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Abstract

Background. This study leveraged machine learning to evaluate the contribution of informa-
tion from multiple developmental stages to prospective prediction of depression and anxiety
in mid-adolescence.
Methods. A community sample (N = 374; 53.5% male) of children and their families com-
pleted tri-annual assessments across ages 3–15. The feature set included several important
risk factors spanning psychopathology, temperament/personality, family environment, life
stress, interpersonal relationships, neurocognitive, hormonal, and neural functioning, and
parental psychopathology and personality. We used canonical correlation analysis (CCA) to
reduce the large feature set to a lower dimensional space while preserving the longitudinal struc-
ture of the data. Ablation analysis was conducted to evaluate the relative contributions to pre-
diction of information gathered at different developmental periods and relative to previous
disorder status (i.e. age 12 depression or anxiety) and demographics (sex, race, ethnicity).
Results. CCA components from individual waves predicted age 15 disorder status better than
chance across ages 3, 6, 9, and 12 for anxiety and 9 and 12 for depression. Only the compo-
nents from age 12 for depression, and ages 9 and 12 for anxiety, improved prediction over
prior disorder status and demographics.
Conclusions. These findings suggest that screening for risk of adolescent depression can be
successful as early as age 9, while screening for risk of adolescent anxiety can be successful
as early as age 3. Assessing additional risk factors at age 12 for depression, and going back
to age 9 for anxiety, can improve screening for risk at age 15 beyond knowing standard demo-
graphics and disorder history.

Introduction

Depression and anxiety disorders are among the most common mental disorders and are lead-
ing contributors to global disease burden (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). Rates of depression and anxiety increase dramatically during
adolescence, portending worse outcomes than onsets in adulthood (Beesdo, Knappe, & Pine,
2009; Fleisher & Katz, 2001; Kessler, Chiu, Demler, & Walters, 2005). However, predicting
which individuals will experience depression and anxiety in adolescence remains an extremely
difficult task. There is increasing recognition of the immense complexity of psychopathology,
necessitating shifting away from simple etiological models and toward a complex dynamic sys-
tems perspective that recognizes that mental disorders arise from the interplay of numerous
interacting components on multiple levels of analysis (Fried & Robinaugh, 2020). This shift
in conceptualization, however, is not yet reflected in the dominant statistical paradigms
used to study mental illness (Dwyer, Falkai, & Koutsouleris, 2018).

Traditional methods for examining prediction of disorder onsets (e.g. low dimensional lin-
ear and logistic regression) are highly limited in the complexity they can accommodate, both in
terms of the number of variables and types of relationships (e.g. non-linear, multi-way inter-
actions) that can be modeled simultaneously (Dwyer et al., 2018). Specifically, these methods
are liable to overfitting as complexity increases, that is, they produce models that increasingly
reflect the idiosyncratic characteristics of a particular sample and thus do not generalize well to
other samples (Whelan & Garavan, 2014). Machine learning (ML) methods, on the other
hand, are uniquely suited to the task of prediction (Yarkoni & Westfall, 2017). ML is an
umbrella term that subsumes a range of flexible mathematical techniques that identify patterns
in a (training) dataset with the central goal of producing a model that maximizes prediction of
new (test) data. Evaluation of models on their ability to accurately predict out-of-sample data
places generalizability and replicability at the core of ML (Coutanche & Hallion, 2019).

ML has the potential to make significant contributions to predicting depressive and anxiety
disorders, accounting for the manifold relationships between the biological, cognitive,
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emotional, interpersonal, and environmental factors that give rise
to affective psychopathology. Further, the prioritization of general-
izability is critical to translating research findings to real-world
applications in clinical settings and to improving replication of find-
ings in a field facing a ‘replicability crisis’ (Tackett, Brandes, King, &
Markon, 2019). This potential is increasingly being realized, as
there are already a number of ML applications to depression and
(to a lesser extent) anxiety disorders (Shatte, Hutchinson, &
Teague, 2019), however, the existing literature remains limited in
numerous ways.

First, many studies have trained their algorithms on low qual-
ity outcome measures (e.g. a self-report questionnaire; Andersson,
Bathula, Iliadis, Walter, & Skalkidou, 2021; Su, Zhang, He, &
Chen, 2021). Additionally, despite the capacity of ML to accom-
modate a large number of features (i.e. variables), most studies
have considered a limited range of potentially relevant factors.
For example, a number of studies have exclusively used neuroima-
ging data (e.g. Sato et al., 2015), or medical records (e.g.
Nemesure, Heinz, Huang, & Jacobson, 2021), with few combining
several domains of interest (e.g. clinical records, personality mea-
sures, cognitive tests, and biological data). Both of these limita-
tions are, at least in part, a consequence of ML requiring large
samples, for which thorough diagnostics (e.g. by a trained inter-
viewer), and extensive assessment of relevant risk factors, is less
feasible.

Most existing ML applications in depression and anxiety have
used fully cross-sectional data, seeking to improve detection of
current depression or anxiety disorders (Guntuku, Yaden, Kern,
Ungar, & Eichstaedt, 2017; Kumar, Garg, & Garg, 2020; Liu,
Hankey, Cao, & Chokka, 2021). These studies are helpful for aid-
ing in differential diagnosis, flagging individuals already in the
health care system or identifying struggling individuals through
social media posts; however, they are unlikely to generalize to pre-
diction of future depression and anxiety, as the feature sets (i.e.
the collection of predictor variables) include factors that co-occur
with or are a consequence of the disorder. Building toward pre-
vention requires training models on data that temporally precede
disorder occurrence. A handful of studies have used ML methods
to predict future depression or anxiety, although often in specific
subgroups (e.g. postpartum; Andersson et al. 2021; Zhang, Wang,
Hermann, Joly, & Pathak, 2021), over relatively short intervals
(e.g. 6 months to 1 year; Bellón et al. 2011; Eichstaedt et al.
2018; King et al. 2008), and, to our knowledge, exclusively in
adult samples (Kessler et al., 2016; Rosellini et al., 2020; Wang
et al., 2014). Most individuals who will meet criteria for a mental
disorder do so by the age of 18, with most first onsets occurring
during adolescence (Caspi et al., 2020), so adult samples are simi-
larly limited by either confounding risk factors with consequences
of prior occurrence of mental illness or, when focusing exclusively
on first onset cases, exclude the majority of individuals who will
experience a mental illness in their lifetime.

A final and critical gap in ML applications to depression and
anxiety disorders thus far is that the appropriate timing of risk
assessment (i.e. at what age, how proximal to disorder occur-
rence) has been virtually unexplored. Determining the optimal
timing of risk screening requires longitudinal assessment across
more than two waves of data collection. To our knowledge, no
prior study has used features assessed across multiple waves of
data collection to predict depression or anxiety at a future wave.

Depression onsets peak in mid-adolescence, and while some
anxiety disorders onset in childhood, rates of anxiety also increase
drastically during adolescence, with some anxiety disorder onsets

occurring during this period-early adulthood (e.g. social anxiety,
panic, agoraphobia, generalized anxiety, and obsessive-
compulsive disorder; Campbell, Brown, & Grisham, 2003; de
Lijster et al. 2017; Kessler et al. 2005). Adolescent depression
and anxiety are associated with a host of negative outcomes,
including increased risk of disorder persistence and reoccurrence,
increased comorbidity, and worse psychosocial functioning later
in life (Essau, Lewinsohn, Olaya, & Seeley, 2014; Fleisher &
Katz, 2001; McLeod, Horwood, & Fergusson, 2016; Naicker,
Galambos, Zeng, Senthilselvan, & Colman, 2013). Therefore,
identifying individuals at risk of experiencing depression and anx-
iety during this developmental period is particularly critical. In
the current study, we used ML to prospectively predict cases of
depression and anxiety disorders during adolescence in an unse-
lected community sample (N = 374). The feature set included a
diverse and large number of potentially important risk factors
spanning psychopathology, temperament/personality, family
environment, life stress, interpersonal relationships, neurocogni-
tive, hormonal, and neural functioning, and parental psychopath-
ology and personality assessed at 3-year intervals across
development from ages 3 to 12. The outcomes – diagnoses of
depression and anxiety disorder at the age 15 wave – were
assessed through a semi-structured diagnostic interview con-
ducted by trained interviewers.

The primary purpose of this study was to leverage ML meth-
ods to evaluate the contribution of information from multiple
developmental stages across childhood and early adolescence to
prediction of depression and anxiety in mid-adolescence. This
allowed us to address questions about the timing of risk assess-
ment, such as how early risk assessment can be fruitful and
whether longitudinal assessment provides substantially better pre-
diction of risk than a single assessment at a key developmental
stage. We additionally sought to explore the upper bounds of pre-
diction that can be achieved when such a large number of highly
relevant features spanning multiple domains are considered and
to assess the incremental gains in prediction afforded by including
such a volume of information (i.e. features) over a standard min-
imal risk assessment (specifically, recent disorder history and
basic demographics).

To accomplish these goals, we compared prediction of disorder
status at age 15 from disorder status at age 12 along with demo-
graphics, both alone and in combination with extensive risk factor
data from individual prior waves and combining risk factor data
across multiple prior waves. To meet the challenge of working
with a large feature set spanning multiple waves, we used canon-
ical correlation analysis (CCA), a multi-view dimensionality
reduction technique that preserves the longitudinal structure of
the data (Witten, Tibshirani, & Hastie, 2009).

Methods

Procedures

Data were from an ongoing study of the development of psycho-
pathology that has followed children and their families tri-
annually since the participating child was 3 years old (Klein &
Finsaas, 2017). Initial recruitment of families with a 3-year-old
child living within a 20-mile radius of Stony Brook, New York
was conducted via commercial mailing lists. At each wave, fam-
ilies were invited to the lab to complete a battery of assessments.
When lab visits were not feasible, questionnaires and interviews
were completed remotely. A parent provided written informed
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consent at the start of each assessment and the child provided
assent starting at the age 9 wave. The Stony Brook University
Institutional Review Board approved all study procedures.

Participants

Families were eligible to participate if the primary caretaker spoke
English and was the child’s biological parent, and if the child did
not have a significant medical disorder or developmental disabil-
ity. Of the total of 559 participants, 374 were included in the cur-
rent analyses (data exclusion described below). Included
participants were predominantly male (53.5%), White (94.7%),
and non-Hispanic (90.9%). Excluded participants did not differ
significantly from included participants in demographic profile.

Measures

An online Supplementary excel file titled ‘List of Features’ con-
tains the full list of features included from each wave. Briefly,
the features covered a range of important domains, including clin-
ical features (e.g. diagnoses and dimensional symptom scores of
all common mental disorders), temperament and personality
(e.g. behavioral inhibition, negative and positive emotionality,
effortful control, intolerance of uncertainty, rumination), environ-
mental factors (e.g. stressful life events, bullying, parental criticism
and support), biological/neurocognitive factors (e.g. pubertal hor-
mones, morning and evening cortisol levels, resting electroen-
cephalography and event-related potentials in a variety of
emotion-relevant tasks, executive functions, attentional and mem-
ory biases) and a number of parental factors (e.g. parental psycho-
pathology and personality). Each assessment wave included
parent and, starting at age 9, child interviews and questionnaires,
saliva samples, and laboratory behavioral and neural measures.
The features were not identical across waves. This is typical of
developmental research, as the relevance of risk factors and
appropriateness of modalities of measurement (e.g. self-report v.
parent report) changes across development, but nevertheless
leads to some confounding of age with differences in features.

Prior (age 12) and outcome (age 15) depression and anxiety
were diagnosed with a semi-structured diagnostic interview, the
Kiddie Schedule for Affective Disorders and Schizophrenia-
Present and Lifetime version (K-SADS-PL; Axelson, Birmaher,
Zelazny, Kaufman, & Gill, 2009). Diagnoses were based on the
interval since the previous assessment (e.g. since the age 12
wave at the age 15 wave) and were used for the baseline and out-
come variables. Doctoral students in clinical psychology and
master’s-level clinicians administered the K-SADS first to the par-
ent (about the child) and then to the child (about themselves).
Parent and child report of symptoms were combined into sum-
mary ratings, which were used to assign a diagnosis based on
either the Diagnostic and Statistical Manual for Mental
Disorders 4th (DSM-IV; American Psychiatric Association,
1994) or 5th (DSM-5; American Psychiatric Association, 2013)
edition criteria. All cases with a suspected diagnosis were reviewed
in a case conference co-led by a child psychiatrist and a clinical
psychologist. Diagnosis of depression included major depressive
disorder, dysthymic disorder, and depressive disorder-not other-
wise specified (NOS; DSM-IV) or other specified depressive dis-
order (DSM-5); diagnosis of anxiety disorder included specific
phobia, social phobia (DSM-IV) or social anxiety (DSM-5),
agoraphobia, and panic, generalized anxiety, separation anxiety,
obsessive compulsive, post-traumatic stress, and acute stress

disorder, and anxiety disorder-NOS (DSM-IV) or other specified
anxiety disorder (DSM-5). Interviewers independently rated
videotaped interviews to assess inter-rater reliability (kappa =
0.72 and 0.91 for depression and anxiety disorders, respectively).

Data analysis

Preprocessing
The investigators preselected a subset of 429 features from all
available data that comprehensively covered the range of con-
structs assessed in the study while minimizing redundancy (e.g.
selecting a scale total score over correlated lower-order subscales).
ML methods require complete data, so we excluded cases and fea-
tures missing ⩾80% of data as well as cases without both outcome
variables. Remaining missing values for features were imputed,
using the mean for numerical features and the mode for categor-
ical features. Categorical features with more than two levels were
transformed into separate dummy-coded variables for each level
(final feature set = 517).

Machine learning
This resulted in a feature set that was still very large relative to the
number of observations. To mitigate multicollinearity and reduce
the number of supervised model parameters (Hastie, Tibshirani, &
Jermone, 2009), we used dimensionality reduction to reduce the fea-
tures to 10 dimensions per wave while maximally preserving
information (i.e. variance). To preserve the longitudinal structure
(i.e. that groups of variables came from the same wave), we used a
multi-view dimensionality reduction, CCA (Witten et al., 2009),
to create components (i.e. linear combinations of related features)
within a wave that were maximally correlated across waves. This
approach allowed us to have a single model yet keep each
wave’s low dimensional components separate from other waves
in time (‘views’). We extracted 10 components per wave, as multi-
ples of 10 are conventional and more than 10 components per
wave would result in large multi-wave models (>40 features) at
risk of overfitting in our relatively small sample.

Classification was performed using L2-penalized logistic
regression, a regularization method that shrinks the regression
coefficients by imposing a penalty on the maximum likelihood
parameter estimate based on the squared magnitude of the coeffi-
cients as is standard in ML to guard against overfitting (James,
Witten, Hastie, & Tibshirani, 2013). The L2 penalty, also
known as the ‘ridge’, adjusts for the collinearity between variables
which has been found beneficial especially in longitudinal studies
where multiple waves of similar variables covary (Eliot, Ferguson,
Reilly, & Foulkes, 2011; Miché et al., 2020). Algorithms were
trained on depression and anxiety outcomes using k-fold cross-
validation (CV) with 10 folds. Briefly, 10-fold CV partitions all
observations into 10 roughly equally sized, mutually exclusive,
and randomized subgroups (folds). The algorithm is trained on
9/10 of the folds and the resulting model is used to predict the
fold that was left out (i.e. the test set). Thus, the data used to
train the algorithm are never contaminated with information
about the data when their accuracy is evaluated. This process is
repeated until predictions have been made for all 10 folds
(Koul, Becchio, & Cavallo, 2018). Performance was indexed
using the area under the receiver operating characteristics curve
(AUC). AUC values were computed for each fold and then aver-
aged across folds to produce a more stable estimate of
out-of-sample performance.
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Ablation analysis
We conducted an ablation analysis to evaluate the relative contri-
butions to prediction of information gathered at different devel-
opmental periods and relative to prior disorder status (i.e. age
12 diagnosis of depression or anxiety disorder, depending on
the outcome). Ablation analysis is a process of training algorithms
on different configurations of features and then comparing per-
formance metrics across configurations to assess which features
are contributing to prediction (Fawcett & Hoos, 2016). We com-
pared models containing CCA components from each individual
wave (i.e. age 12, 9, 6, and 3) and in cumulative combinations (i.e.
ages 12–3, 12–6, and 12–9) alongside prior disorder status and
demographics (A12 Dx + Demos) to a model containing just
A12 + Demos. Demographic features included sex, race, and eth-
nicity. To determine whether these comparisons had statistically
significant differences in AUCs, we used a permutation test.

Sensitivity analyses
To ensure that our conclusions were robust to choice of classifier,
we tested two additional classification algorithms: random forests
and neural networks. Additionally, to demonstrate the advantage
L2 penalization affords to prediction, we also fit models using trad-
itional logistic regression as a benchmark of conventional statistical
approaches in psychology and psychiatry. Details and results of
these analyses are presented in the online Supplementary section S2.

All data analyses were conducted using Python 3.7 with librar-
ies DLATK v1.1 (Schwartz et al., 2017) and scikit-learn v22.2
(Pedregosa et al., 2011).

Results

Depressive disorders

Table 1 displays prediction accuracy results for models predicting
age 15 depressive disorders. The top section of Table 1 displays
the AUCs for the models excluding A12 Dx + Demos (i.e. CCA
components only), and the p values comparing these models to
chance. Across models with CCA components from individual
waves and combinations of successive waves, all but the models
with only age 3 components (AUC = 0.556) and only age 6 com-
ponents (AUC = 0.608) performed significantly better than
chance (AUCs = 0.669–0.751).

The bottom section of Table 1 displays the AUCs for the mod-
els combining age 12 depression and demographics with the CCA
components (i.e. CCA components + A12 Dx + Demos), and the
p values comparing these models to chance and to the compari-
son model without CCA components (i.e. A12 Dx + Demos

alone). All of these models performed better than chance, except
for the individual wave model with age 3 components (AUC =
0.599). All models combining components across successive
waves performed significantly better than the comparison
model (AUCs = 0.739–0.748). The only model including compo-
nents from an individual wave that performed significantly better
than the comparison model was the model with age 12 compo-
nents (AUC = 0.744).

The comparison model including A12 Dx + Demos produced
an AUC of 0.633, which was significantly better than chance
(0.500). Without the demographics, age 12 depression status did
not predict age 15 depression better than chance (AUC = 0.522).

Anxiety disorders

Table 2 displays prediction accuracy results for all models predict-
ing age 15 anxiety disorders. The top section of Table 2 displays
the AUCs for the models excluding A12 Dx + Demos (i.e. CCA
components only), and the p values comparing these models to
chance. Across models with CCA components from individual
waves and combinations of successive waves, all models per-
formed significantly better than chance (AUCs = 0.621–0.788).

The bottom section of Table 2 displays the AUCs for the mod-
els combining age 12 anxiety and demographics with the CCA
components (i.e. CCA components + A12 Dx + Demos), and the
p values comparing these models to chance and to the compari-
son model (i.e. A12 Dx + Demos alone). All models performed
better than chance and models combining components across
successive waves performed significantly better than the compari-
son model (AUCs = 0.807–0.812). The only models including
components from an individual wave that performed significantly
better than the comparison model were the models with age 12
(AUC = 0.810) and age 9 (AUC = 0.805) components.

The comparison model including A12 Dx + Demos produced
an AUC of 0.774, which was significantly better than chance.
Without the demographics, age 12 anxiety status still predicted
age 15 anxiety disorder better than chance (AUC = 0.720).

Sensitivity analyses

Results for the sensitivity analyses using different classification
algorithms (i.e. neural networks, random forests, and logistic
regression without regularization) are displayed in online
Supplementary Tables S1 and S2 for depression and anxiety,
respectively. Results of the main analyses were also included in
these tables for easy comparison. The pattern of results was

Table 1. Depression prediction accuracy results

Combined waves Individual waves

Models A12 9 6 3 A12 9 6 A12 9 A12 A9 A6 A3

CCA components alone 0.743 0.746 0.751 0.745 0.669 0.608 0.556

p (v. chance) <0.001 <0.001 <0.001 <0.001 0.003 0.114 0.413

CCA components + A12 Dx + Demos 0.739 0.740 0.748 0.744 0.679 0.639 0.599

p (v. chance) <0.001 <0.001 <0.001 <0.001 0.002 0.013 0.082

p (v. A12 Dx + Demos alone) 0.008 0.009 0.007 0.009 0.123 0.432 0.897

A, age; A12 Dx, age 12 depression diagnostic status; Demos, demographics (sex, race, and ethnicity).
Note: Cells contain area under the receiver operating characteristics curve (AUC) values.
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generally consistent with the main findings, with a few exceptions.
For example, not all combinations of CCA components from con-
secutive waves improved prediction of age 15 depression over A12
Dx + Demos using the additional classifiers, while all combina-
tions did so for the L2-penalized logistic regression models.
Additionally, none of the models using the additional classifiers
improved prediction of age 15 anxiety over A12 Dx + Demos,
while for L2-penalized logistic regression models, all combina-
tions of components from successive waves and from the
individual age 9 and 12 waves improved prediction. Notably,
L2-penalized regression generally produced higher accuracy
rates than equivalent models in the sensitivity analyses, particu-
larly the logistic regression models without regularization; how-
ever, among the additional ML classifiers tested in the
sensitivity analyses, the highest performing classifier differed by
model, though differences were mostly within the margin of error.

Discussion

The current study used ML to predict depression and anxiety dis-
orders in mid-adolescence using information from multiple waves
of assessment across childhood and early adolescence in an unse-
lected community sample. Our primary aim was to determine the
relative contributions to prediction of information from different
and multiple developmental stages across childhood and early
adolescence. We also sought to explore the upper bounds of pre-
diction that can be achieved when such a large number of highly
relevant features spanning multiple domains are considered and
assess the incremental gains in prediction of including such a vol-
ume of information (i.e. features) afforded over knowing prior
disorder status and basic demographics.

In regards to timing of risk assessment, our results comparing
model performance to chance suggest that screening for risk of
adolescent anxiety can be successful as early as age 3, whereas
for depression, screening may only be successful starting at age
9. Accuracy estimates were higher at the more proximal waves,
which is unsurprising as greater delay between risk assessment
and disorder occurrence increases the odds that new risk and
resilience factors come into play, decreasing the influence of vul-
nerabilities assessed earlier. In addition, youth self-report is not
feasible until later ages, expanding the range of constructs that
can be assessed.

It is notable that combining information across waves either
only marginally improved prediction or worsened prediction rela-
tive to the individual wave models with components from the
most proximal wave (age 12). This demonstrates the limitations
of smaller sample sizes highly typical in psychology and

psychiatry. Specifically, our multi-wave models contain magni-
tudes more parameters than the individual wave models, which
translates to increased noise and a higher benchmark for detecting
generalizable signals, in effect underfitting the data after shrinkage
as compared to a model with less parameters (Hastie et al., 2009).
In other words, it is more difficult to separate the reliable signals
from the non-reliable noise in data with many features. However,
larger samples could offset this and enable the detection of smaller
effects that may be present in the multi-wave data.

Our sensitivity analyses provide another example of the trade-
off between complexity and generalizability in smaller samples.
The models using neural networks and random forests performed
equivalently or slightly worse than models using L2-penalized
regression. The former two ML methods capture more complex
relationships than the latter, practically translating into more
model parameters and thus facing the same limitation (i.e. diffi-
culty separating signal from noise). Much larger samples are
needed to leverage the more complex features of ML (Hastie
et al., 2009). Notably, however, the L2-penalized logistic regres-
sion models produced higher accuracy across the board than
their counterparts using logistic regression without regularization,
the more traditional statistical approach in psychology and psych-
iatry. This highlights the benefits of using ML methods, even in
the relatively small sample sizes common in psychopathology
research.

Often, the goal of ML studies is to develop a prediction algo-
rithm that can be translated to applied settings (e.g. risk screening
in a hospital). The current study does not share this goal, as the
volume and variety of features could not be practically and eco-
nomically assessed in any applied setting. Rather, this uniquely
comprehensive feature set allows us to estimate the upper bounds
of prediction that can be achieved in this idealized risk assessment
context. Our highest performing model for predicting depression
at age 15, which included all information (i.e. components) from
age 9 and 12 waves, achieved an AUC of 0.751. For anxiety, our
highest performing model achieved an AUC of 0.812 and was
the model combining information from the age 9 and 12 waves
alongside prior disorder status and basic demographic (i.e. sex,
race, and ethnicity). For reference, these approximately corres-
pond to Cohen’s d values of 0.96 and 1.26, respectively, which
are considered large effects (Rice & Harris, 2005).

These findings are highly consistent with another prospective
study using a similarly diverse collection of risk factors to predict
depression and anxiety disorders in a mixed-age adult sample
over an approximately 3-year follow-up period. Using data from
the National Epidemiological Survey on Alcohol and Related
Conditions (NESARC), Rosellini et al. (2020) obtained AUCs of

Table 2. Anxiety prediction accuracy results

Combined waves Individual waves

Models A12 9 6 3 A12 9 6 A12 9 A12 A9 A6 A3

CCA components alone 0.777 0.784 0.787 0.788 0.749 0.711 0.621

p (v. chance) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

CCA components + A12 Dx + Demos 0.807 0.811 0.812 0.810 0.805 0.799 0.762

p (v. chance) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

p (v. A12 Dx + Demos alone) 0.046 0.039 0.025 0.027 0.022 0.069 0.840

A, age; A12 Dx, age 12 anxiety diagnostic status; Demos, demographics (sex, race, and ethnicity).
Note: Cells contain area under the receiver operating characteristics curve (AUC) values.
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0.775 for depression and 0.780–0.799 for individual anxiety disor-
ders. Achieving substantially better model performance may
require more sophisticated ML techniques and use of less trad-
itional types of data (e.g. social media; Guntuku et al., 2017),
for which much larger samples can more realistically be obtained.

Using our comparison model (‘A12 Dx + Demos alone’) as a
reference point, we were able to evaluate whether gathering add-
itional information beyond a basic risk assessment (demographics
and history of disorder) is helpful. Our findings from models
combing information across waves suggest that assessing add-
itional risk factors longitudinally across development can improve
upon a basic risk assessment for both depression and anxiety in
adolescence; however, risk screening at any one timepoint earlier
than age 12 for depression, and age 9 for anxiety, may not
improve prediction beyond knowing recent disorder history and
basic demographics.

It may not be surprising that information from more distal
waves did not improve prediction over prior disorder status.
Both depression and anxiety demonstrate a moderate degree of
homotypic continuity across development (Beesdo et al., 2009;
Kessler et al., 2005), so it is likely that the vulnerabilities captured
with the additional features are conferring risk for both the earlier
and later instances of the disorder. In a statistical sense, age 12
disorder status is capturing nearly the same variance that is
important for predicting age 15 disorder status, so it is difficult
for prediction to improve. Further, as noted previously, most
onsets of mental disorders occur during adolescence (Caspi
et al., 2020), and rates of depression and many types of anxiety
increase substantially during this time (Campbell et al., 2003; de
Lijster et al., 2017; Kessler et al., 2005). Although the specific
mechanisms producing this developmental pattern are unclear
and likely manifold, it can reasonably be assumed that factors spe-
cific to the early-mid adolescence period (e.g. divergence in brain
development, hormonal changes, increased relational and aca-
demic stressors), that would only have been captured in the
older assessments, play an important role in influencing risk.
An additional consideration is that we determined age 12 disorder
status through a semi-structured interview administered by a
trained interviewer. Such a thorough diagnostic assessment is
often not practical in applied settings, which may only have the
time and resources to administer screening questionnaires. In
light of this, it is fairly remarkable that we were able to improve
upon prediction by prior disorder status and demographics.

A final noteworthy result to address is the finding that baseline
disorder status alone (i.e. excluding demographics) did not predict
age 15 depressive disorders better than chance. We observed a
fairly low rate of depressive disorder diagnoses at age 12 (N = 22),
which is entirely consistent with its later age of onset (Kessler
et al., 2005). A number of individuals in our sample did not
develop depression until age 15, and many more will experience
first onset in the following years. Thus, we tested models exclud-
ing prior disorder status and compared performance to chance
(i.e. results in the top section of Tables 1 and 2) for this reason.
These models represent assessment contexts in which age 12 dis-
order history is not known and/or cannot be known (i.e. assess-
ment prior to age 12).

This study possessed several strengths, including an unprece-
dented number and variety of important risk factors, a multi-wave
longitudinal design allowing us to compare risk assessment across
critical developmental periods, use of a multi-view dimensionality
reduction technique allowing us to preserve the longitudinal
structure of the data, and a rigorous outcome measure. A few

important limitations should also be acknowledged. First the sam-
ple is relatively small by ML standards, limiting our investigation
to less sophisticated ML techniques (i.e. L2-penalized logistic
regression). While we used k-fold CV to increase generalizability
to new data while maximizing test data, we did not test our mod-
els on truly independent data and thus accuracy estimates are
likely slightly inflated. Features were not identical across waves,
as is typical for developmental studies because few measures
and risk factors are appropriate across development (e.g. young
children cannot provide reliable self-report and peer relationships
become more important in later childhood/adolescence).
Nevertheless, the impact of differences in feature sets across
waves cannot be fully teased apart from developmental differences
in the relevance of vulnerabilities to risk. Additionally, through
CCA we were able to impose an a priori structure based on
time (wave of assessment) but, as can be seen in the online
Supplementary file displaying the top features of each component,
the components are not easily interpretable, combining features
from multiple conceptual domains. We did not separate first
onsets from recurrent and persisting cases because rates of disor-
ders were relatively low, although typical of a community sample.
The timing of optimal risk assessment may differ for first-onset
cases. Finally, the sample is relatively geographically and racially
homogeneous, limiting generalizability to more diverse
populations.

Conclusion

In this study, we leveraged ML to prospectively predict adolescent
depression and anxiety risk assessment across development.
Progress in translating research to reduced burden of mental
health has been stifled by overreliance on statistical approaches
that cannot meet the challenge of capturing such complex phe-
nomena. This study demonstrates the potential of ML, which
can accommodate a large number and variety of relationships
while prioritizing generalizability, to contribute to efforts to
reduce suffering from mental health problems.
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