLI

Polish groups in a good manner:

Theorem 1.1. Let G be a non-archimedean CLI Polish group and α be a countable
ordinal. Then:

(1) G is 0-CLI iff G = {1G};
(2) G is L-0-CLI iff G is discrete;
(3) G is 1-CLI iff G is TSI, i.e., G admits a compatible complete two-sided invariant

metric;
(4) G is L-α-CLI iff G is locally α-CLI, i.e., G has an open subgroup which is
α-CLI.

It is well-known that all compact Polish groups are TSI (cf. [2, Theorem 2.1.5]),
and all locally compact Polish groups are CLI (cf. [2, Theorem 2.2.5]). Now we
know that all compact non-archimedean Polish groups are 1-CLI, and all locally
compact non-archimedean Polish groups are L-1-CLI.

Theorem 1.2. Let G be a non-archimedean CLI Polish group and α be a countable
ordinal. Assume H and N are closed subgroups of G, and that N is normal in G. If G is
α-CLI (or L-α-CLI ), so are H andG/N . In particular, we have rank(H ) ≤ rank(G)
and rank(G/N ) ≤ rank(G).

Theorem 1.3. Let (Gi) be a sequence of non-archimedean CLI Polish groups,
α < �1, and let G =

∏
i G
i . Then we have:

(1) G is α-CLI iff all Gi are α-CLI; and
(2) G is L-α-CLI iff allGi are L-α-CLI and for all but finitely many i,Gi is α-CLI.

Finally, we prove the following theorem, which indicates that this hierarchy is
proper:

Theorem 1.4. For any α < �1, there exist two non-archimedean CLI Polish groups
Gα and Hα with rank(Gα) = rank(Hα) = α such that Hα is α-CLI and Gα is L-α-
CLI but not α-CLI.

§2. Preliminaries. We denote the class of all ordinals by Ord. For any α ∈ Ord,
we define

�(α) = max{0, � : � ≤ α is a limit ordinal}.
Then α = �(α) +m for some m < �.
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A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 3

Let E be an equivalence relation on a set X,x ∈ X , andA ⊆ X . The E-equivalence
class of x is [x]E = {y ∈ X : xEy}. Similarly, the E-saturation of A is [A]E = {y ∈
X : ∃z ∈ A (yEz)}.

The identity element of a group G is denoted by 1G . Let H be a subgroup of G,
we denote the set of all left-cosets of H by G/H .

A topological space is Polish if it is separable and completely metrizable. A
topological group is Polish if its underlying topology is Polish. Let G be a Polish
group and X a Polish space, an action of G on X, denoted by G � X , is a
map a : G × X → X that satisfies a(1G, x) = x and a(gh, x) = a(g, a(h, x)) for
g, h ∈ G and x ∈ X . The pair (X, a) is called a Polish G-space if a is continuous.
For brevity, we write g · x in place of a(g, x). The orbit equivalence relation EXG
is defined as xEXG y ⇐⇒ ∃g ∈ G (g · x = y). Note that the EXG -equivalence class
of x is G · x = {g · x : g ∈ G}, which is also called the G-orbit of x. Similarly, for
A ⊆ X , the EXG -saturation of A is G · A = {g · x : g ∈ G ∧ x ∈ A}.

Let < be a binary relation on a set T. We say that (T,<) is a tree if:

(1) ∀s ∈ T (s �< s),
(2) ∀s, t, u ∈ T ((s < t ∧ t < u) ⇒ s < u),
(3) ∀s ∈ T (|{t ∈ T : t < s}| < � ∧ ∀t, u < s (t = u ∨ t < u ∨ u < t)).

For s ∈ T , we define lh(s) = |{t ∈ T : t < s}|, which is called the length of s. It is
clear that s < t implies lh(s) < lh(t). For n < �, we denote the nth level of T by

Ln(T ) = {s ∈ T : lh(s) = n}.

Each element in L0(T ) is called a root of T.
Let (T,<) be a tree. We say that T is well-founded if any non-empty subset of T

contains at least a maximal element, or equivalently (under AC), if T contains no
infinite strictly increasing sequence. Let T be a well-founded tree. We define the rank
function �T : T → Ord by transfinite induction as

�T (s) = sup{�T (t) + 1 : s < t ∧ t ∈ T}.

If �T (s) = 0, we say that s is a terminal of T. Then we define

�(T ) = sup{�T (s) + 1 : s ∈ T}.

So �(T ) = 0 iff T = ∅. It is clear that �(T ) = sup{�T (s) + 1 : s ∈ L0(T )}. If
L0(T ) = {s0} is a singleton, then �(T ) = �T (s0) + 1 is a successor ordinal.

For s ∈ T , we define

Ts = {t ∈ T : s = t ∨ s < t}.

SinceL0(Ts) = {s}, we have �(Ts) = �T (s) + 1. For the convenience of discussion,
we let Ts = ∅ whenever s /∈ T ; in other words, �(Ts) = 0. This convention will be
useful in some proofs (see Lemma 4.3). Note that �(Ts) is always a non-limit ordinal
regardless of s ∈ T or not.

First, we note the following facts:

Proposition 2.1. Let T be a well-founded tree, then

�(T ) = sup{�(Ts) : s ∈ T} = sup{�(Ts) : s ∈ T ∧ s ∈ L0(T )},
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4 LONGYUN DING AND XU WANG

and for all s ∈ T ,

�(Ts) = sup{�(Tt) : s < t ∧ t ∈ T} + 1
= sup{�(Tt) : s < t ∧ t ∈ T ∧ lh(t) = lh(s) + 1} + 1.

Proposition 2.2. Let (T,<) be a well-founded tree, k < �. Then we have:

(1) sup{�(Ts) : s ∈ Lk(T )} ≤ �(T ) ≤ sup{�(Ts) : s ∈ Lk(T )} + k;
(2) �(�(T )) = �(sup{�(Ts) : s ∈ Lk(T )});
(3) if �(Ts) ≥ α for some s ∈ Lk(T ), then �(T ) ≥ α + k.

Proof. It is routine to prove clause (1) by induction on k based on Proposition
2.1. Clause (2) is an easy corollary of (1). And clause (3) is trivial. �

Let (S,<) and (T,<) be two trees. A map φ : S → T is said to be an order-
preserving map if

∀s, t ∈ S (s < t ⇒ φ(s) < φ(t)).

It is said to be an order-preserving embedding (isomorphism) if it is injective (bijective)
and

∀s, t ∈ S (s < t ⇐⇒ φ(s) < φ(t)).

In particular, an order-preserving map φ is said to be Lipschitz if lh(φ(s)) = lh(s)
for all s ∈ S.

Proposition 2.3. Let (S,<) and (T,<) be trees, and assume that (T,<) is well-
founded. If there exists an order-preserving map φ : S → T , then (S,<) is also well-
founded, and �(S) ≤ �(T ) holds.

Proof. If S contains an infinite strictly increasing sequence (sn), then (φ(sn)) is
an infinite strictly increasing sequence in T, contradicting that (T,<) is well-founded.

Now we prove that �S(s) ≤ �T (φ(s)) for s ∈ S by induction on �S(s). For
the basis of induction, note that �S(s) = 0 ≤ �T (φ(s)) clearly holds; and for the
inductive step, we have the following inequality:

�S(s) = sup{�S(u) + 1 : s < u ∧ u ∈ S}
≤ sup{�T (φ(u)) + 1 : s < u ∧ u ∈ S}
≤ sup{�T (t) + 1 : φ(s) < t ∧ t ∈ T} = �T (φ(s)).

This implies �(S) ≤ �(T ). �

§3. Definition of the hierarchy

Definition 3.1. Let X be a set, and E = (En) be a decreasing sequence of
equivalence relations on X, i.e., En ⊇ En+1 for each n < �. We define

TXE = {(n,C ) : ∃x ∈ X (C = [x]En �= {x})}.

For (n,C ), (m,D) ∈ TXE , we define

(n,C ) < (m,D) ⇐⇒ n < m ∧ C ⊇ D.
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It is straightforward to check that (TXE , <) is a tree. Note that (n,C ) ∈ TXE iff C
is a non-singleton equivalence class of En. Here we omit all singleton classes in our
definition. This will be crucial in the proof of Lemma 3.3.

Definition 3.2. Let G be a non-archimedean Polish group. We denote by
dgnb(G) the set of all decreasing sequences G = (Gn) of open subgroups of G,
such that G0 = G and (Gn) forms a neighborhood basis of 1G . Here ‘dgnb’ stands
for ‘decreasing group neighborhood basis’.

Let X be a countable discrete Polish G-space, G = (Gn) ∈ dgnb(G). We define
En = EXGn , i.e., xEny ⇐⇒ ∃g ∈ Gn (g · x = y), and hence [x]En = Gn · x. Then we
write E = (En) and

TXG = TXE .

Therefore, (n,C ) ∈ TXG iff C is a non-singleton Gn-orbit. We point out that our
definition is different from Malicki’s and Xuan’s, which are based on infinite orbits.

The following lemma builds a connection between non-archimedean CLI Polish
groups and well-founded trees. Similar results also appear in [5, Theorem 3] and [6,
Theorem 3.9].

Lemma 3.3. Let G be a non-archimedean CLI Polish group, X a countable discrete
Polish G-space, and let G = (Gn) ∈ dgnb(G). Then TXG is well-founded.

Proof. Assume for contradiction that TXG is ill-founded, then there exists an
infinite sequence (n,Cn), n < � in TXG with Cn ⊇ Cn+1 for each n < �.

Let d be a compatible complete left-invariant metric on G.
Fix an x0 ∈ C0. Then we have G0 · x0 = C0 ⊇ C1, so we can find a g0 ∈ G0 such

that g0 · x0 ∈ C1. Inductively, we can find a gn ∈ Gn for each n < � such that
gngn–1 ... g0 · x0 ∈ Cn+1. Put hn = g–1

0 ... g
–1
n for each n < �. Then, for any n, p < �,

we have d (hn+p, hn) = d (h–1
n hn+p, 1G) = d (g–1

n+1 ... g
–1
n+p, 1G ) ≤ diam(Gn+1) → 0 as

n → ∞. It follows that (hn) is a d-Cauchy sequence in G, so it converges to some
h ∈ G .

Let x∞ = h–1 · x0. Since hn → h, we have h–1
n → h–1, and hence h–1

n · x0 → h–1 ·
x0 = x∞. Note that X is discrete, so there exists an integer N such that h–1

n · x0 = x∞
for any n > N , thus x∞ = gngn–1 ... g0 · x0 ∈ Cn+1. This implies that x∞ ∈

⋂
n Cn

and Gn · x∞ = Cn for each n < �.
Finally, define Gx∞ = {g ∈ G : g · x∞ = x∞} and put f : G → X as f(g) =

g · x∞. Since f is continuous and {x∞} is clopen in X, it follows thatGx∞ = f–1(x∞)
is a clopen subgroup of G. So there exists an m < � such that Gm ⊆ Gx∞ . We
now have Cm = Gm · x∞ = {x∞}, which is a singletonGm-orbit, contradicting that
(m,Cm) ∈ TXG . �

Given two sets X and Y. Let E = (En) and F = (Fn) be two decreasing sequences
of equivalence relations on X and Y, respectively. Let � : X → Y be an injection.
For (n,C ) ∈ TXE , define φ(n,C ) = (n, [�(C )]Fn ).

Proposition 3.4. (1) If � is an (En, Fn)-homomorphism for each n < �, i.e.,

∀n < � ∀x, x′ ∈ X (xEnx′ ⇒ �(x)Fn�(x′)),

then φ is an order-preserving map from TXE to TYF .
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6 LONGYUN DING AND XU WANG

(2) If � is an reduction of En to Fn for each n < �, i.e.,

∀n < � ∀x, x′ ∈ X (xEnx′ ⇔ �(x)Fn�(x′)),

thenφ is an Lipschitz embedding fromTXE toTYF . In particular, if � is a bijection,
then φ is an order-preserving isomorphism.

Proof. Note that � is injective. Let us prove that φ(n,C ) ∈ TYF holds for an
arbitrary (n,C ) ∈ TXE . Indeed, it suffices to note that since C is not a singleton,
neither is [φ(C )]Fn . This proves φ(n,C ) ∈ TYF . The rest of the proof is trivial. �

Definition 3.5. Let (T,<) be a tree, (ni) a strictly increasing sequence of natural
numbers. We define

T |(ni) =
⋃
i

Lni (T ).

Note that (T |(ni), <) is also a tree, and that Lj(T |(ni)) = Lnj (T ) holds for each
j < �. We call T |(ni) a level-subtree of T.

Lemma 3.6. Let (T,<) be a well-founded tree, (ni) a strictly increasing sequence
of natural numbers. Then we have:

�(�(T )) ≤ �(T |(ni )) ≤ �(T ).

In particular, if �(T ) is a limit ordinal, then �(T |(ni)) = �(T ).

Proof. �(T |(ni )) ≤ �(T ) follows from Proposition 2.3. We prove �(�(T )) ≤
�(T |(ni)) by induction on �(T ).

First, if �(T ) < �, then �(T ) = min{n : Ln(T ) = ∅}, and hence �(T |(ni )) =
min{i : Lni (T ) = ∅}. So we have �(�(T )) = 0 ≤ �(T |(ni )).

For t ∈ T |(ni), note that (T |(ni))t = {u ∈ T |(ni) : t = u ∨ t < u} is a level-
subtree of Tt as well.

Case 1: If �(T ) is a limit ordinal, then �(�(T )) = �(T ). Proposition 2.1 implies
that �(T ) = sup{�(Tt) : t ∈ T}. Since �(T ) is a limit ordinal and �(Tt) is a
successor ordinal, we have �(Tt) < �(T ) for t ∈ T .

Subcase 1.1: If there is no maximum in {�(�(Tt)) : t ∈ T}, we have

�(T ) = sup{�(Tt) : t ∈ T} = sup{�(�(Tt)) : t ∈ T}.

By the inductive hypothesis, we have�(�(Tt)) ≤ �((T |(ni ))t). Proposition 2.3 gives
�((T |(ni ))t) ≤ �(T |(ni)) for each t ∈ T , so we have �(T |(ni )) = �(T ).

Subcase 1.2: Otherwise, let α = max{�(�(Tt)) : t ∈ T}. Since �(Tt) < �(T )
for t ∈ T , we have �(T ) = α + �. We can find a sequence tm, m < � in L0

such that �(Ttm ) = α + km with sup{km : m < �} = �. By Proposition 2.1, for
each m < � and n < km we can find tnm ∈ Ln(T ) such that tm = t0m < t

1
m < ··· <

tkm–1
m and �(Ttnm ) = α + (km – n). For km > n0, let im be the largest i such that
ni < km, then t

nj
m ∈ Lj(T |(ni )) = Lnj (T ) for j ≤ im. By the inductive hypothesis,

α = �(�(T
t
nj
m

)) ≤ �((T |(ni ))
t
nj
m

). Since �((T |(ni ))
t
nj
m

) ≥ �((T |(ni ))
t
nj+1
m

) + 1 for

each j < im, we have �((T |(ni ))
t
n0
m

) ≥ α + im. By the definition of im, we have

sup{im : m < �} = �. This gives �(T |(ni )) = α + � = �(T ).
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Case 2: If�(T ) = �(�(T )) + nwith 1 ≤ n < �, then there exists some t0 ∈ L0(T )
such that �(T ) = �T (t0) + 1. Since {u ∈ T |(ni) : t0 < u} is a level-subtree of {u ∈
T : t0 < u} and �({u ∈ T : t0 < u}) = �T (t0) < �(T ), by the inductive hypothesis
and Proposition 2.3, we have

�(�T (t0)) = �(�({u ∈ T : t0 < u})) ≤ �({u ∈ T |(ni ) : t0 < u}) ≤ �(T |(ni)).

It follows that �(�(T )) = �(�T (t0)) ≤ �(T |(ni)). �
In general, the tree TXG and the ordinal �(TXG ) depend on G, and not only on the

actionG � X . The following key lemma shows that�(�(TXG )) is independent from
the choice of G.

Lemma 3.7. Let G be a non-archimedean CLI Polish group, X be a countable
discrete Polish G-space, and let G = (Gn),G′ = (G ′

n) ∈ dgnb(G). Then

�(�(TXG )) = �(�(TXG′)).

Proof. (1) First, we consider the case where (G ′
n) is a subsequence of (Gn), i.e.,

there is a strictly increasing sequence (ni) of natural numbers such that G ′
i = Gni

for each i < �.
We define 	 : TXG′ → TXG as 	(i, C ) = (ni , C ). It is clear that 	 is an order-

preserving isomorphism from TXG′ onto TXG |(ni). It follows that

�(�(TXG )) ≤ �(TXG′) = �(TXG |(ni)) ≤ �(TXG ).

So we have �(�(TXG )) = �(�(TXG′)).

(2) Since (Gn), (G ′
n) ∈ dgnb(G), we can find two strictly increasing natural

numbers (ni) and (mj) such that n0 = 0, m0 = 0, and

G0 ⊇ G ′
m0

⊇ Gn1 ⊇ G ′
m1

⊇ Gn2 ⊇ ... .

Define H2i = Gni and H2i+1 = G ′
mi

for each i < �. Then (Hk) ∈ dgnb(G). Put
H = (Hk),K = (Gni ), and K′ = (G ′

mi
).

Note that (Gni ) is a subsequence of (Gn) and also a subsequence of (Hk). From
(1), we obtain

�(�(TXG )) = �(�(TXK )) = �(�(TXH )).

Similarly, we obtain

�(�(TXG′)) = �(�(TXK′)) = �(�(TXH )).

So we have �(�(TXG )) = �(�(TXG′)). �

Now we are going to find a special G-space X (G) such that �(�(TX (G)
G )) attains

the maximum value among all�(�(TXG )). This leads to the conclusion that the value

of �(�(TX (G)
G )) is determined by G itself.

Lemma 3.8. Given two sets X and Y. Let E = (En) and F = (Fn) be two decreasing
sequences of equivalence relations on X and Y, respectively. Let � : X → Y be a
surjection such that

∀n < � ∀x ∈ X (�([x]En ) = [�(x)]Fn ).
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Then there exists a Lipschitz embedding 	 : TYF → TXE . In particular, if TXE is well-
founded, so is TYF , and �(TYF ) ≤ �(TXE ) holds.

Proof. For any (n,C ) ∈ TYF , we construct 	(n,C ) by induction on n such that
	(n,C ) = (n, [x]En ) for some x ∈ X with [�(x)]Fn = C .

For n = 0, since � is a surjection, we can find an x ∈ X with �(x) ∈ C . Then we
let 	(0, C ) = (0, [x]E0 ).

For n > 0, since C is an Fn-equivalence class, there exists a unique Fn–1-
equivalence class D ⊇ C . By the inductive hypothesis, we can find an x′ ∈ X
such that 	(n – 1, D) = (n – 1, [x′]En–1) with [�(x′)]Fn–1 = D. Since �([x′]En–1) =
[�(x′)]Fn–1 = D ⊇ C , we can find an x ∈ [x′]En–1 such that �(x) ∈ C . Then we put
	(n,C ) = (n, [x]En ).

Since C is not a singleton, the equality �([x]En ) = [�(x)]Fn = C implies that [x]En
is not a singleton. So 	(n,C ) ∈ TXE . From the construction, it is routine to check
that 	 : TYF → TXE is a Lipschitz embedding.

Finally, if TXE is well-founded, then by Proposition 2.3, TYF is well-founded as
well, and �(TYF ) ≤ �(TXE ). �

Definition 3.9. Let G be a non-archimedean CLI Polish group, and let G =
(Gn) ∈ dgnb(G). For eachk < �, we define an actionG � G/Gk asg · hGk = ghGk
for g, h ∈ G , and let �k(G) denote �(TG/GkG ). Afterwards, we let X (G) =

⋃
k G/Gk

and �(G) = �(TX (G)
G ).

Note that G · gGk = {hgGk : h ∈ G} = G/Gk for any g ∈ G .
It is clear that �0(G) = 0, since G = G0.

Lemma 3.10. (1) �(G) = sup{�k(G) : k < �}.
(2) (�k(G)) is an increasing sequence of countable non-limit ordinals.

Proof. (1) Note that L0(TX (G)
G ) = {(0, G/Gk) : G �= Gk}. We point out that

(TX (G)
G )(0,G/Gk )

∼= TG/GkG forG �= Gk , and (TX (G)
G )(0,G/Gk ) = TG/GkG = ∅ forG = Gk .

So

�(G) = �(TX (G)
G ) = sup{�((TX (G)

G )(0,G/Gk )) : k < �}
= sup{�(TG/GkG ) : k < �} = sup{�k(G) : k < �}.

(2) Given k < �, we define � : G/Gk+1 → G/Gk as �(gGk+1) = gGk for g ∈ G .
It is clear that � is well-defined and is a surjection. Furthermore, for n < � and
g ∈ G , we have

�(Gn · gGk+1) = {�(hgGk+1) : h ∈ Gn}
= {hgGk : h ∈ Gn} = Gn · gGk = Gn · �(gGk+1).

From Lemma 3.8, we have

�(TG/GkG ) ≤ �(T
G/Gk+1
G ),

i.e., (�k(G)) is increasing.

https://doi.org/10.1017/jsl.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.7


A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 9

For each k < �, since TG/GkG is countable, �k(G) is countable as well. If G = Gk ,

thenTG/GkG = ∅; otherwise ifG �= Gk , thenL0(TG/GkG ) = {(0, G/Gk)} is a singleton.

So �k(G) = �(TG/GkG ) is either 0 or a successor ordinal. �
Recall that a G-space X is said to be transitive if X itself is an orbit.

Lemma 3.11. Let G be a non-archimedean CLI Polish group, X a countable discrete
transitive Polish G-space, and let G = (Gn) ∈ dgnb(G). Then we can find some k < �
such that �(TXG ) ≤ �k(G).

Proof. Fix an x ∈ X . Since {x} is clopen in X, by the continuity of the group
action of G on X, we know Gx is a clopen subgroup of G. So there is some k < �
such thatGk ⊆ Gx . Then we can define � : G/Gk → X as �(gGk) = g · x for g ∈ G .
Since X is a transitive G-space, � is surjective and �(Gn · gGk) = Gn · �(gGk) for
each n < � and g ∈ G . By Lemma 3.8, we have �(TXG ) ≤ �k(G). �

Corollary 3.12. Let G be a non-archimedean CLI Polish group, X a countable
discrete Polish G-space, and let G = (Gn) ∈ dgnb(G). Then we have

�(TXG ) ≤ �(G).

Proof. Note that L0(TXG ) = {(0, G · x) : x ∈ X ∧G · x �= {x}} and TG·xG
∼=

(TXG )(0,G·x) for G · x �= {x}, so we have

�(TXG ) = sup{�((TXG )(0,G·x)) : x ∈ X} = sup{�(TG·xG ) : x ∈ X}.
By Lemma 3.11, we have

�(TXG ) ≤ sup{�k(G) : k < �} = �(G). �

Corollary 3.13. Let G be a non-archimedean Polish group, G = (Gn) ∈ dgnb(G).
Then G is CLI iff TG/GkG is well-founded for any k < �.

Proof. The (⇒) part follows from Lemma 3.3.
(⇐). Given a countable Polish G-space X. Following the arguments in the proof

of Lemma 3.11, we can see that, for any x ∈ X , there is a k < � and a Lipschitz
embedding from TG·xG to TG/GkG . Since TG/GkG is well-founded, so is TG·xG . By the
arbitrariness of x ∈ X , we conclude that TXG is also well-founded. Combining this
with [5, Theorem 6], it follows that G is CLI. �

Theorem 3.14. Let G be a non-archimedean CLI Polish group, and G = (Gn),G′ =
(G ′
n) ∈ dgnb(G). Then �(�(G)) = �(�(G′)) holds.

Proof. By Corollary 3.12, we have �(TX (G)
G′ ) ≤ �(G′). Thus Lemma 3.7 implies

�(�(G)) = �(�(TX (G)
G )) = �(�(TX (G)

G′ )) ≤ �(�(G′)),

and vice versa. �
By the preceding theorem, there is a unique ordinal � < �1, which is independent

from the choice of G = (Gn) ∈ dgnb(G), such that

�(�(G)) = � · �.
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Consequently, we can define a rank for a given non-archimedean CLI Polish group
as follows:

Definition 3.15. Suppose G is a non-archimedean CLI Polish group. We define

rank(G) = the unique � such that �(�(G)) = � · �

for some G ∈ dgnb(G).

Lemma 3.16. (1) If �(G) = � · rank(G), then either rank(G) = 0 or �k(G) <
� · rank(G) for any k < �.

(2) If �(G) > � · rank(G), then there exists an m > 0 such that �k(G) = � ·
rank(G) +m for large enough k < �.

Proof. (1) If rank(G) > 0, then � · rank(G) is a limit ordinal. By Lemma 3.10,
�k(G) is either 0 or a successor ordinal, so �k(G) < � · rank(G) for any k < �.

(2) Clearly, �(G) = � · rank(G) +m for some 0 < m < �. Again by Lemma 3.10,
(�k(G)) is increasing, so �k(G) = � · rank(G) +m for large enough k < �. �

Theorem 3.17. Let G be a non-archimedean CLI Polish group, G = (Gn),G′ =
(G ′
n) ∈ dgnb(G). Then �(G) = � · rank(G) iff �(G′) = � · rank(G).

Proof. If rank(G) = 0, then �(G) = � · rank(G) implies that �k(G) = 0 for any
k < �. So TG/GkG = ∅, and hence G0 ·Gk /∈ TG/GkG . It follows that G0 ·Gk = {Gk},
i.e., G = G0 = Gk for any k < �. This implies that G = {1G}. Then we can easily

see that T
G/G ′

k
G′ = ∅ for k < �. So �(G′) = � · rank(G) holds. And vice versa.

If rank(G) > 0, assume for contradiction that �(G) = � · rank(G), but �(G′) >
� · rank(G). From Lemma 3.16, we have �k(G) < � · rank(G) for any k < �, but
�l (G′) = � · rank(G) +m for some 0 < m < � and large enough l < �. From
Lemmas 3.7 and 3.11, we can conclude that for any l < �, there is some k < �
such that

�(�l (G′)) = �(�(T
G/G ′

l
G′ )) = �(�(T

G/G ′
l

G )) ≤ �(T
G/G ′

l
G ) ≤ �k(G).

A contradiction! �

Now we are ready to define a hierarchy on the class of non-archimedean CLI
Polish groups.

Definition 3.18. Let G be a non-archimedean CLI Polish group, G = (Gn) ∈
dgnb(G), and let α < �1 be an ordinal.

(1) If �(G) ≤ � · α, we say that G is α-CLI.
(2) If �(�(G)) ≤ � · α, i.e., rank(G) ≤ α, we say that G is L-α-CLI.

It is clear that, if G is L-α-CLI, then it is also (α + 1)-CLI.
From Theorems 3.14 and 3.17, we see that the definitions of α-CLI and L-α-CLI

are independent from the choice of G ∈ dgnb(G).

Recall that a metric d on a group G is two-sided invariant if d (gh, gk) = d (h, k) =
d (hg, kg) for all g, h, k ∈ G . A Polish group is TSI if it admits a compatible complete
two-sided invariant metric.
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Theorem 3.19. Let G be a non-archimedean CLI Polish group. The following hold:
(1) G is 0-CLI iff G = {1G};
(2) G is L-0-CLI iff G is discrete; and
(3) G is 1-CLI iff G is TSI.

Proof. Fix a sequence G = (Gn) ∈ dgnb(G).
(1) It follows from the first paragraph of the proof of Theorem 3.17.
(2) If G is L-0-CLI, then rank(G) = 0. So there is anm < � such that �(TG/GkG ) =

�k(G) = m for large enough k < �. Then we have Lm(TG/GkG ) = ∅. This implies
that Gm ·Gk = {Gk}. So Gm ⊆ Gk for large enough k < �, and thus Gm = {1G}.
It follows that G is discrete.

On the other hand, if G is discrete, then there is an m < � such that Gm = {1G}.
Therefore, for any k < �, we have Lm(TG/GkG ) = ∅, and hence �k(G) ≤ m. This
implies that rank(G) = 0, i.e., G is L-0-CLI.

(3) If G is 1-CLI, then Lemma 3.16 implies that �k(G) < � for any k < �. So there
is an mk < � such that Lmk (TG/GkG ) = ∅. It follows that, for g ∈ G , Gmk · gGk =
{gGk}, so g–1Gmkg ⊆ Gk . Put Uk =

⋃
{g–1Gmkg : g ∈ G} ⊆ Gk . We can see that

(Uk) is a neighborhood basis of 1G with g–1Ukg = Uk for all g ∈ G . By Klee’s
theorem (cf. [4] or [2, Exercise 2.1.4]), G is TSI.

On the other hand, if G is TSI, again by Klee’s theorem, we can find a
neighborhood basis (Um) of 1G with g–1Umg = Um for all g ∈ G . For any n < �,
there is an mn < � such that Umn ⊆ Gn. Let Vn = Umn ∩U –1

mn and G ′
n =

⋃
i V
i
n .

Then G ′
n is an open normal subgroup of G with G ′

n ⊆ Gn. So (G ′
n) ∈ dgnb(G). Let

G′ = (G ′
n). Then G ′

k · gG ′
k = {gG ′

k} for all g ∈ G and k < �, thus Lk(T
G/G ′

k
G′ ) = ∅.

So �k(G′) ≤ k < �, and hence G is 1-CLI. �
Clause (2) in the preceding theorem can be generalized to all α < �1.

Definition 3.20. Let G be a non-archimedean CLI Polish group, and α < �1.
We say that G is locally α-CLI if G has an open subgroup which is α-CLI.

Theorem 3.21. Let G be a non-archimedean CLI Polish group, and α < �1. Then
G is L-α-CLI iff G is locally α-CLI.

Proof. (⇒). Suppose G is L-α-CLI. Without loss of generality, we may assume
that G is notα-CLI. Fix a sequenceG = (Gn) ∈ dgnb(G). There exists anm ≥ 1 such
that �(G) = � · α +m, and thus we can pick a k0 > m such that �k(G) = � · α +m
for any k ≥ k0. We will show that Gk0 is α-CLI.

LetH = Gk0 andHn = Gn+k0 for n < �. Then (Hn) ∈ dgnb(H ). Put H = (Hn).

Givenk < �, defineφ : TH/HkH → (T
G/Gk+k0
G )(k0,Gk0

/Gk+k0
) asφ(n,C ) = (n + k0, C ).

It is trivial to see that φ is an order-preserving isomorphism. From Proposition 2.2,
since k0 > m, we have

�k(H) = �(TH/HkH ) = �((T
G/Gk+k0
G )(k0,Gk0

/Gk+k0
)) ≤ � · α.

So �(H) ≤ � · α, and henceH = Gk0 is α-CLI.
(⇐). Suppose G is locally α-CLI. Let H be an open subgroup of G which is

α-CLI, and let H = (Hn) ∈ dgnb(H ). Then �k(H) ≤ � · α for k < �.
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Put G0 = G and Gn = Hn–1 for n ≥ 1. Then (Gn) ∈ dgnb(G). Put G = (Gn).
Given g ∈ G and k < �, by similar arguments in the (⇒) part, we have TH ·gHk

H
∼=

(T
G/Gk+1
G )(1,G1·gGk+1). By Lemma 3.11, there exists an l < � such that �(TH ·gHk

H ) ≤
�l (H). Therefore, by Proposition 2.1,

�k+1(G) = �(T
G/Gk+1
G )

≤ sup{�((T
G/Gk+1
G )(1,G1·gGk+1)) : g ∈ G} + 1

= sup{�(TH ·gHk
H ) : g ∈ G} + 1

≤ sup{�l (H) : l < �} + 1
≤ � · α + 1.

So �(G) ≤ � · α + 1, and hence G is L-α-CLI. �

§4. Properties of the hierarchy

Theorem 4.1. Let G be a non-archimedean CLI Polish group, H a closed subgroup
of G, and α < �1. If G is α-CLI (or L-α-CLI ), so is H. In particular, we have
rank(H ) ≤ rank(G).

Proof. Let G = (Gn) ∈ dgnb(G), and put Hn = H ∩Gn for n < �. It is clear
that (Hn) ∈ dgnb(H ). Put H = (Hn). We only need to show that �(H) ≤ �(G).

Given k < �, define � : H/Hk → G/Gk as �(hHk) = hGk for h ∈ H . By
Proposition 3.4, there is a Lipschitz order-preserving map from TH/HkH to TG/GkG . So
Proposition 2.3 implies

�k(H) = �(TH/HkH ) ≤ �(TG/GkG ) = �k(G).

Then we have �(H) ≤ �(G) as desired. �

Theorem 4.2. Let G be a non-archimedean CLI Polish group, N a closed normal
subgroup of G, and α < �1. If G is α-CLI (or L-α-CLI ), so is G/N. In particular, we
have rank(G/N ) ≤ rank(G).

Proof. Let G = (Gn) ∈ dgnb(G), and put Hn = Gn ·N = {ĝN : ĝ ∈ Gn} for
n < �. It is clear that H0 = G/N and (Hn) ∈ dgnb(G/N ). Put H = (Hn). We only
need to show that �(H) ≤ �(G).

Given k < �, define � : G/Gk → (G/N )/Hk as �(gGk) = (gN )Hk for g ∈ G .
Note that for n < �,

�(Gn · gGk) = �({ĝgGk : ĝ ∈ Gn})
= {(ĝgN )Hk : ĝ ∈ Gn}
= {(ĝN )(gN )Hk : ĝ ∈ Gn}
= {(ĝN )�(gGk) : ĝ ∈ Gn}
= {ĝN : ĝ ∈ Gn}�(gGk) = Hn · �(gGk).

By Lemma 3.8, we have

�k(H) = �(T (G/N )/Hk
H ) ≤ �(TG/GkG ) = �k(G).

So �(H) ≤ �(G) holds as desired. �

https://doi.org/10.1017/jsl.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.7


A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 13

The above two theorems involve closed subgroups and quotient groups. Now
we turn to product groups, which are more complicated. We discuss finite product
groups first.

Lemma 4.3. Let X,Y be two sets, E = (En) and F = (Fn) be two decreasing
sequences of equivalence relations on X and Y, respectively. Let E × F = (En × Fn).

(1) TX×Y
E×F is well-founded iff TXE and TYF are well-founded.

(2) If TX×Y
E×F is well-founded, then we have

�(TX×Y
E×F ) = max{�(TXE ), �(TYF )}.

Proof. First, note that [(x, y)]En×Fn = [x]En × [y]Fn for all (x, y) ∈ X × Y and
n < �.

(1) For any sequences (xn), (yn) in X,Y , respectively, ((n, [(xn, yn)]En×Fn )) is an
infinite branch of TX×Y

E×F iff either ((n, [xn]En )) or ((n, [yn]Fn )) is an infinite branch
of TXE or TYF , respectively.

(2) If TX×Y
E×F is well-founded, by (1), TXE and TYF are also well-founded. For all

(x, y) ∈ X × Y and n < �, note that

(n, [(x, y)]En×Fn ) ∈ TX×Y
E×F

⇐⇒ [(x, y)]En×Fn �= {(x, y)}
⇐⇒ [x]En �= {x} ∨ [y]Fn �= {y}
⇐⇒ (n, [x]En ) ∈ TXE ∨ (n, [y]Fn ) ∈ TYF .

By Proposition 2.1, it is routine to prove

�((TX×Y
E×F )(n,[(x,y)]En×Fn )) = max{�((TXE )(n,[x]En )), �((TYF )(n,[y]Fn ))}

by induction on �((TX×Y
E×F )(n,[(x,y)]En×Fn )). Taking supremum on both sides of the

above formula, we get

�(TX×Y
E×F ) = max{�(TXE ), �(TYF )}. �

Corollary 4.4. Let G and H be two non-archimedean CLI Polish groups, G =
(Gn) ∈ dgnb(G) and H = (Hn) ∈ dgnb(H ). Then we have G ×H = (Gn ×Hn) ∈
dgnb(G ×H ) and

�k(G ×H) = max{�k(G), �k(H)} (∀k < �),

�(G ×H) = max{�(G), �(H)},

rank(G ×H ) = max{rank(G), rank(H )}.

Proof. For any k < �, put X = G/Gk,Y = H/Hk , and define En, Fn on X and
Y for each n < �, respectively, by

(ĝGk, g̃Gk) ∈ En ⇐⇒ ∃g ∈ Gn (gĝGk = g̃Gk) (∀ĝ, g̃ ∈ G),

(ĥHk, h̃Hk) ∈ Fn ⇐⇒ ∃h ∈ Hn (hĥHk = h̃Hk) (∀ĥ, h̃ ∈ H ).
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Then Lemma 4.3 gives �k(G ×H) = max{�k(G), �k(H)}. The rest follows
trivially. �

Now we are ready to discuss countably infinite product groups.

Lemma 4.5. Let (Gi) be a sequence of non-archimedean CLI Polish groups and
Gi = (Gin) ∈ dgnb(Gi) for each i < �. We define G =

∏
i G
i and

Gn =
∏
i<n

Gin ×
∏
i≥n
Gi (∀n < �).

Then G = (Gn) ∈ dgnb(G) and for k < �, we have

�k(G) ≤ max{�k(Gi) : i < k} + k.

Proof. Given k < �, we put Y = G0/G0
k × ··· ×Gk–1/Gk–1

k and define � :
G/Gk → Y as

�((gi)Gk) = (g0G
0
k , ... , gk–1G

k–1
k )

for (gi) ∈ G =
∏
i G
i . By the definition of Gk , it is easy to see that � is a bijection.

Moreover, we put

Hn =
{ ∏

i<n G
i
n ×

∏
n≤i<k G

i , n < k,∏
i<k G

i
n, n ≥ k,

then � is a reduction ofEG/GkGn
toEYHn for each n < �. Put H = (Hn). By Proposition

3.4, (n,Gn · (gi)Gk) �→ (n,Hn · �((gi)Gk)) is an order-preserving isomorphism from
T
G/Gk
G to TYH . So �k(G) = �(TG/GkG ) = �(TYH).
For n ≥ k and (gi) ∈ G , we have

Hn · �((gi)Gk) = (G0
n · g0G

0
k) × ··· × (Gk–1

n · gk–1G
k–1
k ).

Lemma 4.3 gives

�((TYH)(k,Hk ·�((gi )Gk ))) = max{�((T
Gi/Gik
Gi )(k,Gi

k
·giGik )) : i < k}.

Hence, by Proposition 2.2(1),

�k(G) = �(TG/GkG ) = �(TYH)
≤ sup{�((TYH)(k,Hk ·�((gi )Gk ))) : (gi) ∈ G} + k

= sup{max{�((T
Gi/Gik
Gi )(k,Gi

k
·giGik )) : i < k} : (gi) ∈ G} + k

= max{sup{�((T
Gi/Gik
Gi )(k,Gi

k
·gGi
k

)) : g ∈ Gi} : i < k} + k

≤ max{�(T
Gi/Gik
Gi ) : i < k} + k

= max{�k(Gi) : i < k} + k. �

Theorem 4.6. Let (Gi) be a sequence of non-archimedean CLI Polish groups,
α < �1, and let G =

∏
i G
i . Then we have:

(1) G is α-CLI iff all Gi are α-CLI; and
(2) G is L-α-CLI iff allGi are L-α-CLI and for all but finitely many i,Gi is α-CLI.
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Proof. Fix a Gi = (Gin) ∈ dgnb(Gi) for each i < �. Put

Gn =
∏
i<n

Gin ×
∏
i≥n
Gi (∀n < �).

(1) Assume G is α-CLI. Since each Gi is topologically isomorphic to a closed
subgroup of G, by Theorem 4.1, Gi is also α-CLI.

On the other hand, assume all Gi are α-CLI. Now by Lemma 3.16(1), �k(Gi) <
� · α holds for all i, k < �. Then Lemma 4.5 implies

�k(G) ≤ max{�k(Gi) : i < k} + k < � · α

holds for each k < �. Consequently, G is α-CLI.
(2) Assume G is L-α-CLI. Since each Gi is topologically isomorphic to a closed

subgroup of G, we can see Gi is L-α-CLI too. Moreover, by Theorem 3.21, there is
an open subgroup H of G which is α-CLI. Hence, Gn is a clopen subgroup of H for
some n < �, from which we can see this Gn is also α-CLI. Now by (1), we conclude
that for all i ≥ n, Gi is α-CLI.

On the other hand, assume all Gi are L-α-CLI, and there is an m < � such that
Gi is α-CLI for each i ≥ m. Then (1) implies that

∏
i≥m G

i is α-CLI. Note that
G = G0 × ··· ×Gm–1 ×

∏
i≥m G

i . By Corollary 4.4, we have

rank(G) = max{rank(G0), ... , rank(Gm–1), rank(
∏
i≥m
Gi)} ≤ α,

i.e., G is L-α-CLI. �

In the rest of this article, we will show that the notions of α-CLI, L-α-CLI,
together with rank(G), form a proper hierarchy on the class of non-archimedean
CLI Polish groups. For this purpose, we will construct groups which are α-CLI
but not L-�-CLI for all � < α, and groups which are L-α-CLI but not α-CLI, by
induction on α < �1. We consider the case concerning successor ordinals first.

Corollary 4.7. Let (Gi) be a sequence of non-archimedean CLI Polish groups,
α < �1, and let G =

∏
i G
i . If all Gi are L-α-CLI but not α-CLI, then G is (α + 1)-

CLI but not L-α-CLI.

Proof. Note that all Gi are (α + 1)-CLI but not α-CLI. �

From Theorem 3.19 and [3, Theorem 1.1], a non-archimedean CLI Polish group
G is 1-CLI iff G is isomorphic to a closed subgroup of a product

∏
i G
i , where each

Gi is L-0-CLI. However, we do not know whether the following generalization of
Corollary 4.7 is true:

Question 4.8. Let 0 < α < �1, and let G be an (α + 1)-CLI group. Can we find
a sequence of L-α-CLI groups Gi such that G is isomorphic to a closed subgroup of∏
i G
i?

Let G and Λ be two groups. Recall that the wreath product Λ �G is the set Λ ×GΛ

with the following group operation: given (�̂, 
̂), (�̃, 
̃) ∈ Λ ×GΛ, we have

(�̂, 
̂)(�̃, 
̃) = (�̂�̃, 
),
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16 LONGYUN DING AND XU WANG

where 
(�) = 
̂(�)
̃(�̂–1�) for each � ∈ Λ. If Λ is countable discrete and G is Polish,
then Λ �G equipped with the product topology of Λ ×GΛ is also a Polish group.

Theorem 4.9. Let G be a non-archimedean CLI Polish group, Λ an infinite
countable discrete group, and α < �1. If G is (α + 1)-CLI but not α-CLI, then Λ �G
is L-(α + 1)-CLI but not (α + 1)-CLI.

Proof. For brevity, we denote Λ �G by H. Let �i , i < � be an enumeration
of Λ without repetition. Note that the underlying space of Λ �G is Λ ×GΛ. For
(�, 
) ∈ Λ �G , put �Λ(�, 
) = � and �iG(�, 
) = 
(�i).

Let G = (Gn) ∈ dgnb(G). Since G is not α-CLI, G �= {1G}. Without loss of
generality, we can assume that G �= G1. PutH0 = H and

Hn+1 = {(1Λ, 
) : 
 ∈ GΛ ∧ ∀i < n (
(�i) ∈ Gn)}

for n < �. Then H = (Hn) ∈ dgnb(H ). Note that the open subgroupH1 = {1Λ} ×
GΛ is topologically isomorphic to G� . By Theorem 4.6, H1 is (α + 1)-CLI. So we
can see that H is L-(α + 1)-CLI from Theorem 3.21.

Since G is (α + 1)-CLI but not α-CLI, � · α < �(G) ≤ � · (α + 1). By Lemma
3.16, there exist 1 ≤ m, k < � such that �k(G) = � · α +m. To see that H is not
(α + 1)-CLI, we will show that �k+1(H) > � · (α + 1) as follows.

For any (�l , 
̂) ∈ H and (1Λ, 
̃) ∈ Hk+1, note that (�l , 
̂)(1Λ, 
̃) = (�l , 
̂
̃l ),
where 
̃l (�) = 
̃(�–1

l �) for � ∈ Λ. It follows that

(�l , 
̂)Hk+1 = {(�l , 
) : 
 ∈ GΛ ∧ ∀i < k (
(�l�i) ∈ 
̂(�l�i)Gk)}.

There is a unique li < � such that �li = �l�i for i < k. It is clear that
�Λ((�l , 
̂)Hk+1) = {�l} and for j < �,

�jG((�l , 
̂)Hk+1) =
{

̂(�li )Gk, j = li , i < k,
G, otherwise.

Let ml = max{li : i < k}. Then it is clear that ml ≥ k – 1 for l < � and sup{ml :
l < �} = �. Note that �mlG (Hml+1 · (�l , 
̂)Hk+1) = G/Gk is not a singleton, and so

(ml + 1, Hml+1 · (�l , 
̂)Hk+1) ∈ TH/Hk+1
H . Also note that

(T
H/Hk+1
H )(ml+2,Hml+2·(�l ,
̂)Hk+1)

∼= T
Hml+2·(�l ,
̂)Hk+1

H′ , and

(TG/GkG )(ml+1,Gml+1·gGk )
∼= T

Gml+1·gGk
G′ ,

where H′ = (Hn+ml+2) and G′ = (Gn+ml+1) for n < �. Define � : H/Hk+1 → G/Gk
as �(C ) = �mlG (C ). Now we restrict � as a function that maps Hml+2 · (�l , 
̂)Hk+1

onto Gml+1 · 
̂(�ml )Gk . Then apply Lemma 3.8 and Proposition 2.2 to obtain the
following:
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�((T
H/Hk+1
H )(ml+1,Hml+1·(�l ,
̄)Hk+1))

≥ sup{�((T
H/Hk+1
H )(ml+2,Hml+2·(�l ,
̂)Hk+1)) : ∀i < ml (
̄(�i) = 
̂(�i))} + 1

≥ sup{�((TG/GkG )(ml+1,Gml+1·gGk )) : g ∈ G} + 1

≥ �(�(TG/GkG )) + 1
= � · α + 1.

This implies �(T
H/Hk+1
H ) ≥ � · α +ml + 2 for all l < �, and hence

�k+1(H) = �(T
H/Hk+1
H ) ≥ � · α + � = � · (α + 1).

Since �k+1(H) is a successor ordinal, we have �k+1(H) > � · (α + 1). �

Now we turn to the case concerning limit ordinals. To do this, we need two
lemmas.

Lemma 4.10. Let (Gi) be a sequence of Polish groups, and let Hi be an open
subgroup of Gi for each i < �. Suppose H =

∏
i H

i and

G = {(gi) ∈
∏
i

Gi : ∀∞i (gi ∈ Hi)}

is equipped with the topology � generated by the sets of the form (gi)U for (gi) ∈ G
and U open in H. Then (G, �) is a Polish group and � is the unique group topology on
G making H an open subgroup of G.

Proof. For each (gi) ∈ G , the subspace (gi)H of (G, �) is homeomorphic to H,
so it is Polish. LetDi be a subset of Gi which meets every coset ofHi at exactly one
point. Note that Di is countable for all i < �. We define

D = {(gi) ∈
∏
i

Di : ∀∞i (gi = 1Gi )}.

It is clear that G/H = {(gi)H : (gi) ∈ D} is countable. So (G, �) is a sum of
countably many Polish spaces, thus is a Polish space.

For (gi), (hi) ∈ G and U open in H with 1H ∈ H , there exists an m < �
such that gi , hi ∈ Hi for i > m and U 0 × ··· ×Um ×

∏
i>m H

i ⊆ U , where Ui

is an open subset of Hi with 1Hi ∈ Ui for each i ≤ m. We can find open
neighborhoods V i andWi of 1Hi with (giV i)(hiW i)–1 ⊆ gih–1

i U
i for i ≤ m. Now

let V = V 0 × ··· × Vm ×
∏
i≥m H

i and W =W 0 × ··· ×Wm ×
∏
i≥m H

i , then V
and W are open neighborhoods of 1H , and ((gi)V )((hi)W )–1 ⊆ (gih–1

i )U . So (G, �)
is a Polish group.

Finally, suppose �′ is another group topology on G such that H is an
open subgroup of G. Then for each (gi) ∈ G , the subspace (gi)H of (G, �′) is
homeomorphic to H, so the restrictions of � and �′ on (gi)H are the same. Hence,
� = �′. �

Lemma 4.11. Let (Gi) be a sequence of non-archimedean CLI Polish groups,
Gi = (Gin) ∈ dgnb(Gi) for each i < �, and let 0 < α < �1. Suppose
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sup{�1(Gi) : i < �} = � · α, and

G = {(gi) ∈
∏
i

Gi : ∀∞i (gi ∈ Gi1)}

is equipped with the unique group topology making
∏
i G
i
1 an open subgroup of G.

Then G is not α-CLI.

Proof. Put G0 = G and for n ≥ 1, let

Gn =
∏
i<n–1

Gin ×
∏
i≥n–1

Gi1.

It is clear that G1 =
∏
i G
i
1 and G = (Gn) ∈ dgnb(G).

Given j < �, define � : G/G1 → Gj/Gj1 as �((gi)G1) = gjG
j
1 for (gi) ∈ G .

Applying Lemma 3.8 to the restriction of � as in the proof of Theorem 4.9, we
have

�(TG/G1
G ) = sup{�((TG/G1

G )(1,G1·(gi )G1)) : (gi) ∈ G} + 1

≥ sup{�((T
Gj/G

j
1

Gj )
(1,Gj1 ·gG

j
1 )

) : g ∈ Gj} + 1

= �(T
Gj/G

j
1

Gj ) = �1(Gj).

Therefore,

�1(G) = �(TG/G1
G ) ≥ sup{�1(Gj) : j < �} = � · α.

Since �1(G) is a non-limit ordinal and α > 0, we have �1(G) > � · α. So G is not
α-CLI. �

Finally, we complete the construction in the following theorem.

Theorem 4.12. For any α < �1, there exist two non-archimedean CLI Polish
groups Gα andHα with rank(Gα) = rank(Hα) = α such thatHα is α-CLI and Gα is
L-α-CLI but not α-CLI.

Proof. We construct Gα and Hα by induction on α. From Corollary 4.7 and
Theorem 4.9, we only need to consider the case where α is a limit ordinal.

Let (αi) be a sequence of ordinals less than α with sup{αi : i < �} = α. By the
inductive hypothesis, we can find a non-archimedean CLI Polish group Gi for each
i < � such that Gi is L-αi -CLI but not αi -CLI. It is clear that rank(Gi) = αi < α.

Put Hα =
∏
i G
i . Theorem 4.6(1) implies that Hα is α-CLI. By Theorem 4.1,

rank(Hα) ≥ rank(Gi) for each i < �. So rank(Hα) = α.
For i < �, let Gi = (Gin) ∈ dgnb(Gi). By Lemma 3.16, there exist 0 < ki < �

such that �(�ki (Gi)) = � · αi . Put Hi0 = Gi and Hin+1 = Gin+ki
for n < �. Then

Hi = (Hin) ∈ dgnb(Gi) and Hi1 = Giki . By Lemma 3.7, we have

�(�1(Hi)) = �(�(T
Gi/Hi1
Hi )) = �(�(T

Gi/Giki
Gi )) = �(�ki (Gi)) = � · αi .
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So sup{�1(Hi) : i < �} = � · α. Now we let

Gα = {(gi) ∈
∏
i

Gi : ∀∞i (gi ∈ Giki )}

be equipped with the unique group topology making
∏
i G
i
ki

an open subgroup of
Gα . By Lemma 4.11, Gα is not α-CLI. It is clear that the open subgroup

∏
i G
i
ki

is
α-CLI, so Gα is L-α-CLI, and hence rank(Gα) = α. �
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