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We introduce an extension of the particle-in-cell method that captures the Landau
collisional effects in the Vlasov–Maxwell–Landau equations. The method arises from
a regularisation of the variational formulation of the Landau equation, leading to a
discretisation of the collision operator that conserves mass, charge, momentum and
energy, while increasing the (regularised) entropy. The collisional effects appear as a fully
deterministic effective force, thus the method does not require any transport–collision
splitting. The scheme can be used in arbitrary dimension, and for a general interaction,
including the Coulomb case. We validate the scheme on scenarios such as the
Landau damping, the two-stream instability and the Weibel instability, demonstrating its
effectiveness in the numerical simulation of plasma.

Keywords: plasma simulation

1. Introduction

This work introduces a fully deterministic extension of the particle-in-cell (PIC) method
for the Vlasov–Maxwell equations that incorporates the effects of Landau collisions. The
extension is based on a regularisation of the entropic structure of the Landau operator, and
is able to preserve mass, charge, momentum and energy, while mimicking the entropy
increase structure of the problem. The method can be applied in arbitrary dimension
and includes all particle interaction types, including the Coulomb interaction, relevant
for plasmas and nuclear fusion.

The evolution of the electrons in a plasma can be modelled by the Vlasov–Landau
equation,

∂tf + v · ∇xf + a(t, x, v) · ∇vf = Q[ f , f ], x ∈ Ω ⊂ R
dx, v ∈ R

dv , (1.1)

where f = f (t, x, v) is the number distribution function of the electrons in phase space.
In the most complete models, the equation is posed in three physical dimensions
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(dx = dv = 3), and the acceleration experienced by the electrons is derived from the
Lorentz force,

a(t, x, v) = q
m
(E(t, x)+ v × B(t, x)), (1.2)

where m > 0 and q < 0 are, respectively, the mass and charge of the electron.
The long-range interactions between charged particles are described by the electric and

magnetic fields, E and B, which satisfy Maxwell’s equations,

ε0μ0∂tE = ∇x × B − μ0J, ∂tB = −∇x × E, ε0∇x · E = ρ + ρion, ∇x · B = 0,
(1.3)

where ε0 and μ0 are the permittivity and permeability of free space, and are related to the
speed of light by c2 = (ε0μ0)

−1. We assume the background ion density ρion is a given
positive constant. The charge density, ρ, and the current density, J, are defined as velocity
moments of the distribution f ,

ρ = q
∫

Rdv

f dv and J = q
∫

Rdv

vf dv. (1.4a,b)

The short-range interactions between electrons are described by Q, the Landau collision
operator,

Q[ f , f ](v) = ∇v ·
∫

Rdv

A(v − v∗)[f (v∗)∇vf (v)− f (v)∇v∗ f (v∗)] dv∗. (1.5)

The collisional cross-section A is a symmetric and positive-semidefinite matrix given by

A(z) = Cγ |z|γ+2Π(z), Π(z) =
(

Idv − z ⊗ z
|z|2

)
, (1.6a,b)

where Cγ > 0 is the collision strength. The matrix Π(z) is the projection matrix onto the
perpendicular of z, and I is the dv × dv identity matrix. The exponent γ determines the
type of interaction, and is chosen in the range −dv − 1 ≤ γ ≤ 1 so that the expression
in (1.5) is integrable. The most physically relevant choice for plasma is γ = −dv = −3,
the Coulomb interaction; in this case, C−3 = | log δ|8−1π−1ε−2

0 m−2q4, where log δ is the
so-called Coulomb logarithm.

The Landau collision operator is sometimes referred to as the Landau–Fokker–Planck
operator, since it may be rewritten as a nonlinear and non-local Fokker–Planck
operator,

Q[ f , f ] = ∇v · (Af ∇vf − faf ), (1.7)

where the diffusion matrix Af and the drift af are given by

Af (t, v) =
∫

Rdv

A(v − v∗)f (v∗) dv∗ and af (t, v) =
∫

Rdv

A(v − v∗)∇v∗ f (v∗) dv∗.

(1.8a,b)

In this form, sometimes also known as the Rosenbluth–Fokker–Planck operator, we see
that the Landau operator is akin to a singular, non-local and nonlinear diffusion operator.

The numerical methods for collisionless plasma (the Vlasov–Maxwell equations)
can be categorised as PIC methods, finite difference/volume/element methods, and
semi-Lagrangian methods (see Sonnendrücker (2013) for a review). Particle-in-cell
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The collisional particle-in-cell method 3

methods (Hockney & Eastwood 1988; Birdsall & Langdon 2018) have often been favoured
because they generally scale better, in view of the high dimensionality of the problem.
Modern PIC methods can be designed to preserve certain structural properties; for
example, GEMPIC (Kraus et al. 2017) captures well the long-time behaviour of the
equation by employing a symplectic integrator; on the other hand, the exact conservation
of energy can be achieved using implicit time stepping (Chen, Chacón & Barnes 2011;
Markidis & Lapenta 2011; Lapenta 2017; Ricketson & Chacón 2020; Kormann &
Sonnendrücker 2021), often exploiting a specific discretisation of Maxwell’s equations
(Yee 1966; Hyman & Shashkov 1999). Particle-in-cell and grid-based methods exist with
simultaneous energy and local charge conservation properties (Chen et al. 2011; Taitano
& Chacón 2015; Taitano, Knoll & Chacón 2015b; Chen et al. 2020).

The main difficulty in the numerical simulation of collisionless plasma is the handling of
the small-scale effects that arise from the electromagnetic fields, as they often lead to fine
structure filamentation in phase space. Adding collisional effects will ease this difficulty
while introducing a bigger one: the curse of dimensionality. Ultimately, the discretisation
of the diffusive terms in six dimensions is very challenging from a computational
efficiency perspective.

Several numerical methods have been proposed to discretise the Landau collision
operator (1.5), both in the spatially homogeneous and inhomogeneous settings. We
classify them here as deterministic and stochastic methods. Among the deterministic
class, in the homogeneous setting, we highlight the classical entropy schemes (Degond &
Lucquin-Desreux 1994; Buet & Cordier 1998; Crouseilles & Filbet 2004), which preserve
the conservation and dissipation properties of the Landau equation, and thus lead to the
correct Maxwellian stationary states. Methods that discretise the Landau operator in the
form (1.7) are given in Taitano et al. (2015a), Taitano, Chacón & Simakov (2016) and
Taitano et al. (2021). Implicit and asymptotic-preserving methods based on these entropy
schemes have been developed in Lemou & Mieussens (2005) and Jin & Yan (2011). We
refer the reader to the review Dimarco & Pareschi (2014).

Yet, the efficient approximation of the Landau operator remains a major challenge,
even in the spatially homogeneous setting. The non-local nature of the collision operator
leads to a quadratic complexity O(N2), where N is the number of discretisation elements.
Faster algorithms that attempt to reduce this cost to O(N log N) have been proposed,
including multigrid algorithms (Buet et al. 1997), finite-volume methods (Taitano et al.
2015a, 2016), fast multipole expansions (Lemou 1998, 2004) and Fourier spectral methods
(Pareschi, Russo & Toscani 2000); the latter deserves special attention, since it reduces
the complexity to O(N log N) through the fast Fourier transform by exploiting the
convolutional properties of the Landau operator. The spectral method has been coupled
with discretisation methods for the transport part to treat the inhomogeneous problems
(Filbet & Pareschi 2002; Dimarco et al. 2015; Zhang & Gamba 2017; Hu, Jin & Shu 2018;
Li, Ren & Wang 2021), see Gamba (2017) for a review. We also refer to semi-Lagrangian
techniques (Ku et al. 2016).

Nevertheless, stochastic or Monte Carlo approaches remain the most frequently
used tools among practitioners to simulate Coulomb collisions in an inhomogeneous
setting, and we highlight two major classes. The first is based on binary collisions
(Takizuka & Abe 1977; Nanbu 1997), in the spirit of the direct simulation Monte
Carlo method developed by Bird (Bird 1994) for the Boltzmann equation, see Bobylev
& Nanbu (2000) Caflisch et al. (2008) and Dimarco, Caflisch & Pareschi (2010) for
generalisations and Medaglia, Pareschi & Zanella (2023) for a recent application in
uncertainty quantification. The second is based on the drift-diffusion formulation of the
Landau operator given in (1.7) (Manheimer, Lampe & Joyce 1997; Dimits et al. 2013);
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see also Rosin et al. (2014) for a multilevel Monte Carlo extension. The advantages
and drawbacks of these stochastic approaches are well known: they are physically
motivated and easy to implement, but their convergence is slow, they require many
realisations due to statistical noise, and they cannot preserve the entropy structure of the
problem.

The design of more efficient discretisation techniques for the Landau operator is a matter
of utmost practical relevance, as many of the methods described above are prohibitively
costly and cannot be used directly in real-world applications, such as the design and
on-line control of modern nuclear fusion reactors. Mature plasma simulation tools such
as NESO (Threlfall et al. 2023) or XGC1 (Chang & Ku 2008; Ku, Chang & Diamond
2009) typically include collisional effects through Monte Carlo approaches or mesh-based
methods. The use of surrogate models trained on synthetic data for the collisional operator
has recently been proposed (Miller et al. 2021).

This work introduces the collisional particle-in-cell (C-PIC) method; a deterministic
extension of PIC methods also able to approximate the Landau collisional effects in the
Vlasov–Maxwell–Landau (VML) equations. To construct the method, we generalise a
recent particle approximation of the Landau operator introduced by Carrillo et al. (2020)
in the homogeneous setting. The method exploits the variational properties of the Landau
operator to propose a regularised entropic structure which is naturally discretised by
particles, in a way that is fully compatible with any PIC method. The increment of the
(regularised) entropy is preserved at the discrete level, as are the conservations of mass,
charge, momentum and energy.

This approach has proven robust and flexible in the homogeneous setting, and has
already been used for uncertainty quantification in the Landau equation (Bailo et al. 2023)
and for the multispecies Landau equation (Zonta, Pusztay & Hirvijoki 2022; Carrillo, Hu
& Van Fleet 2023b). The analysis of the homogeneous method and its convergence has
been presented in Carrillo, Delgadino & Wu (2022a, 2023a) and Carrillo et al. (2024).
Moreover, a random batch technique was introduced in Carrillo, Jin & Tang (2022b)
that can considerably reduce the computational cost of the method, while retaining all
structural properties.

The generalisation to the inhomogeneous setting presented in this work presents a
crucial departure from the previous works: the entropic structure is now regularised at
a global level, and the resulting regularised Landau operator delocalises in space. Since
the particle approximation of the operator is performed in phase space, no splitting of
transport and collisions is required; the collisional effects appear simply as an effective
force, alongside the Lorentz force of the PIC approach. There is therefore no stochasticity
and no splitting in our scheme. Moreover, the spatial structure, combined with the random
batch approach, can be leveraged for an efficient implementation of the method that
performs comparably to classical PIC methods.

The rest of this work is organised as follows. In § 2, we recall the physical properties
and variational structure of the VML equations, introduce the C-PIC method and
discuss its properties. In § 3, we perform a range of numerical simulations (dx = 1 and
dv = 2) to validate the method and demonstrate its effectiveness, including explorations
of the collisional effects on the Landau damping, the two-stream instability and the
Weibel instability. We conclude in § 4, where we also present the outlook of this
work.

2. The collisional particle-in-cell method

This section introduces the C-PIC method and discusses its properties.
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2.1. The VML equations
The VML equations ((1.1), (1.3) and (1.5)) may, after non-dimensionalisation, be written
as

∂tf + v · ∇xf + (E + v × B) · ∇vf = Q[ f , f ], x ∈ Ω ⊆ R
dx, v ∈ R

dv , (2.1a)

∂tE = ∇x × B − J, ∂tB = −∇x × E, (2.1b)

∇x · E = ρ − ρion, ∇x · B = 0, (2.1c)

Q[ f , f ] = ∇v · ( fU [ f ]), (2.1d)

U [ f ](x, v) =
∫

Rdv

A(v − v∗)b[ f ](x, v, v∗)f (x, v∗) dv∗, (2.1e)

b[ f ](x, v, v∗) = ∇v

δH
δf

[ f ](x, v)− ∇v∗
δH
δf

[ f ](x, v∗), (2.1f )

H[ f ](x) = −S[ f ](x), (2.1g)

S[ f ](x) = −
∫

Rdv

f log f dv. (2.1h)

Details of the non-dimensionalisation are given in the Appendix (A). Note that some terms
have changed sign because the negative fundamental charge q has been normalised. We
will only consider quadrangular domains Ω equipped with periodic boundary conditions.
The cross-section matrix A is the non-dimensionalised version of (1.6a,b),

A(z) = C|z|γ+2Π(z), Π(z) =
(

Idv − z ⊗ z
|z|2

)
, (2.1i)

where C > 0 is the dimensionless collision strength, Π(z) is the projection matrix onto
z⊥, and Idv is the identity matrix in dv dimensions. By construction, the matrix A is positive
semidefinite.

Equation (2.1) possesses a wealth of physical properties: it conserves the mass, charge,
momentum, and total energy of the system. It also causes the thermodynamic entropy
(2.1h) to increase globally, a property often called the H-Theorem. The name ‘H-Theorem’
refers to (2.1g), the information-theoretical entropy H, which differs from S by a sign. In
the sequel, when we refer to entropy, we refer to S. We shall briefly recall these classical
results for the sake of a complete exposition.

The Landau collision operator (2.1d) can be written in weak form as

∫
Rdv

g(v)Q[ f , f ] dv = −1
2

∫∫
Rdv×Rdv

(∇vg(v)− ∇v∗g(v∗))

· A(v − v∗)b[ f ](v, v∗)ff∗ dv dv∗; (2.2)

f and f∗ stand, respectively, for f (v) and f (v∗), and the local dependence in x has been
omitted for simplicity. The expression vanishes for g = 1, g = v and g = 1

2 |v|2; these
correspond, respectively, to the conservation of mass (and charge), momentum and kinetic
energy. The result is immediate for mass and momentum; for kinetic energy, one uses the
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fact that A projects b onto the perpendicular to v − v∗. Summarising,∫
Rdv

Q[ f , f ] dv = 0,
∫

Rdv

vQ[ f , f ] dv = 0,
∫

Rdv

v2

2
Q[ f , f ] dv = 0. (2.3a–c)

The weak form is also useful to prove the H-theorem: one chooses the test function
g = ∂H/∂f = log f + 1 in order to arrive at∫

Rdv

(log f + 1)Q[ f , f ] dv

= −1
2

∫∫
Rdv×Rdv

b[ f ](v, v∗) · A(v − v∗)b[ f ](v, v∗)ff∗ dv dv∗ ≤ 0, (2.4)

where the sign follows from the positive semidefinite property of the matrix A.
A corollary to these properties is that the kernel of Q is precisely the set of Maxwellian

distributions parametrised by density, momentum and energy, as is the case for the
Boltzmann equation (Villani 1998; Gualdani & Zamponi 2017).

At the level of the full VML system, the increment of the total entropy,

S[ f ] :=
∫
Ω

S[ f ](x) dx = −
∫∫

Ω×Rdv

f log f dv dx, (2.5)

is shown by multiplying the Vlasov equation (2.1a) by the test function g = ∂H/∂f =
log f + 1, integrating over the phase space and using the boundary conditions/behaviour
at infinity of f to arrive at

d
dt
S[ f ] = −

∫∫
Ω×Rdv

(log f + 1)Q[ f , f ] dv dx ≥ 0, (2.6)

using the H-theorem.
The global conservation properties are similarly derived by multiplying (2.1a) by the

correct test function and integrating. Mass (g = 1) immediately leads to

d
dt

∫∫
Ω×Rdv

f dv dx = 0. (2.7)

Momentum (g = v) results in

d
dt

∫∫
Ω×Rdv

vf dv dx =
∫
Ω

(ρE + J × B) dx; (2.8)

a classical computation involving Maxwell’s equations leads to

d
dt

(∫∫
Ω×Rdv

vf dv dx +
∫
Ω

E × B dx
)

=
∫
Ω

ρionE dx; (2.9)

in the case where the background ion density ρion is constant and there is no magnetic
field, this quantity is exactly zero. Similarly, energy (g = 1

2 |v|2) leads to

d
dt

1
2

∫∫
Ω×Rdv

|v|2f dv dx =
∫
Ω

J · E dx; (2.10)
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once again, Maxwell’s equations lead to

d
dt

(
1
2

∫∫
Ω×Rdv

|v|2f dv dx + 1
2

∫
Ω

(|E|2 + |B|2) dx
)

= 0. (2.11)

This computation is described in more detail in § 2.5.

2.2. Description of the method
To devise the C-PIC method for (2.1), we shall seek an approximate particle solution of
the form

f N(t, x, v) =
N∑

p=1

wpδ(x − xp(t))δ(v − vp(t)), (2.12)

where N is the number of particles, and where wp, xp(t) and vp(t) are, respectively, the pth
particle’s weight, position and velocity. Following the characteristics, we require xp(t) and
vp(t) to solve ⎧⎪⎪⎨

⎪⎪⎩
dxp

dt
= vp,

dvp

dt
= E(t, xp)+ vp × B(t, xp)− U [ f N](xp, vp),

(2.13)

where E(t, xp) and B(t, xp) are the electromagnetic fields acting on the particle, and
U [ f N](xp, vp) is the effective force arising from the collision term. In the absence of
collisions, system (2.13) will reduce to the classical PIC method for the Vlasov–Maxwell
system ((1.1),(1.3)).

2.2.1. Regularisations
At the core of our scheme is an absolutely continuous regularisation of f N . We will

consider a spatial spline ψη, with scale parameters η = (η1, . . . , ηdx). The spline must
satisfy the following properties:

(i) non-negativity: ψη(x) ≥ 0;
(ii) symmetry: ψη(−x) = ψη(x);

(iii) unit mean:
∫

Rdx ψη(x) dx = 1.

We will also consider a velocity spline ϕε, with scale parameters ε = (ε1, . . . , εdv ), which
must satisfy the same properties.

For the sake of concreteness, we choose the shape function

G(x) =
{

1 − |x|, if |x| ≤ 1,
0, otherwise,

(2.14)

and define the splines

ψη(x) := 1
ηdx
ψ̂η(x), ψ̂η(x) :=

dx∏
d=1

G
(

xd

ηd

)
, (2.15a,b)

ϕε(x) := 1
εdv
ϕ̂ε(v), ϕ̂ε(v) :=

dv∏
d=1

G
(
vd

εd

)
. (2.16a,b)
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Here, ηdx stands for the product
∏dx

d=1 ηd, and similarly εdv stands for
∏dv

d=1 εd. We also use
the convention x = (x1, . . . , xdx) and v = (v1, . . . , vdv ). This choice of splines is practical,
not only because of its simplicity, but also because the compact support of the splines
can be exploited for computational efficiency (see § 2.3.1). However, we remark that
the properties discussed in §§ 2.4 and 2.5 do not rely on this choice, only on the three
properties discussed above.

Given a suitable choice of splines, we can define the regularised solution

f̃ N(t, x, v) := (ψηϕε ∗x,v f N)(t, x, v) =
N∑

p=1

wpψη(x − xp(t))ϕε(v − vp(t)), (2.17)

where ‘∗x,v’ denotes the double convolution in x and v.

2.2.2. Lorentz term
In order to determine the electromagnetic force experienced by each particle, we must

define the terms E(t, xp) and B(t, xp). To do so, information from the particles is first
interpolated to a spatial mesh, where Maxwell’s equations are solved. That solution is
then extrapolated back to the particles.

The first step is to define a regularised electric charge current, specified as an integral
of f̃ N :

J̃(t, x) :=
∫

Rdv

vf̃ N(t, x, v) dv =
N∑

p=1

wpvp(t)ψη(x − xp(t)). (2.18)

This can be evaluated on a spatial mesh Ωh = {xh}h (assumed here to be a tensorised grid
with mesh size hd on each dimension), yielding J̃(t, xh). These mesh values will be used
as inputs to solve Maxwell’s equations, yielding the electromagnetic fields Ẽ(t, xh) and
B̃(t, xh) at the mesh points.

In practice, we only solve Ampère’s and Faraday’s equations (2.1b); Poisson’s and
Gauss’ equations (2.1c) are only solved once, in order to determine Ẽ(0, xh) and B̃(0, xh)

in a way that is consistent with the datum f̃ N(0, x, v). For further particulars, see § 2.6.
Once the values of the fields are known on the mesh, they are extrapolated back to the

particle positions,

E(t, xp) :=
∑

h

Ẽ(t, xh)ψ̂η(xp − xh) =
∑

h

Ẽ(t, xh)ψη(xp − xh)η
dx, (2.19)

B(t, xp) :=
∑

h

B̃(t, xh)ψ̂η(xp − xh) =
∑

h

B̃(t, xh)ψη(xp − xh)η
dx . (2.20)

This defines the Lorenz force acting on the pth particle, E(t, xp)+ vp × B(t, xp). If the
terms (2.19) and (2.20) are seen as a spline reconstruction over a mesh,

E(t, xp) =
∑

h

Ẽ(t, xh)ψ̂h(xp − xh), B(t, xp) =
∑

h

B̃(t, xh)ψ̂h(xp − xh), (2.21a,b)

it becomes evident that the choice of mesh size hd = ηd is, in fact, the only reasonable one,
for any other would not scale appropriately.
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REMARK 2.1 (Staggered grids). While the presentation in this section places J̃, Ẽ and B̃
on the same mesh for simplicity, this is not required. In particular, staggered grids such
as Yee’s lattice (Yee 1966; Hyman & Shashkov 1999) can be used instead. This is exactly
what is used here, see § 2.6 for the full implementation details.

2.2.3. Collision term
We now construct a regularised collisional velocity field Uη,ε[ f ](x, v). By analogy with

(2.1), we define, for an arbitrary distribution f ,

Uη,ε[ f ](x, v) =
∫∫

Ω×Rdv

ψη(x − x∗)A(v − v∗)bη,ε[ f ](x, x∗, v, v∗)f (x∗, v∗) dv∗ dx∗,

(2.22a)

bη,ε[ f ](x, x∗, v, v∗) = ∇v

δHη,ε

δf
[ f ](x, v)− ∇v∗

δHη,ε

δf
[ f ](x∗, v∗), (2.22b)

Hη,ε[ f ] = −Sη,ε[ f ], Sη,ε[ f ] = −
∫∫

Ω×Rdv

f log(ψηϕε ∗x,v f ) dv dx, (2.22c)

where A is the collision kernel (2.1i).
The departure from (2.1) is twofold: first, system (2.22) is well-defined for discrete

measures; second, the entropy and collision operators have been altered to include spatial
dependencies. Note that the discrete collision operator has been defined in terms of the
total entropy S , rather than the function of space H(x) that appears in the continuous
Landau operator. The physical interpretation of (2.22) is that first we delocalise in space,
to consider collisions in a neighbourhood of each point x, and then we localise the
interactions in order to associate each particle with a distinct position. This regularised
collision somewhat resembles the Enskog collision operator, which has been studied in
the context of the Boltzmann equation (Villani 2006).

To define the collisional component of the scheme, we will evaluate Uη,ε for f N at the
particle coordinates (xp, vp). First, we note that the regularised functional (2.22c) can be
rewritten as

Hη,ε[ f ] =
∫∫

Ω×Rdv

f log(f̃ ) dv dx, (2.23)

using f̃ as shorthand for (ψηϕε ∗x,v f ). It is straightforward to compute

δHη,ε

δf
[ f ](x, v) = log(f̃ )+

(
f

f̃
∗x,v (ψηϕε)

)
(2.24)

and

∇v

δHη,ε

δf
[ f ](x, v) = ∇v f̃

f̃
+
(

f

f̃
∗x,v (ψη∇vϕε)

)
. (2.25)

We now structure the evaluation of the collision term in three sequential steps.
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(Step I) Compute the values of f̃ N and ∇v f̃ N at each particle,

f̃ N(xp, vp) =
N∑

q=1

wqψη(xp − xq)ϕε(vp − vq), (2.26a)

∇v f̃ N(xp, vp) =
N∑

q=1

wqψη(xp − xq)∇vϕε(vp − vq). (2.26b)

(Step II) Compute the values of ∇v(∂Hη,ε/∂f )[ f N] at each particle,

∇v

δHη,ε

δf
[ f N](xp, vp) = ∇v f̃ N(xp, vp)

f̃ N(xp, vp)
+
(

f N

f̃ N
∗x,v (ψη∇vϕε)

)
(xp, vp)

= ∇v f̃ N(xp, vp)

f̃ N(xp, vp)
+

N∑
q=1

wq

(
ψη(xp − xq)∇vϕε(vp − vq)

f̃ N(xq, vq)

)
.

(2.26c)

(Step III) Compute the velocity field,

Uη,ε[ f N](xp, vp) =
N∑

q=1

wqψη(xp − xq)Ap,qbp,q, (2.26d)

where

Ap,q = A(vp − vq), bp,q = ∇v

δHη,ε

δf
[ f N](xp, vp)− ∇v

δHη,ε

δf
[ f N](xq, vq).

(2.26e)

Section 2.3 discusses the practical implementation of these steps: the use of a cell list and
a random batch approach can greatly reduce the computational cost of the method.

REMARK 2.2. An alternative regularisation of the functional is∫∫
Ω×Rdv

(ψηϕε ∗x,v f ) log(ψηϕε ∗x,v f ) dv dx, (2.27)

reminiscent of the one employed in Carrillo et al. (2020) for the homogeneous Landau
equation. Under this regularisation, the scheme will achieve very similar properties (see
§§ 2.4 and 2.5). However, the calculation of the corresponding ∇v(δHη,ε/δf )[ f N](xp, vp)
term will require the evaluation of an integral. The need for numerical quadrature makes
this approach less convenient.

2.2.4. Choice of regularisation parameters
The method involves two parameters, η and ε. However, it is neither obvious how their

value should be chosen, nor how it relates to the number of particles N. We present here a
convention to make this choice more intuitive.

The computation of the Lorentz terms involves a spatial mesh, see §§ 2.2.2 and 2.6.
Without loss of generality, we suppose the spatial domain is of the form Ω = (0,L1)×
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· · · × (0,Ldx) for L1, . . . ,Ldx > 0. We assume that a uniform mesh is employed, and that
each dimension is discretised with Nxd cells. We then choose

ηd := Ld

Nxd

(2.28)

for each dimension d. The size of the spatial spline can therefore be understood as
consequence of the spatial resolution of the scheme.

We apply similar thinking for the velocity splines. The method does not require a mesh
in velocity; however, we imagine a fictitious mesh, and inspire a similar parameter choice.
We stress, however, that this mesh is never used in computation, it is simply a thinking
tool. Armed with this caveat, we approximate the velocity domain as (−Lv,Lv)dv , for some
Lv > 0. For each dimension, we choose a number of fictitious cells Nvd , and let

εd := Lv
Nvd

(2.29)

for each dimension d.
Given now the full mesh (space and velocity combined), we populate it with a number

of particles per cell Nc. The total number of particles shall therefore be

N := Nx1 × · · · × Nxdx
× Nv1 × · · · × Nvdv

× Nc, (2.30)

where Nc is a measure of the granular resolution of the scheme. Note that, while we speak
of ‘particles per cell’, the particles are not confined to individual cells and may roam the
numerical domain. Therefore, the number of particles within a specific cell in phase space
is not fixed a priori.

To think of a notion of convergence of the scheme, we fix Nc (typically Nc = 8) and let
Nxd and Nvd grow (see § 3.1).

2.3. Computational optimisation of the method
In order to maximise the computational performance of the method, we describe two
optimisations that we employ in our implementation of the scheme. The first, a cell list,
does not alter the method. The second, the random batch method, does alter the scheme,
but does not significantly affect its accuracy. In both cases, the structural properties of the
scheme persist.

2.3.1. Cell list optimisation
Cell lists (Allen & Tildesley 1990, Chapter 5.3.2) are data structures commonly used

to efficiently find all pairs of particles within a given distance of each other. Their
use in particle simulations can reduce the complexity of computing short-range particle
interactions from O(N2) to O(N log N).

First, each particle is located within an auxiliary mesh (an O(N) operation), and a list
of which particle belongs in each mesh cell is stored. The size of the cells is chosen in
relation to the size of the support of the splines, so that terms of the form ψη(xp − xq) can
only be non-zero if both particles lie in the same cell, or in cells which are neighbouring in
space. Since the lists of particles in each cell are precomputed, looking up each particle’s
‘neighbours’ is trivial. The same logic applies in the velocity dimensions, with the term
ϕε(vp − vq).

The complexity of the three steps of § 2.2.3 reduces as follows.
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(Step I) This step involves N particles with a compactly supported interaction; therefore,
the evaluation cost is reduced from O(N2) to O(N log N).

(Step II) This step is as the previous one.
(Step III) This step involves an interaction which is local in space only (the Landau

operator is, after all, non-local in velocity). Therefore, the cost reduction is
lesser. The typical number of particles within one spatial cell is O(Nv1 × · · · ×
Nvdv

× Nc); the evaluation of the collision operator will be of quadratic order
on this quantity. Accounting for the spatial cells, which do benefit from the
localisation, the overall cost is estimated as

O(Nx1 × · · · × Nxdx
× log(Nx1 × · · · × Nxdx

)× (Nv1 × · · · × Nvdv
× Nc)

2), (2.31)

which will be the dominant complexity of the numerical scheme.

We remark that the cell list optimisation does not alter the method, as it only discards
contributions which are exactly zero.

2.3.2. Random batch optimisation
The random batch method (Jin, Li & Liu 2020; Carrillo et al. 2022b) is also a staple

of particle simulations. Given the N particles, we assign them randomly to R batches of
equal size N/R. Steps I and II of § 2.2.3 are computed as before, but the collision operator
of step III is replaced by

Uη,ε[ f N](xp, vp) = R(N − 1)
N − R

∑
q∈Bp

wqψη(xp − xq)Ap,qbp,q, (2.32)

where Bp is the batch which contains the pth particle. This term acts as an unbiased
estimator of the original velocity field.

The complexity of the third step of § 2.2.3 is reduced by the batching. Since the batch
size is N/R, the interaction is quadratic, and it must be computed for each batch, the
overall cost is O(N2 × R−1). If we combine this technique with the cell list, the resultant
complexity is estimated as

O(Nx1 × · · · × Nxdx
× log(Nx1 × · · · × Nxdx

)× (Nv1 × · · · × Nvdv
× Nc)

2 × R−1). (2.33)

This remains the dominant complexity of the numerical scheme.
The random batch optimisation does alter the numerical method. However, it is easy to

prove that the structural properties of the method presented in §§ 2.4 and 2.5 survive the
batching; see Carrillo et al. (2022b) for details, where the random batch method was used
to accelerate the particle method for the homogeneous Landau equation (Carrillo et al.
2020). Furthermore, the use of batches does not significantly affect the accuracy of the
method, see § 3.1.

2.4. Properties of the regularised collision operator
This section discusses the structural properties of the discrete collision operator (2.26).

2.4.1. Collision invariants
The conservation properties of the method arise naturally from the definition of the

discrete collision operator (2.26). Specifically, we are able to emulate the weak form (2.2)
of the Landau operator at the discrete level, which shows that the scheme preserves the
usual collision invariants: 1, v and 1

2 |v|2.
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The discrete weak form is easily found. By analogy with∫
Rdv

g(v)Q[ f , f ] dv =
∫

Rdv

g(v)∇v · ( fU [ f ]) dv = −
∫

Rdv

∇vg(v) · ( fU [ f ]) dv, (2.34)

we compute, for a test function g(x, v),

−
N∑

p=1

wp∇vg(xp, vp) · Uη,ε[ f N](xp, vp)

= −
N∑

p=1

wp∇vg(xp, vp) ·
N∑

q=1

wqψη(xp − xq)Ap,qbp,q

= −
N∑

p,q=1

wpwqψη(xp − xq)∇vg(xp, vp) · Ap,qbp,q

= −1
2

N∑
p,q=1

wpwqψη(xp − xq)[∇vg(xp, vp)− ∇vg(xq, vq)] · Ap,qbp,q, (2.35)

symmetrising on the last line, and exploiting the symmetry ψη(xp − xq) and the
antisymmetry of bp,q. This term vanishes trivially for g = 1 as well as g = v. To see that it
also vanishes for g = 1

2 |v|2, one uses the fact that Ap,q projects bp,q onto the perpendicular
to vp − vq. We therefore conclude as follows.

THEOREM 2.3 (Discrete collision invariants). The functions g = 1, g = v and g = 1
2 |v|2

are collision invariants of the C-PIC collision operator:

−
N∑

p=1

wp∇vg(xp, vp) · Uη,ε[ f N](xp, vp) = 0. (2.36)

2.4.2. The H-Theorem
The discrete H-theorem in phase space also holds, and is readily obtained from

the discrete weak form. At the continuous level, one would choose the test function
g = log f + 1 = ∂H/∂f . Instead, we choose g = (∂Hη,ε/∂f )[ f N], to find

Dη,ε :=
N∑

p=1

wp∇v

δHη,ε

δf
[ f N](xp, vp) · Uη,ε[ f N](xp, vp)

= 1
2

N∑
p,q=1

wpwqψη(xp − xq)[∇v

δHη,ε

δf
[ f N](xp, vp)− ∇v

δHη,ε

δf
[ f N](xq, vq)] · Ap,qbp,q

= 1
2

N∑
p,q=1

wpwqψη(xp − xq)bp,q · Ap,qbp,q, (2.37)

which is non-positive due to the positive semidefinite property of the matrix Ap,q. We
therefore conclude as follows.

https://doi.org/10.1017/S0022377824001077 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001077


14 R. Bailo, J.A. Carrillo and J. Hu

THEOREM 2.4 (Discrete H-theorem). The H-theorem holds for the C-PIC entropy and
variation:

Dη,ε =
N∑

p=1

wp∇v

δHη,ε

δf
[ f N](xp, vp) · Uη,ε[ f N](xp, vp) ≥ 0. (2.38)

2.5. Global properties of the C-PIC method
This section discusses the properties of the full C-PIC method (2.13). By construction,
the discretisation of the collision operator preserves the conservation properties and
H-theorem, as discussed in § 2.4. Therefore, C-PIC inherits the properties of the
underlying PIC implementation.

2.5.1. Conservation of charge and energy
We may compute the global evolution in time of a test function g(x, v):

d
dt

∫∫
Ω×Rdv

g(x, v)f N(t, x, v) dv dx = d
dt

N∑
p=1

wpg(xp, vp)

=
N∑

p=1

wp[∇xg(xp, vp) · ẋp + ∇vg(xp, vp) · v̇p]

=
N∑

p=1

wp[∇xg(xp, vp) · vp + ∇vg(xp, vp) · (E(t, xp)+ vp × B(t, xp)− Uη,ε[ f N](xp, vp))].

(2.39)

Mass and charge (g = 1) are trivially conserved at the global level.
The evolution of the kinetic energy (g = 1

2 |v|2) is given by

d
dt

1
2

∫∫
Ω×Rdv

|v|2f N(t, x, v) dv dx = d
dt

1
2

N∑
p=1

wp|vp|2

=
N∑

p=1

wpvp · (E(t, xp)+ vp × B(t, xp)− Uη,ε[ f N](xp, vp))

=
N∑

p=1

wpvp · E(t, xp)

=
∑

h

N∑
p=1

wpvp · Ẽ(t, xh)ψη(xp − xh)hdx

=
∑

h

J̃(t, xh) · Ẽ(t, xh)hdx, (2.40)

where we have used theorem 2.3, the conservation of momentum at the level of the
collision operator. At the continuous level, the conservation of energy identity would
be found by invoking Maxwell’s equations in order to relate J · E to the electromagnetic
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energy. Namely

∂t

(
1
2
|E|2 + 1

2
|B|2

)
= E · ∂tE + B · ∂tB = −J · E − ∇x · (E × B), (2.41)

a computation that requires the vector identity

∇x · (E × B) = (∇x × E) · B − E · (∇x × B). (2.42)

REMARK 2.5 (Conservation of energy in the fully discrete setting). Both the chain rule
in time and the vector identity in space will not hold for a general discretisation; however,
the correct approach is well known. In space, Yee’s lattice (Yee 1966; Hyman & Shashkov
1999) leads to the corresponding discrete vector identities. In time, implicit schemes (the
midpoint rule, in particular) can be used to preserve the chain rule (Chen et al. 2011;
Markidis & Lapenta 2011; Crouseilles, Einkemmer & Faou 2015; Lapenta 2017; Kormann
& Sonnendrücker 2021). Under such conditions, we would arrive at the balance of energy:

d
dt
(EK + EE + EB)

:= d
dt

⎛
⎝1

2

N∑
p=1

wp|vp|2 + 1
2

∑
h

|Ẽ(t, xh)|2hdx + 1
2

∑
h

|B̃(t, xh)|2hdx

⎞
⎠ ≡ 0. (2.43)

The numerical examples of § 3 are discretised using Yee’s lattice (see § 2.6), but employ
an explicit time integrator for the sake of efficiency. Therefore, energy is only conserved at
the semidiscrete level (continuous in time), but generally not conserved at the fully discrete
level.

REMARK 2.6 (Conservation of momentum). A similar analysis can be performed for the
conservation of momentum. Similarly, a specific chain rule in time and vector identity
in space are required to hold in order to derive the correct conservation identity. In
general, these will not hold, even in the discretisations that do conserve the energy. We
are not aware of any discretisation capable of exactly conserving energy and momentum
simultaneously.

REMARK 2.7 (Local conservation of charge). The local conservation of charge equation,

∂tρ + ∇ · J = 0, (2.44)

a continuity equation for the electric charge, can be derived from Maxwell’s equations
and also from Vlasov’s equation. This equation is intimately related to the conservation
of energy; as such, it is desirable that a PIC scheme should verify a discrete version
of (2.44). PIC methods which exhibit local charge conservation have been proposed in
several works, including Villasenor & Buneman (1992), Esirkepov (2001), Chen et al.
(2011) and Chen et al. (2020).

2.5.2. Increment of entropy
At the continuous level, the global increment of the entropy (2.6) is a consequence of

two facts: the H-theorem, and the fact that the Vlasov equation conserves entropy. Since
the discrete H-theorem has already been shown in § 2.4, we must study the conservation.
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The evolution of the regularised entropy is not a priori given by the expression in
§ 2.5.1 since the test function, g = (∂Hη,ε/∂f )[ f N], also depends in time. However, a direct
computation shows

d
dt
Sη,ε[ f N] = − d

dt

∫∫
Ω×Rdv

f N log(f̃ N) dv dx = − d
dt

N∑
p=1

wp log(f̃ N(xp, vp))

= −
N∑

p,q=1

wpwq

d
dt [ψη(xp − xq)ϕε(vp − vq)]

f̃ N(xp, vp)

= −
N∑

p,q=1

wpwq

∇xψη(xp − xq)ϕε(vp − vq) · (ẋp − ẋq)

+ψη(xp − xq)∇vϕε(vp − vq) · (v̇p − v̇q)

f̃ N(xp, vp)
. (2.45)

The first summand can be greatly simplified, noting

N∑
p,q=1

wpwq
∇xψη(xp − xq)ϕε(vp − vq) · (ẋp − ẋq)

f̃ N(xp, vp)

=
N∑

p,q=1

wpwq
∇xψη(xp − xq)ϕε(vp − vq)

f̃ N(xp, vp)
· ẋp

+
N∑

p,q=1

wpwq
∇xψη(xp − xq)ϕε(vp − vq)

f̃ N(xq, vq)
· ẋp

=
N∑

p=1

wp

⎡
⎣∇xf̃ N(xp, vp)

f̃ N(xp, vp)
+

N∑
q=1

wq
∇xψη(xp − xq)ϕε(vp − vq)

f̃ N(xq, vq)

⎤
⎦ · ẋp

=
N∑

p=1

wp

[
∇xf̃ N(xp, vp)

f̃ N(xp, vp)
+
(

f N

f̃ N
∗x,v (ψη∇vϕε)

)
(xp, vp)

]
· ẋp

=
N∑

p=1

wp∇x
δHη,ε

δf
[ f N](xp, vp) · ẋp =

N∑
p=1

wp∇x
δHη,ε

δf
[ f N](xp, vp) · vp, (2.46)

where we have swapped the labels p and q in the second term of the second line,
and have used the antisymmetry of ∇xψη(xp − xq). The last expression is the discrete
analogue of the term

∫∫
Ω×Rdv (log f + 1)∇x · ( f v) dv dx, which vanishes under reasonable

assumptions. However, the discrete term is not zero in general; i.e. the PIC method does
not conserve the regularised entropy exactly. We define the entropy conservation error in
position,

Cx := −
N∑

p=1

wp∇x
δHη,ε

δf
[ f N](xp, vp) · vp, (2.47)

which will be shown to be numerically negligible.
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The second summand in the evolution of Hη,ε[ f N] similarly becomes

N∑
p=1

wp∇v

δHη,ε

δf
[ f N](xp, vp) · v̇p

=
N∑

p=1

wp∇v

δHη,ε

δf
[ f N] · (E(t, xp)+ vp × B(t, xp)− Uη,ε[ f N](xp, vp))

=
N∑

p=1

wp∇v

δHη,ε

δf
[ f N] · (E(t, xp)+ vp × B(t, xp))− Dη,ε

≤
N∑

p=1

wp∇v

δHη,ε

δf
[ f N] · (E(t, xp)+ vp × B(t, xp)), (2.48)

using the discrete H-theorem (theorem 2.4). The remaining quantity is the discrete
analogue of the continuous term

∫∫
Ω×Rdv (log f + 1)∇v · ( f (E + v × B)) dv dx; once

again, the continuous integral vanishes, but the discrete term does not, in general. We
define the entropy conservation error in velocity,

Cv := −
N∑

p=1

wp∇v

δHη,ε

δf
[ f N] · (E(t, xp)+ vp × B(t, xp)), (2.49)

which will also be shown to be numerically negligible.
To summarise, we find

d
dt
Sη,ε[ f N] = Cx + Cv+Dη,ε, (2.50)

where Dη,ε ≥ 0. Because the PIC method does not exactly conserve entropy, the C-PIC
method cannot be said to exactly increase it. However, both Cx and Cv will be shown to be
numerically negligible in § 3.1.2.

2.6. Full discretisation and time stepping
This section describes the full discretisation of the field solver and our time stepping
scheme. We limit the implementation to the 1D-2V setting (one dimension in space, two
dimensions in velocity; dx = 1, dv = 2) for the sake of computation, although the method
as described in § 2.2 also applies in higher dimensions.

We solve the VML equations over a time interval (0,T), where T > 0, and discretise it
with a uniform step�t. We describe here the update from time tn to tn+1, where tn := n�t.

2.6.1. Field update
In 1D-2V, Maxwell’s equations reduce to

∂tE1 = −J1, ∂tE2 = −J2 − ∂xB3, ∂tB3 = −∂xE2, x ∈ Ω = (0,L), (2.51)

for some L > 0, using the convention E = (E1,E2, 0), B = (0, 0,B3), J = (J1, J2, 0). We
prescribe periodic boundary conditions in space.

In order to discretise (2.51), we choose a number of cells Nx, and compute the
corresponding regularisation parameter η = L/Nx. We construct two meshes with spacing
η; the spacing of the mesh must be related to the spatial regularisation parameter, see
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§§ 2.2.2 and 2.2.4. We define a primal mesh Ω = {xi | 1 ≤ i ≤ Nx} and a dual mesh
Ω ′ = {xi+1/2 | 0 ≤ i ≤ Nx}, where xi := (i − 1/2)η.

The field update begins with the particles and the electromagnetic field at time tn. The
positions and velocities of the particles are xn

p = (xn
1,p) and vn

p = (vn
1,p, v

n
2,p) for 1 ≤ p ≤ N.

The electric field is considered on the primal mesh; the first component is Ẽn
1,i, and the

second component is Ẽn
2,i, for 1 ≤ i ≤ Nx. The magnetic field is considered on the dual

mesh; the third component is B̃n
3,i for 0 ≤ i ≤ Nx.

The current is evaluated over the primal mesh Ω through the interpolation described in
§ 2.2.2, from xn

p and vn
p , yielding J̃n

1,i and J̃n
2,i for 1 ≤ i ≤ Nx. Then, the field update is

Ẽn+1
1,i − Ẽn

1,i

�t
= −J̃n

1,i, for 1 ≤ i ≤ Nx, (2.52)

Ẽn+1
2,i − Ẽn

2,i

�t
= −J̃n

2,i −
B̃n

3,i+1/2 − B̃n
3,i−1/2

�x
, for 1 ≤ i ≤ Nx, (2.53)

B̃n+1
3,i+1/2 − B̃n

3,i+1/2

�t
= − Ẽn

2,i+1 − Ẽn
2,i

�x
, for 1 ≤ i ≤ Nx; (2.54)

the periodic boundary conditions are

B̃n
3,1/2 = B̃n

3,Nx+1/2 and Ẽn
2,Nx+1 = Ẽn

2,1. (2.55)

This spatial discretisation is Yee’s lattice (Yee 1966; Hyman & Shashkov 1999) applied
to the 1D-2V setting, a choice motivated by conservation of energy considerations, see
§ 2.5.1.

To conclude, the fields acting on the particles, En+1
1,p , En+1

2,p and Bn+1
3,p , are computed

from Ẽn+1
1,i , Ẽn+1

2,i and B̃n+1
3,i+1/2 using the extrapolation described in § 2.2.2. In the numerical

experiments without magnetic field, we simply set B̃3,i+1/2 ≡ 0.

2.6.2. Particle update
Given the fields acting on the particles at time tn, En

1,p, En
2,p and Bn

3,p, as well as the
collision term Uη,ε[ f N] = (U1,η,ε[ f N],U2,η,ε[ f N]) described in § 2.2.3, the particle update
is

xn+1
1,p − xn

1,p

�t
= vn+1

1,p , (2.56)

vn+1
1,p − vn

1,p

�t
= En

1,p + vn
2,pBn

3,p − U1,η,ε[ f N](xp, vp), (2.57)

vn+1
2,p − vn

2,p

�t
= En

2,p − vn
1,pBn

3,p − U2,η,ε[ f N](xp, vp). (2.58)

2.7. Initialisation from continuous data
This section discusses the initialisation of the C-PIC method (2.13). We again limit
the discussion to the 1D-2V setting, though our approach can be generalised to higher
dimensions.
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2.7.1. Particle initialisation
Given an initial datum f0(x, v1, v2), the clear approach to particle initialisation is to

construct the initial particle positions and velocities x0
p = (x0

1,p) and v0
p = (v0

1,p, v
0
2,p) as

samples (x0
1,p, v

0
1,p, v

0
2,p) from the distribution f0.

Whenever possible, exact sampling tools are used. For instance, the marginals of f0 in
velocity are Gaussian mixtures in most of the numerical experiments entertained in § 3; in
those cases, sampling the velocity coordinates (v0

1,p, v
0
2,p) is trivial.

In the cases where an exact sampling is not known (in § 3.1.1, and the marginal of f0
in space of the rest of experiments), we use stratified sampling. The support of the target
distribution is discretised in a mesh (in our case, the spatial mesh described in § 2.6), and
particles are sampled uniformly on each mesh cell. The number of particles sampled on
each cell is proportional to the integral of the target distribution on that cell (which we
approximate numerically).

Symmetries – it is possible to enforce certain symmetries in the particle sampling. In
the test cases of § 3.2, we ensure that the initial momentum of the particle solution is zero.
This is done by performing the sampling with N/2 particles, and then generating N/2
additional particles through a π radians rotation about the velocity origin.

2.7.2. Field initialisation
The numerical experiments of § 3 all use self-consistent initialisations for the fields.

Whenever present, the fields are initialised with approximations of ∇x · E0 = ρ − ρion and
∇x · B0 = 0.

3. Numerical experiments

In this section we validate the C-PIC method and demonstrate its effectiveness in dealing
with a range of collisional plasma simulations. Interactive versions of the simulations
presented in this section are available online in Bailo, Carrillo & Hu (2024a). Videos of
the simulations can be found in the permanent repository in Bailo, Carrillo & Hu (2024b).

3.1. Validation
3.1.1. Order of convergence (2V)

We begin the validation of the scheme by considering a spatially homogeneous problem.
In this simplified setting, our scheme would be analogous to that of Carrillo et al. (2020);
however, our ‘asymmetric’ regularisation of the entropy is precisely the choice not pursued
in the reference. The validation is therefore novel. Furthermore, we are validating the
random initialisation described in § 2.7.1, as well as the random batch approach described
in § 2.3.2.

We shall reproduce a test from Carrillo et al. (2020), which studies the relaxation to the
Maxwellian in a homogeneous setting. The initial condition is a ring-like density,

f0(v1, v2) = 1
π

exp (−(v2
1 + v2

2))(v
2
1 + v2

2), (3.1)

and the asymptotic steady state is the Maxwellian

f∞(v1, v2) = 1
2π

exp
(

−v
2
1 + v2

2

2

)
, (3.2)

for every exponent γ . However, the choice of exponent determines the evolution in time of
f . We will study the Maxwellian (γ = 0) and Coulombian (γ = −d) cases numerically.
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In the Maxwellian case, an exact solution exists (a derivation can be found in the
appendix of Carrillo et al. (2020)), which could also be use for validation. However, we
prefer to compare both the Maxwellian and Coulombian cases on an equal footing; thus
we shall study the numerical convergence of the method in both cases via relative errors.

We consider the domain v ∈ (−4, 4)2, and solve the Landau equation with datum
f0 = f (0, v) for t ∈ (0, 15), initialising the particles with a stratified sampling. The
collision strength is C = 2−4. We choose Nv ∈ {8, 16, 32, 64} (note Nv1 = Nv2 = Nv),
Nc ∈ {1, 2, 4, 8}, �t ∈ {100−1, 200−1, 400−1}. We solve the problems with and without
random batching (respectively, R = 1 and R = 16).

Figure 1 shows a typical numerical solution. Figure 2 shows the relative L2 error of the
solutions, defined for each value of Nv and its corresponding solution fNv as

Error(Nv) := ‖fNv − fNv/2‖L2

‖fNv‖L2
. (3.3)

Interestingly, Coulomb performs better than Maxwell when the number of particles per
cell is very low (Nc = 1); in the base case, �t = 100−1, the Maxwellian case appears not
to converge; this can be resolved by reducing �t. However, for Nc ≥ 4, both cases display
second-order convergence with respect to Nv, and the error is lower for the Maxwellian
case. The use of random batches (R = 16) barely affects these results.

3.1.2. Landau damping (1D-2V)
We now validate the inhomogeneous scheme by studying the Landau damping (Landau

1936; Villani 2013) of an electric wave. We adapt a test from Medaglia et al. (2023),
suitably extended to the 1D-2V setting (similar tests have been used, for instance, in
Crouseilles & Filbet (2004), Cheng, Gamba & Morrison (2013) and Zhang & Gamba
(2017)). We verify that our numerical solution behaves consistently with respect to the
known physical properties. Furthermore, we study the error in the entropy increment
equality. This is a necessary check because, as reported in Touati et al. (2022), collisionless
PIC simulations can in fact cause the entropy to increase. We establish here that any error
due to the discretisation of the transport is several orders of magnitude smaller than the
typical entropy values, and therefore the effects in our simulations are solely due to the
presence of the collision operator.

The test considers a distribution in Maxwellian equilibrium, with a small spatial
perturbation,

f0(x, v1, v2) = 1 + α cos(kx)
2π

exp
(

−v
2
1 + v2

2

2

)
, (3.4)

with k = 2−1, and α = 10−1. We will study the Coulombian case (γ = −d). Linear theory
predicts that the L2 norm of the electric field will oscillate, but the amplitude of the
oscillation will decay exponentially with rate

γl = − 1
k3

√
π

8
exp

(
− 1

2k2
− 3

2

)
(3.5)

in the collisionless case. In the presence of sufficiently weak collisions, the decay is
accelerated by a linear correction to γl + Cγl,c (Delcroix & Bers 1994; Chen 2016), where

γl,c = −
√

2
9π
. (3.6)

This is, however, not the case for stronger collisions. In the hydrodynamic limit (C → ∞),
in the absence of a magnetic field, the limiting behaviour of system (2.1) is described
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(a) (b)

(c) (d)

FIGURE 1. Typical solution in the Maxwellian case of the validation test of § 3.1.1. Here
C = 2−4; t ∈ (0, 15); Nv = 64; Nc = 8; �t = 10−2; R = 16.

by the Euler–Poisson equations, where the corresponding initial condition will result in a
standing electric wave. Therefore, the actual decay rate of the electric field can be made
arbitrarily slow for sufficiently strong collisions.

We consider the domain x ∈ (0, 2π/k), v ∈ (−4, 4)2, and solve the Vlasov–Ampère–
Landau equation for t ∈ (0, 10), initialising the particles with a combined sampling
(stratified in position, Gaussian in velocity). The collision strength is C ∈ {0, 0.01, 0.1, 1}.
We choose Nx = 128, Nv = 32 (note, once again, Nv1 = Nv2 = Nv), Nc = 8, �t = 50−1

and R = 32. Each simulation employs a total of 1 048 576 particles.
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FIGURE 2. For caption see next page.
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FIGURE 2. Order of convergence for the validation test of § 3.1.1. Relative L2 errors of the
regularised solutions f̃ N . Here C = 2−4; t ∈ (0, 15).
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(a) (b)

(c) (d)

FIGURE 3. Numerical Landau damping in the validation test of § 3.1.2. Here t ∈ (0, 10); Nx =
128; Nv = 32; Nc = 8; �t = 50−1; R = 32. Total of 1 048 576 particles. Constants γl and γl,c
given in § 3.1.2.

Figure 3 shows the decay of the first component of the electric field (E1) in the L2 norm.
The collisionless case behaves as expected. The very weakly collisional case (C = 0.01)
is almost indistinguishable from collisionless; so much so, that it obscures the reference
C = 0 plot. The weakly collisional case (C = 0.1) is within the purview of the linear
analysis, and it shows an accelerated decay consistent with the theoretical rate. Finally, the
strongly collisional case (C = 1.0) breaks the linear trend and displays a decay rate slower
than the collisionless one, very far from the linear prediction, which is expected.

Figure 4 shows the increment of the entropy in the collisional cases, as well as
the entropy conservation errors discussed in § 2.5.2. Compared with the upcoming
experiments, the distribution f in this test remains close to Maxwellian equilibrium as
it evolves in time. Therefore, we expect the entropy increment effects to be relatively
small. Nevertheless, we observe that the entropy transport error is at least three orders
of magnitude smaller than the typical entropy increment; in this scenario, the evolution of
the entropy is driven solely by the action of the collision operator.

3.2. Study of collisional effects
3.2.1. Two-stream instability (1D-2V)

We turn to study the effects of the collisional effects in more interesting problems.
Here we study the two-stream instability, a known interaction between two beams of
electrons which causes a vortex to appear in phase space. We observe the smoothing of
the distribution due to collisional effects, as well an improvement in the conservation of
energy.
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(a) (b)

(c) (d)

FIGURE 4. Entropy and entropy transport error in the Landau damping validation test of § 3.1.2.
Here t ∈ (0, 10); Nx = 128; Nv = 32; Nc = 8; �t = 50−1; R = 32. Total of 1 048 576 particles.

The test, adapted from Medaglia et al. (2023), considers two Maxwellian travelling
beams, with a very small spatial perturbation,

f0(x, v1, v2) = 1 + α cos(kx)
2π

[
exp

(
−(v1 − c)2

2

)
+ exp

(
−(v1 + c)2

2

)]
exp

(
−v

2
2

2

)
,

(3.7)

with c = 2.4, k = 5−1 and α = 200−1. The electric field is initialised self-consistently. We
study the Coulombian case (γ = −2).

We consider the domain x ∈ (0, 2π/k), v ∈ (−6, 6)2, and solve Vlasov–Ampère–Landau
for t ∈ (0, 50), initialising the particles with a combined sampling (stratified in position,
Gaussian in velocity). The collision strength is C ∈ {0, 0.01, 0.02, 0.04, 0.08}. We choose
Nx = 256, Nvx = 32, Nvy = 4, Nc = 16,�t = 20−1 and R = 32. Each simulation employs
a total of 524 288 particles.

Figure 5 shows the vortex formation in the collisionless setting, and the smoothing
of the vortex as the effects of collision are strengthened; the action of the Landau
operator as a nonlinear, non-local diffusion operator is evident here. For completeness,
Figure 6 shows a comparison of the final state of the vortex for each collision strength.
As expected, increasing C interpolates from the collisionless dynamics to (nearly) a
Maxwellian equilibrium.

Figure 7 shows the evolution of the total energy, kinetic energy, electric energy and
entropy of the problem. Around time 20, we see an exponential conversion of kinetic
energy to electric energy: this corresponds to the initial appearance of the vortex. The
conversion saturates around time 30, but both energies continue to increase, thus the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 5. For caption see next page.
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(g) (h)

(i) ( j)

(k) (l)

FIGURE 5. Vortex formation in the two-stream instability test of § 3.2.1 (marginals of f̃ N).
Here t ∈ (0, 50); Nx = 256; Nv1 = 32; Nv2 = 4; Nc = 16; �t = 20−1; R = 32. Total of 524 288
particles. See Bailo et al. (2024a,b) for animations.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 6. Final vortex in the two-stream instability test of § 3.2.1 (marginals of f̃ N). Here t ∈
(0, 50); Nx = 256; Nv1 = 32; Nv2 = 4; Nc = 16;�t = 20−1; R = 32. Total of 524 288 particles.
See Bailo et al. (2024a,b) for animations.
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(a) (b)

(c) (d)

FIGURE 7. Energy and entropy in the two-stream instability test of § 3.2.1. Here t ∈ (0, 50);
Nx = 256; Nv1 = 32; Nv2 = 4; Nc = 16; �t = 20−1; R = 32. Total of 524 288 particles. See
Bailo et al. (2024a,b) for animations.

total energy is not exactly conserved. Due to the structure-preserving properties of our
discretisation, stronger collisions lead to better conservation properties, not worse. The
entropy increases throughout. In the collisionless case, the entropy is essentially constant,
until the point where the vortex appears, where some variation can be seen. This could
be due to larger entropy conservation errors Cx and Cv, or the PIC entropy increase effects
described in Touati et al. (2022).

Figure 8 shows the growth of the L2 norm of the electric field in time. In the collisionless
case, the growth rate in the exponential phase is γs = 0.2258 (Chen 2016; Liu & Xu 2017;
Xiao & Frank 2021; Medaglia et al. 2023). It has recently been suggested (Zhou & Bellan
2023) that this growth rate should be insensitive to collisional effects; however, other
sources (Sydorenko et al. 2016) expect the rate to slow down linearly for weak collisions to
γs − Cγs,c, for some positive constant γs,c. Our results are roughly consistent with γs,c � 1.

Figure 12 shows the energy-conservation error for the collisionless experiment, defined
simply as the absolute difference between the final and initial (discrete) energy. The
collisionless simulation is repeated both with a larger number of particles (doubling Nc
twice) and with a smaller time step (halving �t three times) in order to study whether
the conservation error decreases. In this test, the error is essentially insensitive to the
number of particles; however, it decreases linearly with �t. This is expected, in view of
the discussion of § 2.5.1 and the fact that we employ an explicit Euler integrator. As already
remarked in the §§ 1 and 2.5.1, better time integrations are available, and would lead to
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(a) (b)

(c) (d)

FIGURE 8. Exponential growth of the electric field in the two-stream instability test of § 3.2.1.
Here t ∈ (0, 50); Nx = 256; Nv1 = 32; Nv2 = 4; Nc = 16; �t = 20−1; R = 32. Total of 524 288
particles. See Bailo et al. (2024a,b) for animations. Constants γs and γs,c given in § 3.2.1.

improved conservation properties, but their use in combination with our collision operator
is too costly at present. Nevertheless, we conclude that the use of more sophisticated
integrators or a finer time step would lead to much better conservation in our numerics.

3.2.2. Weibel instability (1D-2V)
To conclude, we study the Weibel instability, a problem which includes the full

electromagnetic effects. Once again we observe the smoothing of the distribution due to
collisional effects, as well as improved conservation properties.

This test, borrowed from Cheng, Christlieb & Zhong (2014), considers two Maxwellian
beams

f0(x, v1, v2) = 1
πβ

exp
(

−v
2
1

β

)[
exp

(
−(v2 − c)2

β

)
+ exp

(
−(v2 + c)2

β

)]
, (3.8)

with c = 0.3, and β = 10−2. The electric field is initialised self-consistently (to zero), and
the initial magnetic field is

B3(0, x) = α sin(kx), (3.9)

where k = 5−1, and α = 10−3. We study the Coulombian case (γ = −2).
We consider the domain x ∈ (0, 2π/k), v ∈ (−6, 6)2, and solve VML for t ∈ (0, 125),

initialising the particles with a combined sampling (stratified in position, Gaussian in
velocity). The collision strength is C ∈ {0, 0.0001, 0.0002, 0.0004, 0.0008}. We choose
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FIGURE 9. For caption see next page.
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(g) (h)

( j)

( l)

(i)

(k)

FIGURE 9. Electron beam collapse in the Weibel instability test of § 3.2.2 (marginals of f̃ N).
Here t ∈ (0, 125); Nx = 32; Nv = 64; Nc = 8; �t = 10−1; R = 64. Total of 1 048 576 particles.
See Bailo et al. (2024a,b) for animations.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 10. Final beam collapse in the Weibel instability test of § 3.2.2 (marginals of f̃ N). Here
t ∈ (0, 125); Nx = 32; Nv = 64; Nc = 8; �t = 10−1; R = 64. Total of 1 048 576 particles. See
Bailo et al. (2024a,b) for animations.
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(c) (d)
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FIGURE 11. Energy and entropy in the Weibel instability test of § 3.2.2. t ∈ (0, 125). Here
Nx = 32; Nv = 64; Nc = 8; �t = 10−1; R = 64. Total of 1 048 576 particles. See Bailo et al.
(2024a,b) for animations.

Nx = 32, Nvx = 64, Nvy = 64, Nc = 8, �t = 10−1 and R = 64. Each simulation employs
a total of 1 048 576 particles.

Figure 9 shows the action of the instability. Without collisional effects, the initially
narrow, fast beams suddenly become wider and slow, coinciding with the exponential
growth of the magnetic field. The new beams are stable, though they appear noisy in the
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(a) (b)

FIGURE 12. Collisionless conservation-of-energy error on two-stream instability (§ 3.2.1) and
the Weibel instability (§ 3.2.2) as a function of �t. Starting from the original simulation
parameters, Nc is doubled twice, and �t is halved three times; other parameters remain
unchanged.

figure due to the nature of the particle approximation. The collisional cases display similar
qualitative behaviour at the beginning, but eventually the two beams begin to merge. Once
again, the diffusive nature of the Landau operator is evident. For completeness, figure 10
shows a comparison of the final state of the beams for each collision strength. As before,
stronger collisions drive the distribution towards a Maxwellian.

Figure 11 shows the evolution of the total energy, kinetic energy, electric energy,
magnetic energy and entropy of the problem. Around time 30, we see an exponential
conversion of kinetic energy to magnetic energy. The conversion saturates around time
40, when the magnetic energy begins to oscillate around a constant value, and appears
convergent in time. The electric energy behaves similarly, but its magnitude is 20 times
smaller, establishing this as a mainly magnetic effect. Unlike the two-stream instability,
the lack of conservation here is mainly visible in the kinetic energy, which grows steadily.
Once again, stronger collisions lead to better conservation properties, not worse. Just as in
the two-stream instability case, the entropy conservation error due to the transport is no
longer negligible once the instability develops, leading to variations in the entropy in the
collisionless case. Nevertheless, the addition of collisional terms still plays an important
role in the evolution of the entropy, which increases monotonically when C is large enough.

Just as in the previous section, figure 12 shows the energy-conservation error for the
collisionless experiment. Again, the collisionless simulation is repeated both with a larger
number of particles and with a smaller time step. In this test, the error is not insensitive
to the number of particles, but it nevertheless decreases linearly with �t. Once again, we
conclude that the use of more advanced time integrators or a smaller �t would greatly
improve the conservation errors across our experiments.

4. Conclusion and outlook

In this work, we have introduced a generalisation of the PIC method able to simulate
the Landau collisions in a spatially inhomogeneous plasma. We have derived the method
from the gradient-flow structure of the Landau equation, preserving a variational structure,
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and retaining all conservation properties for the collisional update. We have validated
the numerical method, and presented collisional simulations of phenomena such as the
Landau damping, the two-stream instability, and the Weibel instability, which demonstrate
its ability to simulate a collisional plasma.

Several extensions of the work could be considered. A clear future task is to perform
3D-3V (three dimensions in space, three dimensions in velocity) simulations of a
collisional plasma with full electromagnetic effects using C-PIC; this remains a tough
computational challenge, and will likely involve the implementation of C-PIC within a
mature plasma simulation ecosystem, such as NESO (Threlfall et al. 2023). It would also
be of interest to study whether the techniques employed in this work could be applied to the
gyrokinetic Landau operator (Ku et al. 2016), as a way to reduce the overall computational
cost. Furthermore, a natural objective is the extension of the method to a two species
setting, as Carrillo et al. (2023b) did for the homogeneous scheme of Carrillo et al. (2020),
though the large ion–electron mass ratio will likely lead to challenging restrictions on the
time integrator; a similar challenge was addressed in Bailo & Rey (2022) for a different
class of schemes and collision operators. Following Bailo et al. (2023), stochastic Galerkin
expansions could be used to perform uncertainty quantification at the inhomogeneous
level, as was done in Medaglia et al. (2023) for the Vlasov–Poisson–BGK equations. The
use of C-PIC as a source of synthetic data to train a surrogate model is not out of the
question; Miller et al. (2021) performs a similar task at the gyrokinetic level with data
from XGC1 (Chang & Ku 2008; Ku et al. 2009).
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Appendix A. Dimensionless VML equations for the Coulomb case in dimension
three

For the sake of completeness, we describe here the non-dimensionalisation that leads
to (2.1), which roughly follows (Degond 2007). Throughout, we assume we are in the
Coulomb setting, γ = −dv = −3.

To begin, we assume the typical density is n0 and the typical temperature is T0. The
thermal speed is defined as

v0 :=
√

kBT0

m
, (A1)

and the typical distribution magnitude is defined as f0 = n0v
−3
0 for dimensional

consistency, which results in the scaling f = f0 f̄ .
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The velocity coordinate will be scaled by v = v0v̄. To define scales for time and space,
we make use of the Debye length,

λD =
√
ε0kBT0

n0q2
, (A2)

and the plasma frequency,

ωp := v0/λD =
√

n0q2

mε0
. (A3)

We can now define t0 = ω−1
p and x0 = λD, and scale t = t0 t̄ and x = x0x̄.

The typical force has magnitude F0 := kBT0x−1
0 ; the fields will therefore be scaled by

E = E0Ē and B = B0B̄, with scales E0 = F0q−1 and B0 = E0v
−1
0 .

We assume the Coulomb collisional cross-section normalises with a factor

σ0 = 1
8
| log δ| q4

m2πε2
0v

4
0

= C−3

v4
0
, (A4)

see Degond (2007) for details. We define the collision frequency ν0 := σ0n0v0, and scale
the collision operator by Q = Q0Q̄, where Q0 := ν0f0.

We first scale Maxwell’s equations. Ampère’s equation ε0μ0∂tE = ∇x × B − μ0J
becomes ∂t̄Ē = (c2/v2

0)∇x̄ × B̄ − J̄ in the new scale, where J = J0J̄ and J0 = qv0n0 for
consistency. We make here the non-relativistic assumption c = v0 to arrive at ∂t̄Ē =
∇x̄ × B̄ − J̄. Poisson’s equation ε0∇x · E = ρ + ρion becomes ∇x̄ · Ē = ρ̄ − ρ̄ion, where
ρ = ρ0ρ̄, ρ0 = qn0 and ρion = −ρ0ρ̄ion. Faraday’s and Gauss’ equations remain unchanged
in the new variables.

We now scale the Vlasov-Landau equation, ∂tf + v · ∇xf + q
m(E + v × B) · ∇v

f = Q[ f , f ]. Under our assumptions, the equation becomes

∂t̄ f̄ + v̄ · ∇x̄ f̄ + (Ē + v̄ × B̄) · ∇v̄ f̄ = Q̄[f̄ , f̄ ], (A5)

where

Q̄[f̄ , f̄ ] = ∇v̄ ·
∫

R3

A(v̄ − v̄∗)[f̄ (v̄∗)∇v̄ f̄ (v̄)− f̄ (v̄)∇v̄∗ f̄ (v̄∗)] dv̄∗. (A6)

The collisional cross-section A is a symmetric and positive-semidefinite matrix given by

A(z) = C|z|−1Π(z), Π(z) =
(

I3 − z ⊗ z
|z|2

)
, (A7)

where C = ν0ω
−1
p is the dimensionless collision strength, obtained as the quotient of the

collisional frequency and the plasma frequency.
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