Ergod. Th. & Dynam. Sys., (2024), 44, 3272–3289 © The Author(s), 2024. Published by Cambridge 3272 University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence [\(https://creativecommons.org/licenses/by/4.0\)](https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. doi[:10.1017/etds.2024.12](http://dx.doi.org/10.1017/etds.2024.12)

On denseness of horospheres in higher rank homogeneous spaces

OR LANDESBERG† and HEE OH†‡

† *Department of Mathematics, Yale University, New Haven, CT 06520, USA (e-mail: [or.landesberg@yale.edu\)](mailto:or.landesberg@yale.edu)* ‡ *Korea Institute for Advanced Study, Seoul, Korea (e-mail: [hee.oh@yale.edu\)](mailto:hee.oh@yale.edu)*

(*Received* 11 *February* 2022 *and accepted in revised form* 23 *January* 2024)

Abstract. Let G be a connected semisimple real algebraic group and $\Gamma < G$ be a Zariski dense discrete subgroup. Let *N* denote a maximal horospherical subgroup of *G*, and $P = MAN$ the minimal parabolic subgroup which is the normalizer of *N*. Let $\mathcal E$ denote the unique *P*-minimal subset of $\Gamma \backslash G$ and let \mathcal{E}_0 be a P° -minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary G/P and show that the following are equivalent for any $[g] \in \mathcal{E}_0$:

- (1) $gP \in G/P$ is a horospherical limit point;
- (2) $[g]NM$ is dense in \mathcal{E} ;
- (3) $[g]N$ is dense in \mathcal{E}_0 .

The equivalence of items (1) and (2) is due to Dal'bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the NM -minimality of $\mathcal E$ does not hold in a general Anosov homogeneous space.

Key words: horospheres, horospherical limit points, limit cones, infinite volume 2020 Mathematics Subject Classification: 37A17 (Primary); 22F30, 22E40 (Secondary)

1. *Introduction*

Let *G* be a connected semisimple real algebraic group. Let (X, d) denote the associated Riemannian symmetric space. Let $P = MAN$ be a minimal parabolic subgroup of G with fixed Langlands decomposition, where *A* is a maximal real split torus of *G*, *M* the maximal compact subgroup of *P* commuting with *A*, and *N* the unipotent radical of *P*. Note that *N* is a maximal horospherical subgroup of *G*, which is unique up to conjugations.

Fix a positive Weyl chamber $\mathfrak{a}^+ \subset \log A$ so that $\log N$ consists of positive root subspaces, and we set $A^+ = \exp \alpha^+$. This means that *N* is a contracting horospherical subgroup in the sense that for any *a* in the interior of A^+ ,

 $N = \{g \in G : a^{-n} g a^n \to e \text{ as } n \to +\infty\}.$

Let Γ be a *Zariski dense* discrete subgroup of *G*. In this paper, we are interested in the topological behavior of the action of the horospherical subgroup N on $\Gamma \backslash G$ via the right

translations. When $\Gamma < G$ is a cocompact lattice, every *N*-orbit is dense in $\Gamma \backslash G$, that is, the *N*-action on $\Gamma \backslash G$ is minimal. This is due to Hedlund [[11](#page-17-0)] for $G = \text{PSL}_2(\mathbb{R})$ and to Veech [[19](#page-17-1)] in general. Dani gave a full classification of possible orbit closures of *N*-action for any lattice $\Gamma < G$ [[8](#page-17-2)].

For a general discrete subgroup $\Gamma < G$, the quotient space $\Gamma \backslash G$ does not necessarily admit a dense *N*-orbit, even a dense *NM*-orbit, for instance in the case where Γ does not have a full limit set. Let *F* denote the Furstenberg boundary G/P . We denote by $\Lambda = \Lambda_{\Gamma}$ the limit set of Γ ,

$$
\Lambda = \Big\{ \lim_{i \to \infty} \gamma_i(o) \in \mathcal{F} : \gamma_i \in \Gamma \Big\},\
$$

where $o \in X$ and the convergence is understood as in Definition [2.2.](#page-6-0) This definition is independent of the choice of $o \in X$. The limit set Λ is known to be the unique Γ -minimal subset of $\mathcal F$ (see [[1](#page-16-0), [9](#page-17-3), [15](#page-17-4)]). Thus, the set

$$
\mathcal{E} = \{ [g] \in \Gamma \backslash G : gP \in \Lambda \}
$$

is the unique *P*-minimal subset of $\Gamma \backslash G$. For a given point $[g] \in \mathcal{E}$, the topological behavior of the horospherical orbit $[g]N$ (or of $[g]NM$) is closely related to the ways in which the orbit Γ (*o*) approaches *gP* along its limit cone. The limit cone $\mathcal{L} = \mathcal{L}_{\Gamma}$ of Γ is defined as the smallest closed cone of α^+ containing the Jordan projection $\lambda(\Gamma)$. It is a convex cone
with non-empty interior; int $C \neq \emptyset$ [1]. If rank $C = 1$, then $C = \alpha^+$, In higher ranks, the with non-empty interior: int $\mathcal{L} \neq \emptyset$ [[1](#page-16-0)]. If rank $G = 1$, then $\mathcal{L} = \mathfrak{a}^+$. In higher ranks, the limit cone of Γ depends more subtly on Γ .

1.1. *Horospherical limit points.* Recall that in the rank one case, a horoball in *X* based at $\xi \in \mathcal{F}$ is a subset of the form $gN(\exp \alpha^+)(o)$, where $g \in G$ is such that $\xi = gP$ [[5](#page-17-5)]. Our generalization to higher rank of the notion of a horospherical limit point involves the limit cone of Γ . By a Γ -tight horoball based at $\xi \in \mathcal{F}$, we mean a subset of the form $\mathcal{H}_{\xi} = gN(\exp \mathcal{C})(o)$, where $g \in G$ is such that $\xi = gP$ and C is a closed cone contained in int $\mathcal{L} \cup \{0\}$. For $T > 0$, we write

$$
\mathcal{H}_{\xi}(T) = gN(\exp(\mathcal{C} - \mathcal{C}_T))o,
$$

where $C_T = \{u \in C : ||u|| < T\}$ for a Euclidean norm $|| \cdot ||$ on α .

Definition 1.1. We call a limit point $\xi \in \Lambda$ a horospherical limit point of Γ if one of the following equivalent conditions holds:

- there exists a Γ -tight horoball \mathcal{H}_{ξ} based at ξ such that for any $T > 1$, $\mathcal{H}_{\xi}(T)$ contains some point of Γ (o);
- there exist a closed cone $C \subset \text{int } C \cup \{0\}$ and a sequence $\gamma_j \in \Gamma$ satisfying that $\beta_{\xi}(o, \gamma_{j} o) \in C$ for all $j \ge 1$ and $\beta_{\xi}(o, \gamma_{j} o) \to \infty$ as $j \to \infty$, where β denotes the a-valued Busemann map (Definition [2.3\)](#page-6-1).

See Lemma [3.3](#page-7-0) for the equivalence of the above two conditions. We denote by

$$
\Lambda_h \subset \Lambda
$$

the set of all horospherical limit points of Γ . The attracting fixed point y_{γ} of a loxodromic element $\gamma \in \Gamma$ whose Jordan projection $\lambda(\gamma)$ belongs to int $\mathcal L$ is always a horospherical limit point (Lemma [3.5\)](#page-9-0). Moreover, for any $u \in \text{int } \mathcal{L}$, any *u*-directional radial limit point ξ (i.e. $\xi = gP$ for some $g \in G$ such that $\limsup_{t \to \infty} \Gamma g \exp(tu) \neq \emptyset$) is also a horospherical limit point (Lemma [5.3\)](#page-14-0).

Remarks 1.2

- (1) There exists a notion of horospherical limit points in the geometric boundary associated to a symmetric space, see [[10](#page-17-6)]. When rank $G > 2$, this notion and the one considered here are different.
- (2) Unlike the rank one case, a sequence $\gamma_i(o) \in \mathcal{H}_{\xi}(T_i)$, with $T_i \to \infty$, does not necessarily *converge* to ξ for a Γ-tight horoball H_{ξ} based at ξ. It is hence plausible that a general discrete group Γ would support a horospherical limit point outside of its limit set.

1.2. *Denseness of horospheres.* The following theorem generalizes Dal'bo's theorem [[5](#page-17-5)] to discrete subgroups in higher rank semisimple Lie groups.

THEOREM 1.3. Let $\Gamma < G$ be a Zariski dense discrete subgroup. For any $[g] \in \mathcal{E}$, the *following are equivalent:*

- (1) $gP \in \Lambda_h$;
- (2) $[g]NM$ *is dense in* \mathcal{E} *.*

Remarks 1.4. Conze and Guivarc'h considered the notion of a horospherical limit point for Zariski dense discrete subgroups Γ of $SL_d(\mathbb{R})$ using the description of $SL_d(\mathbb{R})/P$ as the full flag variety and the standard linear action of Γ on \mathbb{R}^d [[4](#page-17-7)]. By duality, this notion coincides with ours and hence the special case of Theorem [1.3](#page-2-0) for $G = SL_d(\mathbb{R})$ also follows from [[4](#page-17-7), Theorem 4.2]. (However the claim in [[4](#page-17-7), Theorem 6.3] is incorrect.)

To extend Theorem [1.3](#page-2-0) to *N*-orbits, we fix a P° -minimal subset \mathcal{E}_0 of $\Gamma \backslash G$, where P° denotes the identity component of *P*. Clearly, $\mathcal{E}_0 \subset \mathcal{E}$. Since $P = P^{\circ}M$, any P° -minimal subset is a translate of \mathcal{E}_0 by an element of the finite group $M^\circ \setminus M$, where M° is the identity component of M. Denote by $\mathfrak{D}_{\Gamma} = \{\mathcal{E}_0, \ldots, \mathcal{E}_p\}$ the finite collection of all P[∘]-minimal sets in \mathcal{E}_{Γ} To understand M orbit elections it is happe sufficient to pertriet to \mathcal{E}_{Γ} . sets in \mathcal{E} . To understand *N*-orbit closures, it is hence sufficient to restrict to \mathcal{E}_0 .

The following is a refinement of Theorem [1.3.](#page-2-0)

THEOREM 1.5. Let $\Gamma < G$ be a Zariski dense discrete subgroup. For any $[g] \in \mathcal{E}_0$, the *following are equivalent:*

- (1) $gP \in \Lambda_h$;
- (2) $[g]N$ *is dense in* \mathcal{E}_0 .

Remark 1.6. We may consider horospherical limit points outside the context of Λ . In this case, our proofs of Theorems [1.3](#page-2-0) and [1.5](#page-2-1) show that if $gP \in \mathcal{F}$ is a horospherical limit point, then the closures of $[g]MN$ and $[g]N$ contain $\mathcal E$ and $\mathcal E_i$ for some $\mathcal E_i \in \mathfrak D_\Gamma$, respectively.

For $G = SO^o(n, 1)$, $n > 2$, Theorem [1.5](#page-2-1) was proved in [[16](#page-17-8)]. When G has rank one and $\Gamma < G$ is convex cocompact, every limit point is horospherical and Winter's mixing theorem [[20](#page-17-9)] implies the *N*-minimality of \mathcal{E}_0 .

1.3. *Directional horospherical limit points.* We also consider the following seemingly much stronger notion.

Definition 1.7. For $u \in \mathfrak{a}^+$, a point $\xi \in \mathcal{F}$ is called u-horospherical if there exists a sequence $\gamma_j \in \Gamma$ such that $\sup_j \|\beta_{\xi}(0, \gamma_j o) - \mathbb{R}_+ u\| < \infty$ and $\beta_{\xi}(0, \gamma_j o) \to \infty$ as $j \rightarrow \infty$.

Denote by $\Lambda_h(u)$ the set of u-horospherical limit points. Surprisingly, it turns out that every horospherical limit point is *u*-horospherical *for all* $u \in \text{int } \mathcal{L}$.

THEOREM 1.8. *For all* $u \in \text{int } \mathcal{L}$ *, we have*

$$
\Lambda_h=\Lambda_h(u).
$$

1.4. *Existence of non-dense horospheres*. A finitely generated subgroup $\Gamma < G$ is called an Anosov subgroup (with respect to *P*) if there exists $C > 0$ such that for all $\gamma \in \Gamma$, $\alpha(\mu(\gamma)) \ge C|\gamma| - C$ for all simple roots α of $(\mathfrak{g}, \mathfrak{a}^+)$, where $\mu(\gamma) \in \mathfrak{a}^+$ denotes the Cartan projection of γ and $|\gamma|$ is the word length of γ with respect to a fixed finite generating set of Γ .

For Zariski dense Anosov subgroups of *G*, almost all NM-orbits are dense in *E* and almost all *N*-orbits are dense in \mathcal{E}_0 with respect to any Patterson–Sullivan measure on Λ [[15](#page-17-4), [14](#page-17-10)]. In particular, the set of all horospherical limit points has full Patterson–Sullivan measures.

However, as Anosov subgroups are regarded as higher rank generalizations of convex cocompact subgroups, it is a natural question whether the minimality of the NM -action persists in the higher rank setting. It turns out that it is not the case. Our example is based on Thurston's theorem [[18](#page-17-11), Theorem 10.7] together with the following observation on the implication of the existence of a Jordan projection of an element of Γ lying in the boundary ∂*L* of the limit cone.

PROPOSITION 1.9. Let $\Gamma < G$ be a Zariski dense discrete subgroup. For any loxodromic $element \gamma \in \Gamma$, we have

 $\lambda(\gamma) \in \text{int } \mathcal{L}$ *if and only if* $\{y_{\gamma}, y_{\gamma^{-1}}\} \subset \Lambda_h$,

where y_{γ} *and* $y_{\gamma^{-1}}$ *denote the attracting fixed points of* γ *and* γ^{-1} *, respectively.*

In particular, if $\lambda(\Gamma) \cap \partial \mathcal{L} \neq \emptyset$, then $\Lambda \neq \Lambda_h$ and hence there exists a non-dense NM*-orbit in E.*

Thurston's work [[18](#page-17-11)] provides many examples of Anosov subgroups satisfying that $\lambda(\Gamma) \cap \partial \mathcal{L} \neq \emptyset$. To describe them, let Σ be a a torsion-free cocompact lattice of PSL₂(\mathbb{R}) and let $\pi : \Sigma \to \text{PSL}_2(\mathbb{R})$ be a discrete faithful representation. Let $0 < d_-(\pi) \leq d_+(\pi) < \infty$ be the minimal and maximal geodesic stretching constants:

$$
d_{+}(\pi) = \sup_{\sigma \in \Sigma - \{e\}} \frac{\ell(\pi(\sigma))}{\ell(\sigma)} \quad \text{and} \quad d_{-}(\pi) = \inf_{\sigma \in \Sigma - \{e\}} \frac{\ell(\pi(\sigma))}{\ell(\sigma)}, \tag{1.1}
$$

where $\ell(\sigma)$ denotes the length of the closed geodesic in the hyperbolic manifold $\Sigma\backslash\mathbb{H}^2$ corresponding to σ and $\ell(\pi(\sigma))$ is defined similarly.

Consider the following self-joining subgroup:

$$
\Gamma_{\pi} := (\mathrm{id} \times \pi)(\Sigma) = \{(\sigma, \pi(\sigma)) : \sigma \in \Sigma\} < \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R}).
$$

It is easy to see that Γ is an Anosov subgroup of $G = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R})$. Moreover, when π is not a conjugate by a Möbius tranformation, Γ_{π} is Zariski dense in *G* (cf. [[12](#page-17-12), Lemma 4.1]). Identifying $\mathfrak{a} = \mathbb{R}^2$, the Jordan projection $\lambda(\gamma_\pi)$ of $\gamma_\pi = (\sigma, \pi(\sigma)) \in \Gamma_\pi$ is given by $(\ell(\sigma), \ell(\pi(\sigma))) \subset \mathbb{R}^2$. Hence, the limit cone \mathcal{L} of Γ is given by given by $(\ell(\sigma), \ell(\pi(\sigma))) \in \mathbb{R}^2$. Hence, the limit cone $\mathcal L$ of Γ_π is given by

$$
\mathcal{L} := \{ (v_1, v_2) \in \mathbb{R}^2_{\geq 0} : d_-(\pi)v_1 \leq v_2 \leq d_+(\pi)v_1 \}.
$$

Thurston [[18](#page-17-11), Theorem 10.7] showed that $d_+(\pi)$ is realized by a simple closed geodesic of $\Sigma \backslash \mathbb{H}^2$ in *most of the cases*, which hence provides infinitely many examples of Γ_{π} which satisfy $\lambda(\Gamma_{\pi}) \cap \partial \mathcal{L} \neq \emptyset$. Therefore, Proposition [1.9](#page-3-0) implies (in this case, we have $NM =$ N) the following corollary.

COROLLARY 1.10. *There are infinitely many non-conjuagte Zariski dense Anosov sub* $grows \Gamma_{\pi} < \text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R})$ *with non-dense* NM *-orbits in* \mathcal{E} *.*

We close the introduction by the following question (cf. [[13](#page-17-13), [17](#page-17-14)]).

Question 1.11. For a simple real algebraic group *G* with rank $G \ge 2$, is every discrete subgroup $\Gamma < G$ with $\Lambda = \Lambda_h = \mathcal{F}$ necessarily a cocompact lattice in G ?

2. *Preliminaries*

Let *G* be a connected, semisimple real algebraic group. We fix, once and for all, a Cartan involution θ of the Lie algebra g of *G*, and decompose g as $g = \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{k} and p are the +1 and −1 eigenspaces of θ, respectively. We denote by *K* the maximal compact subgroup of *G* with Lie algebra ℓ .

Choose a maximal abelian subalgebra a of p. Choosing a closed positive Weyl chamber \mathfrak{a}^+ of \mathfrak{a} , let $A := \exp \mathfrak{a}$ and $A^+ = \exp \mathfrak{a}^+$. The centralizer of A in K is denoted by M, and we set *N* to be the maximal contracting horospherical subgroup: for $a \in \text{int } A^+,$

$$
N = \{ g \in G : a^{-n} g a^n \to e \text{ as } n \to +\infty \}.
$$

We set $P = MAN$, which is the unique minimal parabolic subgroup of G , up to conjugation.

For $u \in \mathfrak{a}$, we write $a_u = \exp u \in A$. We denote by $\|\cdot\|$ the norm on g induced by
Killing form Consider the Biomennian summatric gnass $X := C/K$ with the matric the Killing form. Consider the Riemannian symmetric space $X := G/K$ with the metric induced from the norm $\| \cdot \|$ on g and $o = K \in X$.

Let $\mathcal{F} = C/P$ denote the European bounds

Let $\mathcal{F} = G/P$ denote the Furstenberg boundary. Since *K* acts transitively on $\mathcal F$ and $K \cap P = M$, we may identify $\mathcal{F} = K/M$. We denote by $\mathcal{F}^{(2)}$ the unique open *G*-orbit in $F \times F$.

Denote by $w_0 \in K$ the unique element in the Weyl group such that $\text{Ad}_{w_0} \, \mathfrak{a}^+ = -\mathfrak{a}^+$; it is the longest Weyl element. We then have $\check{P} := w_0 P w_0^{-1}$ is an opposite parabolic

subgroup of *G*, with \check{N} its unipotent radical. The map $i = -Ad_{w_0}$: $\mathfrak{a}^+ \to \mathfrak{a}^+$ is called the opposition involution.

For $g \in G$, we consider the following visual maps:

$$
g^+ := gP \in \mathcal{F} \quad \text{and} \quad g^- := gw_0P \in \mathcal{F}.
$$

Then $\mathcal{F}^{(2)} = \{(g^+, g^-) \in \mathcal{F} \times \mathcal{F} : g \in G\}.$

Any element $g \in G$ can be uniquely decomposed as the commuting product g_h , g_e , g_u , where g_h , g_e , and g_u are hyperbolic, elliptic, and unipotent elements, respectively. The Jordan projection of *g* is defined as the element $\lambda(g) \in \mathfrak{a}^+$ satisfying $g_h = \varphi \exp \lambda(g) \varphi^{-1}$ for some $\varphi \in G$.

An element $g \in G$ is called loxodromic if $\lambda(g) \in \text{int } \mathfrak{a}^+$; in this case, g_u is necessarily trivial. For a loxodromic element $g \in G$, the point $\varphi^+ \in \mathcal{F}$ is called the attracting fixed point of *g*, which we denote by y_g . For any loxodromic element $g \in G$ and $\xi \in \mathcal{F}$ with $(\xi, y_{g^{-1}}) \in \mathcal{F}^{(2)}$, we have lim_{k→∞} $g^k \xi = y_g$ and the convergence is uniform on compact subsets.

Note that for any loxodromic element $g \in G$,

$$
\lambda(g^{-1}) = \mathrm{i} \lambda(g).
$$

Let $\Gamma < G$ be a Zariski dense discrete subgroup of *G*. The limit cone $\mathcal{L} = \mathcal{L}_{\Gamma}$ of Γ is the smallest closed cone of \mathfrak{a}^+ containing $\lambda(\Gamma)$. It is a convex cone with non-empty interior [[1](#page-16-0)].
We will use the following simple lamma.

We will use the following simple lemma.

LEMMA 2.1. *For any* $v \in \lambda(\Gamma)$ *and* $\zeta \in \mathcal{F}$ *, there exists a loxodromic element* $\gamma \in \Gamma$ *with* $\lambda(\gamma) = v$ *and a neighborhood* U *of* ζ *in* \mathcal{F} *such that* $\{\gamma_{\gamma}\}\times U$ *is a relatively compact subset of* $\mathcal{F}^{(2)}$ *and as* $k \to \infty$ *,*

$$
\gamma^{-k}\zeta \to y_{\gamma^{-1}} \quad \text{uniformly on } U.
$$

Proof. Let $\zeta \in \mathcal{F}$. Choose $\gamma_1 \in \Gamma$ such that $\lambda(\gamma_1) = v$. Since the set of all loxodromic elements of Γ is Zariski dense in *G* [[2](#page-16-1)] and $\mathcal{F}^{(2)}$ is Zariski open in $\mathcal{F} \times \mathcal{F}$, there exists $\gamma_2 \in \Gamma$ such that $(\zeta, \gamma_2 y_{\gamma_1}) \in \mathcal{F}^{(2)}$. Let $\gamma = \gamma_2 \gamma_1 \gamma_2^{-1}$, so that $y_{\gamma} = \gamma_2 y_{\gamma_1}$. It now suffices to take any neighborhood *U* of ζ such that $U \times {\gamma_2 \gamma_{\gamma_1}}$ is a relatively compact subset of $\mathcal{F}^{(2)}$. \Box

2.1. *Convergence of a sequence in X to F*. By the Cartan decomposition $G = KA^+K$, for $g \in G$, we may write

$$
g = \kappa_1(g) \exp(\mu(g))\kappa_2(g) \in KA^+K,
$$

where $\mu(g) \in \mathfrak{a}^+$, called the Cartan projection of *g*, is uniquely determined, and $\kappa_1(g), \kappa_2(g) \in K$. If $\mu(g) \in \text{int } \mathfrak{a}^+$, then $[\kappa_1(g)] \in K/M = \mathcal{F}$ is uniquely determined.

Let Π be the set of simple roots for (g, \mathfrak{a}) . For a sequence $g_i \to G$, we say $g_i \to \infty$ regularly if $\alpha(\mu(g_i)) \to \infty$ for all $\alpha \in \Pi$. Note that if $g_i \to \infty$ regularly, then for all sufficiently large *i*, $\mu(g_i) \in \text{int } \mathfrak{a}^+$ and hence $[\kappa_1(g_i)]$ is well defined.

Definition 2.2. A sequence $p_i \in X$ is said to converge to $\xi \in \mathcal{F}$ if there exists $g_i \to \infty$ regularly in *G* with $p_i = g_i(o)$ and $\lim_{i \to \infty} [k_1(g_i)] = \xi$.

2.2. P^o-minimal subsets. We denote by $\Lambda \subset \mathcal{F}$ the limit set of Γ , which is defined as

$$
\Lambda = \{\lim \gamma_i(o) : \gamma_i \in \Gamma\}.
$$
\n(2.1)

For a non-Zariski dense subgroup, Λ may be an empty set. For $\Gamma < G$ Zariski dense, this is the unique Γ -minimal subset of \mathcal{F} [[1](#page-16-0), [15](#page-17-4)].

It follows that the following set $\mathcal E$ is the unique *P*-minimal subset of $\Gamma \backslash G$:

$$
\mathcal{E} = \{ [g] \in \Gamma \backslash G : g^+ \in \Lambda \}.
$$

Let P° denote the identity component of P. Then $\mathcal E$ is a disjoint union of at most $[P:$ P^o]-number of P^o-minimal subsets. We fix one P^o-minimal subset \mathcal{E}_0 once and for all. Note that any P[°]-minimal subset is then of the form $\mathcal{E}_{0}m$ for some $m \in M$. We set

$$
\Omega := \{ [g] \in \Gamma \backslash G : g^+, g^- \in \Lambda \} \quad \text{and} \quad \Omega_0 := \Omega \cap \mathcal{E}_0. \tag{2.2}
$$

2.3. *Busemann map.* The Iwasawa cocycle σ : $G \times F \rightarrow \mathfrak{a}$ is defined as follows: for $(g, \xi) \in G \times \mathcal{F}$ with $\xi = [k]$ for $k \in K$, exp $\sigma(g, \xi)$ is the *A*-component of gk in the KAN decomposition, that is,

$$
gk \in K \exp(\sigma(g, \xi))N.
$$

The a-valued Busemann function $\beta : \mathcal{F} \times X \times X \to \mathfrak{a}$ is defined as follows: for $\xi \in \mathcal{F}$ and $g, h \in G$,

$$
\beta_{\xi}(ho, go) := \sigma(h^{-1}, \xi) - \sigma(g^{-1}, \xi).
$$

We note that for any $g \in G$, $\xi \in \mathcal{F}$, and $x, y, z \in X$,

$$
\beta_{\xi}(x, y) = \beta_{g\xi}(gx, gy)
$$
 and $\beta_{\xi}(x, y) = \beta_{\xi}(x, z) + \beta_{\xi}(z, y).$ (2.3)

In particular, β_{ξ} (*o*, *go*) \in **a** is defined by

$$
g^{-1}k_{\xi} \in K \exp(-\beta_{\xi}(o, go))N, \tag{2.4}
$$

and hence $\beta_P(o, a_u o) = u$ for any $u \in \mathfrak{a}$. For $h, g \in G$, we set $\beta_{\xi}(h, g) := \beta_{\xi}(ho, g o)$.

2.4. *Shadows.* For $q \in X$ and $r > 0$, we set $B(q, r) = \{x \in X : d(x, q) \le r\}.$ For $p = g(o) \in X$, the shadow of the ball $B(q, r)$ viewed from p is defined as

$$
O_r(p,q) := \{ (gk)^+ \in \mathcal{F} : k \in K, \ gk \text{ int } A^+o \cap B(q,r) \neq \emptyset \}.
$$

Similarly, for $\xi \in \mathcal{F}$, the shadow of the ball $B(q, r)$ as viewed from ξ is

$$
O_r(\xi, q) := \{ h^+ \in \mathcal{F} : h \in G \text{ satisfies } h^- = \xi, \ ho \in B(q, r) \}.
$$

LEMMA 2.3. [[15](#page-17-4), Lemmas 5.6 and 5.7]

(1) *There exists* $\kappa > 0$ *such that for any* $g \in G$ *and* $r > 0$ *,*

$$
\sup_{\xi \in O_r(g(o), o)} \|\beta_{\xi}(g(o), o) - \mu(g^{-1})\| \leq \kappa r.
$$

(2) *If a sequence* $p_i \in X$ *converges to* $\xi \in \mathcal{F}$ *, then for any* $0 < \varepsilon < r$ *, we have*

$$
O_{r-\varepsilon}(p_i, o) \subset O_r(\xi, o) \subset O_{r+\varepsilon}(p_i, o)
$$

for all sufficiently large i.

3. *Horospherical limit points*

Let $\Gamma < G$ be a Zariski dense discrete subgroup. A Γ -tight horoball based at $\xi \in \mathcal{F}$ is a subset of the form $\mathcal{H}_{\xi} = gN(\exp C)(o)$, where $g \in G$ is such that $\xi = gP$ and C is a closed cone contained in int $\mathcal{L} \cup \{0\}$. For $T > 0$, we write $\mathcal{H}_{\xi}(T) = gN(\exp(\mathcal{C} - \mathcal{C}_T))o$. We recall the definition from the introduction.

Definition 3.1. We say that $\xi \in \mathcal{F}$ is a horospherical limit point of Γ if there exists a Γ -tight horoball \mathcal{H}_{ξ} based at ξ such that $\mathcal{H}_{\xi}(T) \cap \Gamma(o) \neq \emptyset$ for all $T > 1$.

In this section, we provide a mostly self-contained proof of the following theorem.

THEOREM 3.2. *Let* $[g] \in \mathcal{E}$ *. The following are equivalent:*

- (1) $g^+ = gP \in \Lambda$ *is a horospherical limit point;*
- (2) $[g]NM$ *is dense in* \mathcal{E} *.*

The main external ingredient in our proof is the density of the group generated by the Jordan projection $\lambda(\Gamma)$, due to Benoist [[2](#page-16-1)], that is,

$$
\mathfrak{a}=\overline{\langle\lambda(\Gamma)\rangle}
$$

for every Zariski dense discrete subgroup $\Gamma < G$. In fact, for every cone $C \subset \mathcal{L}$ with non-empty interior, there exists a Zariski dense subgroup $\Gamma' < \Gamma$ with $\mathcal{L}_{\Gamma'} \subset \mathcal{C}$ (see [[1](#page-16-0)]); therefore, we have

$$
\mathfrak{a}=\overline{\langle\lambda(\Gamma)\cap\mathrm{int}\,\mathcal{L}\rangle}.
$$

It is convenient to use a characterization of horospherical limit points in terms of the Busemann function.

LEMMA 3.3. *For* $\xi \in \Lambda$, we have $\xi \in \Lambda$ *if and only if there exists a closed cone* $C \subset \text{int } C \cup \{0\}$ *and a sequence* $\gamma_j \in \Gamma$ *satisfying*

$$
\beta_{\xi}(o, \gamma_j o) \to \infty \quad \text{and} \quad \beta_{\xi}(o, \gamma_j o) \in \mathcal{C} \quad \text{for all large } j \ge 1. \tag{3.1}
$$

Proof. Let $\xi = gP \in \Lambda_h$ be as defined in Definition [3.1.](#page-7-1) Then there exists $\gamma_j = g p n_j a_{u_j} k_j \in \Gamma$ for some $p \in P$, $n_j \in N$, $k_j \in K$, and $u_j \to \infty$ in some closed cone *C* contained in int $\mathcal{L} \cup \{0\}$. Fix some closed cone $\mathcal{C}' \subset \text{int } \mathcal{L} \cup \{0\}$ whose interior contains *C*. Note that

$$
\beta_{\xi}(o, \gamma_{j}o) = \beta_{gP}(e, g) + \beta_{gP}(g, gpn_{j}a_{u_{j}})
$$

= $\beta_{P}(g^{-1}, e) + \beta_{P}(e, p) + \beta_{P}(e, n_{j}) + \beta_{P}(e, a_{u_{j}})$
= $\beta_{P}(g^{-1}, p) + u_{j}$.

Therefore, the sequence β_{ξ} (*o*, γ_i) – *u*_i is uniformly bounded. Since *u*_i ∈ *C*, β_{ξ} (*o*, γ_i *o*) ∈ *C*' for all large *j*. Therefore, equation [\(3.1\)](#page-7-2) holds. For the other direction, let γ_i and *C* satisfy equation [\(3.1\)](#page-7-2) for $\xi = gP$ for $g \in G$. Since $G = gNAK$, we may write $\gamma_i = g n_i a_{u_i} k_i$ for some $n_j \in N$, $u_j \in \mathfrak{a}$ and $k_j \in K$. By a similar computation as above, the sequence β_{ξ} (*o*, γ_{i} *o*) − *u_j* is uniformly bounded. It follows that *u_j* ∈ *C'* for all large *j* and *u_j* → ∞. Therefore, for any $T > 1$, there exists $j > 1$ such that $\gamma_j(o) \in gN \exp(\mathcal{C}' - \mathcal{C}'_T)(o)$. This proves ξ ∈ $Λ_h$.

We note that the condition in equation (3.1) is independent of the choice of basepoint o. Indeed, for any $g \in G$ and $\xi \in \mathcal{F}$ and for all $\gamma \in \Gamma$, we have

$$
\beta_{\xi}(o,\gamma o) = \beta_{\xi}(o, go) + \beta_{\xi}(go,\gamma go) + \beta_{\xi}(\gamma go,\gamma o),
$$

and hence

$$
\begin{aligned} \|\beta_{\xi}(o,\gamma o) - \beta_{\xi}(go,\gamma go)\| &= \|\beta_{\xi}(o,go) + \beta_{\xi}(\gamma go,\gamma o)\| \\ &= \|\beta_{\xi}(o,go) - \beta_{\gamma^{-1}\xi}(o,go)\| \\ &\le 2 \cdot \max_{\eta \in \mathcal{F}} \|\beta_{\eta}(o,go)\|. \end{aligned}
$$

Since this bound is independent of $\gamma \in \Gamma$, the condition in equation [\(3.1\)](#page-7-2) implies that for any $p = go \in X$,

$$
\beta_{\xi}(p, \gamma_j p) \to \infty
$$
 and $\beta_{\xi}(p, \gamma_j p) \in C$ for all large j. (3.2)

Let us now consider the following seemingly stronger condition for a limit point being horospherical.

Definition 3.4. For $u \in \mathfrak{a}^+$, a point $\xi \in \mathcal{F}$ is called a *u*-horospherical limit point if for some $p \in X$ (and hence for any $p \in X$), there exists a constant $R > 0$ and a sequence $\gamma_j \in \Gamma$ satisfying

 $\beta_{\xi}(p, \gamma_j p) \to \infty$ and $\|\beta_{\xi}(p, \gamma_j p) - \mathbb{R}_{+}u\| < R$ for all j.

We denote the set of u-horospherical limit points by $\Lambda_h(u)$.

By G-invariance of the Busemann map, the set of horospherical (respectively *u*-horospherical) limit points is Γ -invariant. Therefore, for $x = [g] \in \Gamma \backslash G$, we may say $x^+ := \Gamma g P$ horospherical (respectively *u*-horospherical) if g^+ is.

For $u \in \mathfrak{a}$, we call $x \in \Gamma \backslash G$ a *u*-periodic point if $xa_u = xm_0$ for some $m_0 \in M$; note that $x a_{\mathbb{R} \mu} M_0$ is then compact. Note that for $u \in \text{int } \mathfrak{a}^+$, the existence of a *u*-periodic point is equivalent to the condition that $u \in \lambda(\Gamma)$.

LEMMA 3.5. *Let* $u \in \mathfrak{a}^+$ *. If* $x \in \Gamma \backslash G$ *is u-periodic, then* $x^+ \in \mathcal{F}$ *is a u-horospherical*
limit point limit point.

Proof. Since *x* is *u*-periodic, there exist $g \in G$ with $x = [g]$ and $\gamma \in \Gamma$ such that $\gamma = ga_{u}mg^{-1}$ for some $m \in M$, and $y_{\gamma} = g^{+} \in \Lambda$. Moreover, for any $k \ge 1$,

$$
\beta_{gP}(go, \gamma^k go) = \beta_P(o, a_u^k o) = ku.
$$

This implies gP is *u*-horospherical.

PROPOSITION 3.6. Let $x \in \Gamma \backslash G$. If x^+ *is u-horospherical for some* $u \in \lambda(\Gamma)$, then the *closure* xN *contains a* u*-periodic point.*

Proof. Choose $g \in G$ so that $x = [g]$. We may assume without loss of generality that $g = k \in K$, since $kanN = kNa$, and a translate of a *u*-periodic point by an element of A is again a *u*-periodic point. Since $u \in \lambda(\Gamma)$, there exists a *u*-periodic point, say, $x_0 \in \Gamma \backslash G$. It suffices to show that

$$
\overline{[k]N} \cap x_0AM \neq \emptyset \tag{3.3}
$$

as every point in x_0AM is *u*-periodic.

Since k^+ is *u*-horospherical and using equation [\(2.4\)](#page-6-2), there exists $R > 0$ and sequences $\gamma_j \in \Gamma$, $u_j \to \infty$ in \mathfrak{a}^+ and $k_j \in K$ and $n_j \in N$ satisfying $\gamma_j^{-1} k = k_j a_{-u_j} n_j$ or

$$
k_j = \gamma_j^{-1} k n_j^{-1} a_{u_j}, \tag{3.4}
$$

with $\|\mathbb{R}_+ u - u_j\| < R$ for all j. Let $\ell_j \to \infty$ be a sequence of integers satisfying

$$
\|\ell_j u - u_j\| < R + \|u\| \quad \text{for all } j \ge 1. \tag{3.5}
$$

By passing to a subsequence, we may assume without loss of generality that $\gamma_j^{-1}kP$ converges to some $\xi_0 \in \mathcal{F}$. Since $\check{N}P$ is Zariski open and Γ is Zariski dense, we may choose $g_0 \in G$ such that $x_0 = [g_0]$ and $g_0^{-1} \xi_0 \in \check{N}P$. Let $h_0 \in \check{N}$ be such that $\xi_0 =$ g_0h_0P . Since $g_0\check{N}P$ is open and $\gamma_j^{-1}kP \to g_0h_0P$, we may assume that for all *j*, there exists $h_j \in \check{N}$ satisfying $g_0 h_j P = \gamma_j^{-1} kP = k_j P$ with $h_j \to h_0$. Let $p_j = a_{v_j} m_j \tilde{n}_j \in$ $P = AMN$ be such that $g_0h_i p_i = k_i$; since $h_i \rightarrow h_0$ and the product map $\check{N} \times P \rightarrow$ $\check{N}P$ is a diffeomorphism, the sequence p_i , as well as $v_i \in \mathfrak{a}$, are bounded.

Therefore, by equation [\(3.4\)](#page-9-1), we get for all *j*,

$$
g_0 = k_j p_j^{-1} h_j^{-1}
$$

= $\gamma_j^{-1} k n_j^{-1} a_{u_j} (\tilde{n}_j^{-1} m_j^{-1} a_{-v_j}) h_j^{-1}$
= $\gamma_j^{-1} k n_j^{-1} (a_{u_j} \tilde{n}_j^{-1} a_{-u_j}) a_{u_j} m_j^{-1} a_{-v_j} h_j^{-1}$
= $\gamma_j^{-1} k n_j^{-1} (a_{u_j} \tilde{n}_j^{-1} a_{-u_j}) m_j^{-1} (a_{u_j - v_j} h_j^{-1} a_{-u_j + v_j}) a_{u_j - v_j}.$

Since $h_j^{-1} \in \check{N}$ and $v_j \in \mathfrak{a}$ are uniformly bounded and since $u_j \to \infty$ within a bounded at the ray \mathbb{R} , $u \in \mathfrak{m}$ at \mathfrak{a}^+ , we have neighborhood of the ray $\mathbb{R}_{+}u \in \text{int } \mathfrak{a}^{+}$, we have

$$
\tilde{h}_j = a_{u_j - v_j} h_j^{-1} a_{-u_j + v_j} \to e \quad \text{in } \check{N}.
$$

 \Box

By setting $n'_j = n_j^{-1} (a_{u_j} \tilde{n}_j^{-1} a_{-u_j}) \in N$, we may now write

$$
g_0 = \gamma_j^{-1} k n'_j m_j^{-1} \tilde{h}_j a_{u_j - v_j}.
$$

Since x_0 is *u*-periodic, there exists $\gamma_0 \in \Gamma$ such that $\gamma_0 = g_0 a_u m_0 g_0^{-1}$ for some $m_0 \in M$. Hence, for all $j \geq 1$,

$$
\gamma_0^{-\ell_j} = g_0 a_{-\ell_j u} m_0^{-\ell_j} g_0^{-1} = (\gamma_j^{-1} k n'_j m_j^{-1} \tilde{h}_j a_{u_j - v_j}) (a_{-\ell_j u} m_0^{-\ell_j}) g_0^{-1}.
$$

In other words,

$$
\gamma_j^{-1}kn'_j=\gamma_0^{-\ell_j}g_0m_0^{\ell_j}a_{-u_j+\ell_ju+v_j}\tilde{h}_j^{-1}m_j.
$$

Since the sequence $-u_i + \ell_i u + v_i \in \mathfrak{a}$ is uniformly bounded by equation [\(3.5\)](#page-9-2) and $\tilde{h}_i \to$ e in \check{N} , we conclude that the sequence $\Gamma k n'_j$ has an accumulation point in $\Gamma g_0 A M$. This proves equation [\(3.3\)](#page-9-3). \Box

It turns out that a horospherical limit point is also u-horospherical for any $u \in \text{int } \mathcal{L}$.

PROPOSITION 3.7. *For each* $u \in \text{int } \mathcal{L}$ *, we have* $\Lambda_h = \Lambda_h(u)$ *.*

Proof. Let $\xi \in \Lambda_h$. By definition, there is a sequence $\gamma_j \in \Gamma$ satisfying $v_j :=$ $\beta_{\xi}(e, \gamma_j) \to \infty$ with the sequence $||v_j||^{-1}v_j$ converging to some point $v_0 \in \text{int } \mathcal{L}$. By passing to a subsequence, we may assume that $\gamma_j^{-1} \xi$ converges to some $\xi_0 \in \mathcal{F}$.

Let $u \in \text{int } \mathcal{L}$. We claim that $\xi \in \Lambda_h(u)$. We first consider the case $u \notin \mathbb{R}_+v_0$. Let $r :=$ rank $G - 1 \ge 0$. Since $\bigcup_{\gamma \in \Gamma} \mathbb{R}_+ \lambda(\gamma)$ is dense in \mathcal{L} , there exist $w_1, \dots, w_r \in \lambda(\Gamma)$ such that v_0 belongs to the interior of the convex cone spanned by u, w_1, \ldots, w_r , so that

$$
v_0 = c_0 u + \sum_{\ell=1}^r c_\ell w_\ell
$$

for some positive constants c_0, \ldots, c_ℓ .

Since $||v_j||^{-1}v_j \to v_0$, we may assume, by passing to a subsequence, that for each $j \geq 1$, we have

$$
||v_j||^{-1}v_j = c_{0,j}u + \sum_{\ell=1}^r c_{\ell,j}w_\ell
$$
 (3.6)

for some positive $c_{\ell, j}, \ell = 0, \ldots, r$. Note that for each $0 \le \ell \le r, c_{\ell, j} \to c_{\ell}$ as $j \to \infty$.

By Lemma [2.1,](#page-5-0) we can find a loxodromic element $g_1 \in \Gamma$ and a neighborhood U_1 of ξ_0 such that $\lambda(g_1^{-1}) = w_1$, $\{y_{g_1}\} \times U_1 \subset \mathcal{F}^{(2)}$ and $g_1^{-k}U_1 \to y_{g_1^{-1}}$ uniformly. Applying Lemma [2.1](#page-5-0) once more, we can find $g_2 \in \Gamma$ satisfying $\lambda(g_2^{-1}) = w_2$ and a neighborhood $U_2 \subset F$ of $y_{g_1^{-1}}$ satisfying $\{y_{g_2}\} \times U_2 \subset F^{(2)}$ and that $g_2^{-k}U_2 \to y_{g_2^{-1}}$ uniformly.

Continuing inductively, we get elements $g_1, \ldots, g_r \in \Gamma$ and open sets $U_1, \ldots, U_r \subset$ *F* satisfying that for all $\ell = 1, \ldots, r$:

- (1) $w_{\ell} = \lambda (g_{\ell}^{-1});$
- (2) $y_{g_{\ell-1}^{-1}} \in U_{\ell};$
- (3) $g_{\ell}^{-k}U_{\ell} \to y_{g_{\ell}^{-1}}$ uniformly; and
- (4) $\{y_{g_\ell}\}\times U_\ell$ is a relatively compact subset of $\mathcal{F}^{(2)}$.

We set $\xi_{\ell} := y_{g_{\ell}^{-1}}$ for each $1 \leq \ell \leq r$; so U_{ℓ} is a neighborhood of $\xi_{\ell-1}$ for each $1 < \ell < r$.

Since $Q_{\eta_0} := {\eta \in \mathcal{F} : (\eta_0, \eta) \in \mathcal{F}^{(2)}} = \bigcup_{R>0} Q_R(\eta_0, o)$ for any $\eta_0 \in \mathcal{F}$ and $U_{\ell} \subset \mathcal{Q}_{y_{g_{\ell}}}$ is a relatively compact subset of $\mathcal{F}^{(2)}$, there exists $R_{\ell} > 0$ such that $U_{\ell} \subset O_{R_{\ell}}(\mathbf{y}_{g_{\ell}}, o)$. Since $g_{\ell}^{k} o$ converges to $\mathbf{y}_{g_{\ell}}$ as $k \to +\infty$, by Lemma [2.3\(](#page-7-3)2),

$$
O_{R_{\ell}}(\mathbf{y}_{g_{\ell}}o, o) \subset O_{R_{\ell}+1}(g_{\ell}^k o, o) \tag{3.7}
$$

for all sufficiently large $k > 1$.

For each $1 \leq \ell \leq r$ and $j \geq 1$, let $k_{\ell,j}$ be the largest integer smaller than $c_{\ell,j} || v_j ||$. As $||v_j|| \to \infty$ and $c_{\ell,j} \to c_{\ell}$, we have $k_{\ell,j} \to \infty$ as $j \to \infty$. By the uniform contraction $g_{\ell}^{-k}U_i \to \xi_{\ell}$, there exists $j_0 > 1$ such that for all $j \ge j_0$,

$$
\gamma_j^{-1}\xi \in U_1
$$
, $g_\ell^{-k_{\ell,j}} U_\ell \subseteq U_{\ell+1}$, and $U_\ell \subset O_{R_\ell+1}(g_\ell^{k_\ell,j} o, o)$ (3.8)

for all $\ell = 1, \ldots, r$.

For each $j \geq j_0$, we now set

$$
\tilde{\gamma}_j := \gamma_j g_1^{k_{1,j}} g_2^{k_{2,j}} \dots g_r^{k_{r,j}} \in \Gamma.
$$

We claim that $\beta_{\xi}(e, \tilde{\gamma}_i) \rightarrow \infty$ as $j \rightarrow \infty$ and that

$$
\sup_{j\geq j_0} \|\beta_{\xi}(e,\tilde{\gamma}_j) - \mathbb{R}_+ u\| < \infty;\tag{3.9}
$$

this proves that ξ is *u*-horospherical.

Fix $j \ge j_0$ and for each $1 \le \ell \le r$, let $k_\ell := k_{\ell,j}$, $b_\ell := c_{\ell,j} ||v_j||$, and set

$$
h_{\ell}=g_1^{k_1}g_2^{k_2}\ldots g_{\ell}^{k_{\ell}},
$$

and $g_0 = e$. The cocycle property of the Busemann function gives that

$$
\beta_{\xi}(e, \tilde{\gamma}_j) = \beta_{\xi}(e, \gamma_j) - \sum_{\ell=1}^r \beta_{h_{\ell-1}^{-1}\gamma_j^{-1}\xi}(g_{\ell}^{k_{\ell}}, e). \tag{3.10}
$$

By equation [\(3.8\)](#page-11-0), $\gamma_j^{-1} \xi \in U_1$ and for each $1 \le \ell \le r$,

$$
h_{\ell-1}^{-1}\gamma_j^{-1}\xi\in g_{\ell}^{-k_{\ell}}\ldots g_1^{-k_1}U_1\subset U_{\ell+1}\subset O_{R_{\ell}+1}(g_{\ell}^{k_{\ell}}o,o).
$$

Hence, by Lemma [2.3\(](#page-7-3)1), there exists $\kappa \ge 1$ such that for each $1 \le \ell \le r$,

$$
\|\beta_{h_{\ell-1}^{-1}\gamma_j^{-1}\xi}(g_{\ell}^{k_{\ell}},e)-\mu(g_{\ell}^{-k_{\ell}})\|\leq \kappa (R_{\ell}+1).
$$

Note that for some $C_{\ell} > 0$, $\|\mu(g_{\ell}^{-k}) - k\lambda(g_{\ell}^{-1})\| \le C_{\ell}$ for all $k \ge 1$. Since $\lambda(g_{\ell}^{-1}) =$ w_{ℓ} , we get

$$
\|\beta_{h_{\ell-1}^{-1}\gamma_j^{-1}\xi}(g_{\ell}^{k_{\ell}},e)-k_{\ell}w_{\ell}\|\leq \kappa (R_{\ell}+1)+C_{\ell}.
$$

Therefore, by equation [\(3.10\)](#page-11-1), we obtain

$$
\left\|\beta_{\xi}(e,\tilde{\gamma}_j)-\left(v_j-\sum_{\ell=1}^r k_{\ell}w_{\ell}\right)\right\|\leq \kappa\sum_{\ell=1}^r (R_{\ell}+C_{\ell}+1).
$$

By equation (3.6) , we have

$$
c_{0,j} \|v_j\| u = v_j - \sum_{\ell=1}^r b_\ell w_\ell.
$$

Since $|b_{\ell} - k_{\ell}| \le 1$ and $c_{0,i} > 0$, we deduce that for all $j \ge j_0$,

$$
\|\beta_{\xi}(e, \tilde{\gamma}_{j}) - \mathbb{R}_{+}u\| \leq \|\beta_{\xi}(e, \tilde{\gamma}_{j}) - c_{0,j}\|v_{j}\| \cdot u\|
$$

\n
$$
\leq \left\|\beta_{\xi}(e, \tilde{\gamma}_{j}) - \left(v_{j} - \sum_{\ell=1}^{r} k_{\ell}w_{\ell}\right)\right\| + \sum_{\ell=1}^{r} \|k_{\ell}w_{\ell} - b_{\ell}w_{\ell}\|
$$

\n
$$
\leq \kappa \sum_{\ell=1}^{r} (R_{\ell} + C_{\ell} + \|w_{\ell}\| + 1).
$$

This proves equation [\(3.9\)](#page-11-2) and, consequently, ξ is *u*-horospherical for any $u \notin \mathbb{R}_{+}v_0$. To show that ξ is v_0 -horospherical, fix any $u \notin \mathbb{R}_+v_0$ and $\tilde{\gamma}_j \in \Gamma$ be a sequence as in equation [\(3.9\)](#page-11-2) associated to *u*. If we set $\tilde{v}_j = \beta_{\xi}(e, \tilde{\gamma}_j)$, then $\|\tilde{v}_j\|^{-1}\tilde{v}_j$ converges to a unit vector in int L proportional to u . Therefore, by repeating the same argument only now switching the roles of v_0 and *u*, we prove that ξ is v_0 -horospherical as well. This completes the proof. \square

We may now prove Theorem [3.2.](#page-7-4)

Proof of Theorem [3.2.](#page-7-4) Let $g \in G$ be such that $\xi = g^+ \in \Lambda$ is a horospherical limit point. Set $Y := \overline{g} \overline{N M}$. We claim that $Y = \mathcal{E}$. By Benoist [[1](#page-16-0)], the group generated by $\lambda(\Gamma) \cap$ int *L* is dense in a. Hence, for every $\varepsilon > 0$, there exist loxodromic elements $\gamma_1, \ldots, \gamma_q \in$ Γ such that

$$
\lambda(\gamma_1),\ldots,\lambda(\gamma_q)\in\mathrm{Int}\mathcal{L}
$$

and the group $\mathbb{Z}\lambda(\gamma_1)+\cdots+\mathbb{Z}\lambda(\gamma_a)$ is an ε -net in a, that is, its ε -neighborhood covers all a. Denote $u_i = \lambda(\gamma_i)$ for $i = 1, \ldots, q$. By Proposition [3.7,](#page-10-1) the point ξ is u_1 -horospherical. By Proposition [3.6,](#page-9-4) there exists a u_1 -periodic point $x_1 \in \mathcal{E}$ contained in Y, set

$$
Y_1 := \overline{x_1 N M} \subset Y.
$$

By Lemma [3.5,](#page-9-0) x_1^+ is u_1 -horospherical; in particular, it is a horospherical limit point. Therefore, we can inductively find a u_i -periodic point x_i in $Y_{i-1} = \overline{x_{i-1}NM}$ for each $2 \le i \le q$. By periodicity, $x_i(\exp u_i)M = x_iM$, and hence $Y_i \exp \mathbb{Z} u_i = Y_i$ for each $1 \leq i \leq q$. Therefore, we obtain

$$
Y \supset Y_1 \exp \mathbb{Z} u_1 \supset Y_2 \exp(\mathbb{Z} u_1 + \mathbb{Z} u_2) \supset \cdots \supset Y_q \exp \bigg(\sum_{i=1}^q \mathbb{Z} u_i \bigg).
$$

Recalling the dependence of Y_q and $\sum_{i=1}^q \mathbb{Z} u_i$ on ε , set

$$
Z_{\varepsilon} := Y_q MN \exp\bigg(\sum_{i=1}^q \mathbb{Z} u_i\bigg) \subset Y.
$$

Since $MN \exp(\sum_{i=1}^{q} \mathbb{Z}u_i)$ is an ε -net of *P* and $\mathcal E$ is *P*-minimal, Z_{ε} is a 2ε -net of $\mathcal E$ for all $\varepsilon > 0$. Since *Y* contains a 2 ε -net of $\mathcal E$ for all $\varepsilon > 0$ and *Y* is closed, it follows that $Y = \mathcal E$.

For the other direction, suppose that $[g]NM$ is dense in $\mathcal E$ for $g \in G$. Choose any *u* ∈ int *L* and a closed cone $C \subset \text{int } C \cup \{0\}$ which contains *u*. Then $\mathcal{H}_{\xi} = gN(\exp C)(o)$ is a Γ -tight horoball. Let $t > 1$. Since $ga_{-2tu} \in \mathcal{E}$, there exist $\gamma_i \in \Gamma$, $n_i \in N$, $m_i \in M$, and $q_i \to e$ in *G* such that for all $i \geq 1$, $\gamma_i g n_i m_i q_i = g a_{2tu}$. Since $d(\gamma_i^{-1} g, g n_i m_i a_{2tu}) \leq$ $d(q_i a_{2tu}, a_{2tu}) \to 0$ as $i \to \infty$, it follows that for all sufficiently large $i \ge 1$, $\gamma_i^{-1} g \circ \in$ $\mathcal{H}_{\xi}(t)$. Hence, g^{+} is a horospherical limit point by Definition [3.1.](#page-7-1)

4. *Topological mixing and directional limit points*

There is a close connection between denseness of N -orbits and the topological mixing of one-parameter diagonal flows with direction in int \mathcal{L} . This connection allows us to make use of recent topological mixing results by Chow and Sarkar [[3](#page-17-15)]: recall the notation Ω_0 from equation [\(2.2\)](#page-6-3).

THEOREM 4.1. [[3](#page-17-15)] *For any* $u \in \text{int } \mathcal{L}$, $\{a_{tu} : t \in \mathbb{R}\}$ *is topologically mixing on* Ω_0 *, that is, for any open subsets* \mathcal{O}_1 , \mathcal{O}_2 *of* $\Gamma \backslash G$ *intersecting* Ω_0 *,*

$$
\mathcal{O}_1 \exp tu \cap \mathcal{O}_2 \neq \emptyset \quad \text{for all large } |t| \gg 1.
$$

The above theorem was predated by a result of Dang $[6]$ $[6]$ $[6]$ in the case where M is abelian.

4.1. *N-orbits based at directional limit points along* int *L.*

Definition 4.2. For $u \in \text{int } \mathfrak{a}^+$, denote by Λ_u the set of all *u*-directional limit points, that is, $\xi \in \Lambda_u$ if and only if lim sup_{t→+∞} Γg exp(tu) $\neq \emptyset$ for some (and hence any) $g \in G$ with $gP = \xi$.

It is easy to see that $\Lambda_u \subset \Lambda$ for $u \in \text{int } \mathfrak{a}^+$.

PROPOSITION 4.3. *If* $[g] \in \mathcal{E}_0$ *satisfies* $g^+ \in \Lambda_u$ *for some* $u \in \text{int } \mathcal{L}$ *, then*

$$
\overline{[g]N}=\mathcal{E}_0.
$$

Proof. Since $\Omega_0 N = \mathcal{E}_0$, we may assume without loss of generality that $x = [g] \in \Omega_0$. There exist $\gamma_i \in \Gamma$ and $t_i \to +\infty$ such that $\gamma_i ga_{t_i}$ converges to some $h \in G$. In particular, $x \exp(t_i u) \to [h]$. Since $x a_{t_i u} \in \Omega_0$ and Ω_0 is A-invariant and closed, we have $[h] \in \Omega_0$. We write $\gamma_i ga_{t_iu} = hq_i$, where $q_i \to e$ in *G*. Therefore, $xN = [h]q_iNa_{-t_iu}$ for all $i \ge 1$. Let $\mathcal{O} \subset \Gamma \backslash G$ be any open subset intersecting Ω_0 . It suffices to show that $xN \cap \mathcal{O} \neq \emptyset$. Let \mathcal{O}_1 be an open subset intersecting Ω_0 and $V \subset \check{P}$ be an open symmetric neighborhood of *e* such that $\mathcal{O}_1 V \subset \mathcal{O}$.

Since $q_i \rightarrow e$ and NV is an open neighborhood of *e* in *G*, there exists an open neighborhood, say, *U* of *e* in *G* and i_0 such that $U \subset q_i N V$ for all $i \ge i_0$. By Theorem [4.1,](#page-13-0) we can choose $i>i_0$ such that $[h]U \cap \mathcal{O}_1a_{t_i} \neq \emptyset$. It follows that $[h]q_iNVa_{-t_i} \cap \mathcal{O}_1 \neq \emptyset$. Since $V \subset a_{-t_i u} V a_{t_i u}$ as $u \in \mathfrak{a}^+$, we have

$$
[h]q_i N V a_{-t_i u} \cap O_1 \subset [h]q_i Na_{-t_i u} V \cap O_1.
$$

Since $V = V^{-1}$, we get $[h]q_iNa_{-t_iu} \cap O_1V \neq \emptyset$. Therefore, $xN \cap O \neq \emptyset$, as desired. □

This immediately implies the following corollary.

COROLLARY 4.4. *If* $[g] \in \Omega_0$ *is u-periodic for some* $u \in \text{int } \mathcal{L}$ *, then*

$$
\overline{[g]N}=\mathcal{E}_0.
$$

Proof. Since $[g](\exp ku) = [g]m_0^k$ for any integer *k* and *M* is compact, we have $g^+ \in \Lambda_u$. Therefore, the claim follows from Proposition [4.3.](#page-13-1) \Box

We may now conclude our main theorem in its fullest form.

THEOREM 4.5. *Let* $[g] \in \mathcal{E}_0$ *. The following are equivalent:*

(1) $g^+ \in \Lambda$ *is a horospherical limit point*;

- (2) $[g]N$ *is dense in* \mathcal{E}_0 ;
- (3) $[g]NM$ *is dense in* \mathcal{E} *.*

Proof. The implication (2) \Rightarrow (3) is trivial and (3) \Rightarrow (1) was shown in Theorem [3.2.](#page-7-4) Hence, let us prove $(1) \Rightarrow (2)$.

Let $x = [g] \in \mathcal{E}_0$. Suppose that $g^+ \in \Lambda_h$. Fix any $u \in \lambda(\Gamma) \cap \text{int } \mathcal{L}_{\Gamma}$. By Propositions [3.7](#page-10-1) and [3.6,](#page-9-4) xN contains a *u*-periodic point, say, x₀. Hence, by Corollary [4.4,](#page-14-1) $\overline{xN} \supset \overline{x_0N} \supset \overline{x_N}$ $\Omega_0 N = \mathcal{E}_0$. This proves (1) \Rightarrow (2). \Box

5. *Conical limit points, minimality, and Jordan projection*

A point $\xi \in \mathcal{F}$ is called a *conical* limit point of Γ if there exists a sequence $u_j \to \infty$ in \mathfrak{a}^+
such that for some (and hance every) $\alpha \in G$ with $\xi = \alpha P$ such that for some (and hence every) $g \in G$ with $\xi = gP$,

$$
\limsup_{j \to \infty} \Gamma g a_{u_j} \neq \emptyset.
$$

A conical limit point of Γ is indeed contained in Λ . We consider the following restricted notion.

Definition 5.1. We call $\xi \in \mathcal{F}$ a *strongly conical* limit point of Γ if there exists a closed cone $C \subset \text{int } C \cup \{0\}$ and a sequence $u_j \to \infty$ in C such that for some (and hence every) $g \in G$ with $\xi = gP$,

$$
\limsup_{j \to \infty} \Gamma g a_{u_j} \neq \emptyset.
$$

Remarks 5.2. We mention that a conical limit point defined in [[4](#page-17-7)] for $\Gamma < SL_d(\mathbb{R})$ coincides with our strongly conical limit point.

LEMMA 5.3. Any strongly conical limit point of Γ is horospherical.

Proof. Suppose that $\xi = gP$ is strongly conical, that is, there exist $\gamma_j \in \Gamma$ and $u_j \to \infty$ in some closed cone $C \subset \text{int } \mathcal{L} \cup \{0\}$ such that $\gamma_i g a_{u_i}$ converges to some $h \in G$. Write $\gamma_i ga_{ij} = hq_j$, where $q_j \to e$ in *G*. Let *C'* be a closed cone contained in int $\mathcal{L} \cup \{0\}$ whose interior contains $C \setminus \{0\}.$

Then
$$
\gamma_j^{-1} = g a_{u_j} q_j^{-1} h^{-1}
$$
 and
\n
$$
\beta_g P(e, \gamma_j^{-1}) = \beta_P(g^{-1}, a_{u_j} q_j^{-1} h^{-1}) = \beta_P(g^{-1}, q_j^{-1} h^{-1}) + \beta_P(e, a_{u_j}).
$$

Since $\beta_P(e, a_{u_j}) = u_j$ and $q_j^{-1}h^{-1}$ are uniformly bounded, the sequence

$$
\beta_{gP}(e, \gamma_j^{-1}) - u_j
$$

is uniformly bounded. Since $u_i \in \mathcal{C}$ and $\mathcal{C} \subset \text{int } \mathcal{C}' \cup \{0\}$, it follows that

$$
\beta_{gP}(e,\gamma_j^{-1})\in\mathcal{C}'
$$

for all sufficiently large *j*. This proves that $\xi \in \Lambda_h$.

COROLLARY 5.4. *For any* $g \in G$ *with strongly conical* $g^+ \in \mathcal{F}$ *, we have*

$$
\overline{[g]NM}=\mathcal{E}.
$$

5.1. *Directionally conical limit points.* If $v \in \text{int } \mathcal{L}$, then clearly Λ_v is contained in the horospherical limit set of Γ , and hence any NM-orbit based at a point of Λ_v is dense in $\mathcal E$. However, we would like to show in this section that the existence of a point in Λ_v for $v \in \partial \mathcal{L}_{\Gamma}$ implies the existence of a non-dense *NM*-orbit in \mathcal{E} .

The flow $exp(\mathbb{R}u)$ is said to be topologically transitive on $\Omega/M = \{\Gamma gM : g^{\pm} \in \Lambda\}$ if for any open subsets $\mathcal{O}_1, \mathcal{O}_2$ intersecting Ω/M , there exists a sequence $t_n \to +\infty$ such that $\mathcal{O}_1 \cap \mathcal{O}_2 a_{t_n u} \neq \emptyset$.

We make the following simple observation.

LEMMA 5.5. *For* $g \in \Omega$, we have

$$
\overline{gNM} \supset \Omega \quad \text{if and only if } gw_0\check{N}M \supset \Omega.
$$

Proof. We have $\check{N} = w_0 N w_0^{-1}$. Note that $[g] \in \Omega$ if and only if $[g w_0] \in \Omega$, since $(gw_0)^{\pm} = g^{\mp}$. So $\Omega w_0 = \Omega$. Hence, gNM is dense in Ω if and only if $g w_0 N M w_0^{-1}$ is dense in Ω if and only if $[g]w_0\check{N}M$ is dense in $\Omega w_0 = \Omega$. \Box

Since the opposition involution preserves *L* and $\lambda(g^{-1}) = i \lambda(g)$ for any loxodromic element, it follows that $\lambda(\gamma) \in \partial \mathcal{L}$ if and only if $\lambda(\gamma^{-1}) \in \partial \mathcal{L}$.

PROPOSITION 5.6

- (1) *If* $\Lambda = \Lambda_h$, then $exp(\mathbb{R}v)$ *is topologically transitive on* Ω/M *for any* $v \in \text{int } \mathfrak{a}^+$ *such that* $\Lambda_v \neq \emptyset$ *.*
- (2) *For any loxodromic element* $\gamma \in \Gamma$ *with* $\{y_{\gamma}, y_{\gamma^{-1}}\} \subset \Lambda_h$ *, the flow* $exp(\mathbb{R}\lambda(\gamma))$ *is topologically transitive on* Ω/M .

Proof. Assume that $\Lambda = \Lambda_h$; so the *NM*-action on *E* is minimal. Suppose that $\Lambda_v \neq \emptyset$ for some $v \in \text{int } \mathfrak{a}^+$. We claim that for any \mathcal{O}_1 , \mathcal{O}_2 be two right *M*-invariant open subsets intersecting Ω , \mathcal{O}_1 exp($t_i v$) $\cap \mathcal{O}_2 \neq \emptyset$ for some sequence $t_i \to +\infty$. Choose $x = [g] \in \Omega$ so that $g^+ \in \Lambda_v$. Then there exists $\gamma_i \in \Gamma$ and $t_i \to +\infty$ such that $\gamma_i ga_{t_i}$ converges to some g₀. Note that $x_0 := [g_0] \in \Omega$. So write $\gamma_i g a_{i,v} = g_0 h_i$ with $h_i \to e$. By the NM-minimality assumption, xNM intersects every open subset of Ω . Since $v \in \text{int } \mathfrak{a}^+$ and hence $a_{-tv}na_{tv} \rightarrow e$ as $t \rightarrow +\infty$, we may assume without loss of generality that $x \in \mathcal{O}_1$. Choose an open neighborhood *U* of *e* in *G* so that $\mathcal{O}_1 \supset xUM$. Note that there

 \Box

exists a sequence $T_i \to \infty$ as $i \to \infty$ such that for all *i*,

$$
xUMa_{t_iv} \supset xa_{t_iv}a_{-t_iv}\check{N}_{\varepsilon}Ma_{t_iv} \supset x_0h_i\check{N}_{T_i},
$$

where $\check{N}_R = \check{N} \cap B_R^G$ is the set of elements of \check{N} of norm $\leq R$. So $\mathcal{O}_1 a_{t_i v} \supset x_0 h_i \check{N}_{T_i}$.

Choose an open neighborhood *V* of *e* in *G* and some open subset \mathcal{O}'_2 intersecting Ω so that $\mathcal{O}_2 \supset \mathcal{O}_2' V$. Since $x_0 \check{N} M$ is dense in Ω , $x_0 n \in \mathcal{O}_2'$ for some $n \in \check{N}$. Hence, $x_0 h_i n =$ $x_0n(n^{-1}h_in) \in \mathcal{O}_2'V \subset \mathcal{O}_2$ for all *i* large enough so that $n^{-1}h_in \in V$. Therefore, for all *i* such that $n \in \check{N}_{T_i}$, we get

$$
x_0h_in\in \mathcal{O}_1a_{t_iv}\cap \mathcal{O}_2\neq\emptyset.
$$

This proves the first claim.

Now suppose that $\gamma \in \Gamma$ is a loxodromic element with $y_{\gamma}, y_{\gamma^{-1}} \in \Lambda_h$. Write $\gamma =$ gma_vg^{-1} for some $g \in G$ and $m \in M$. Since $y_\gamma = g^+$ and $y_{\gamma^{-1}} = g w_0^+$, we have each $[g]NM$ and $[g]w_0NM$ contains Ω in its closure. Now in the notation of the proof of the first claim, note that $x_0 = [g_0] \in [g/M \text{ since } [g] \exp(\mathbb{R}v)M$ is closed. Therefore, each $\overline{x_0NM}$ and $x_0\tilde{N}M$ contains Ω . Based on this, the same argument as above shows the topological transitivity of exp $\mathbb{R}v$, which finishes the proof since $v = \lambda(\gamma)$. \Box

Since *L* is invariant under the opposition involution i and $\lambda(\gamma) = i \lambda(\gamma^{-1})$ for any loxodromic element $\gamma \in \Gamma$, the Jordan projection $\lambda(\gamma)$ belongs to $\partial \mathcal{L}$ if and only if the Jordan projection $\lambda(\gamma^{-1})$ belongs to $\partial \mathcal{L}$. Together with the result of Dang and Gloriuex [[7](#page-17-17), Proposition 4.7], which says that $exp(\mathbb{R}u)$ is not topologically transitive on Ω/M for any $u \in \partial \mathcal{L} \cap \text{int } \mathfrak{a}^+$, Proposition [5.6](#page-15-0) implies the following corollary.

COROLLARY 5.7

(1) *If* $\Lambda_v \neq \emptyset$ *for some* $v \in \partial \mathcal{L} \cap \text{int } \mathfrak{a}^+$ *, then*

 $\Lambda \neq \Lambda_h$.

(2) *For any loxodromic element* $\gamma \in \Gamma$, we have $\lambda(\gamma) \in \partial \mathcal{L}$ *if and only if*

 $\{y_{\nu}, y_{\nu-1}\}\not\subset \Lambda_h.$

Hence, if $\Lambda = \Lambda_h$ *, then* $\lambda(\Gamma) \subset \text{int } \mathcal{L}$ *.*

Acknowledgements. We would like to thank Richard Canary and Pratyush Sarkar for helpful conversations regarding Corollary [1.10.](#page-4-0) O. Landesberg would also like to thank Subhadip Dey and Ido Grayevsky for helpful and enjoyable discussions. We thank the anonymous referee for pointing out to us the paper [[4](#page-17-7)]. H. Oh is partially supported by NSF grant DMS-1900101

REFERENCES

- [1] Y. Benoist. Propriétés asymptotiques des groupes linéaires. *Geom. Funct. Anal.* 7(1) (1997), 1–47.
- [2] Y. Benoist. Propriétés asymptotiques des groupes linéaires. II. *Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama–Kyoto (1997) (Advanced Studies in Pure Mathematics,*

26). Ed. T. Kobayashi, M. Kashiwara, T. Matsuki, K. Nishiyama and T. Oshima. Mathematical Society of Japan, Tokyo, 2000, pp. 33–48.

- [3] M. Chow and P. Sarkar. Local mixing of one parameter diagonal flows on Anosov homogeneous spaces. *Int. Math. Res. Not. IMRN* 2023(18) (2023), 15834–15895.
- [4] J.-P. Conze and Y. Guivarc'h. Densité d'orbites d'actions de groupes linéaires et propriétés d'équidistribution de marches aléatoires. *Rigidity in Dynamics and Geometry (Cambridge, 2000)*. Ed. M. Burger and A. Iozzi. Springer, Berlin, 2002, pp. 39–76.
- [5] F. Dalbo. *Topologie du feuilletage fortement stable*. *Ann. Inst. Fourier (Grenoble)* 50(2000), 981–993.
- [6] N. Dang. Topological mixing of positive diagonal flows. *Israel J. Math.* doi[:10.1007/s11856-023-2561-1.](http://dx.doi.org/10.1007/s11856-023-2561-1) Published online 13 November 2023.
- [7] N. Dang and O. Glorieux. Topological mixing of Weyl chamber flows. *Ergod. Th. & Dynam. Sys.* 41(2021), 1342–1368.
- [8] S. G. Dani. Invariant measures and minimal sets of horospherical flows. *Invent. Math.* 64(2) (1981), 357–385.
- [9] Y. Guivarc'h. Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire. *Ergod. Th. & Dynam. Sys.* 10(3) (1990), 483–512.
- [10] T. Hattori. Geometric limit sets of higher rank lattices. *Proc. Lond. Math. Soc. (3)* 90(3) (2005), 689–710.
- [11] G. Hedlund. Fuchsian groups and transitive horocycles. *Duke Math. J.* 2(3) (1936), 530–542.
- [12] D. M. Kim and H. Oh. Rigidity of Kleinian groups via self-joinings. *Invent. Math.* 234(3) (2023), 937–948.
- [13] S. Kim. Limit sets and convex cocompact groups in higher rank symmetric spaces. *Proc. Amer. Math. Soc.* 147(1) (2019), 361–368.
- [14] M. Lee and H. Oh. Ergodic decompositions of geometric measures on Anosov homogeneous spaces. *Israel J. Math*. doi[:10.1007/s11856-023-2560-2.](http://dx.doi.org/10.1007/s11856-023-2560-2) Published online 9 October 2023.
- [15] M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups. *Int. Math. Res. Not. IMRN* 2023(19), 16226–16295.
- [16] F. Maucourant and B. Schapira. On topological and measurable dynamics of unipotent frame flows for hyperbolic manifolds. *Duke Math. J.* 168(4) (2019), 697–747.
- [17] J.-F. Quint. Groupes convexes cocompacts en rang supérieur. *Geom. Dedicata* 113 (2005), 1–19.
- [18] W. Thurston. Minimal stretch maps between hyperbolic surfaces. *Preprint*, 1998, [arXiv:math/9801039.](https://arxiv.org/abs/math/9801039)
- [19] W. Veech. Minimality of horospherical flows. *Israel J. Math.* **21**(2-3) (1975), 233-239.
- [20] D. Winter. Mixing of frame flow for rank one locally symmetric spaces and measure classification. *Israel J. Math.* 210(1) (2015), 467–507.