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Turbulence self-organization is studied in the flux-driven regime by means of the
reduced model Tokam1D. Derived in the electrostatic and isothermal limit but keeping
finite electron and ion temperatures, it features two instabilities that are suspected to
dominate turbulent transport at the edge of L-mode tokamak plasmas: interchange
(a reduced version of the resistive ballooning modes) and collisional drift waves, governed
respectively by an effective gravity parameter g and the adiabaticity parameter C. The
usual properties of these two instabilities are recovered in the linear regime. The nonlinear
study focuses on the self-organization of collisional drift-wave turbulence at g = 0. It is
found that the energy stored in zonal flows (ZFs) decreases smoothly at small C due to
the reduction of both electric and diamagnetic stresses. Conversely to gradient-driven
simulations, no sharp collapse is observed due to the self-consistent evolution of the
equilibrium density profile. The ZFs are found to structure into staircases at small and
large C. These structures exhibit a rich variety of dynamics but are found to be robust
to large perturbations. Their nucleation is found to be critically governed by the phase
dynamics. Finally, the staircase structures are lost in the gradient-driven regime, when the
system is prevented from storing turbulent energy into the equilibrium density (pressure)
profile.

Key words: fusion plasma, plasma instabilities, plasma simulation

1. Introduction

Improving confinement in fusion plasmas is crucial in order to achieve viable fusion
power plants. In tokamaks, cross-field transport is mainly driven by turbulence, with a
wide range of instabilities that can tap energy out of the gradients to drive it. These
instabilities can be distinguished based on their properties, in terms of fluctuation
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amplitude, cross-phase and nonlinear behaviour. Dominant contributions to cross-field
transport in an L-mode edge are likely caused by micro-instabilities at the ion scale
(Liewer 1985). Those can be organized in two main classes of instabilities. First, the
interchange, which requires an inhomogeneous magnetic field, such as the resistive
ballooning modes (RBM), which bears analogy with the Rayleigh–Bénard instability in
neutral fluids. Then, the drift-wave instability (DW), that results from a non-adiabatic
electron response, which manifests itself as a finite phase shift between density and electric
potential fluctuations (Hasegawa & Wakatani 1983), whose wave dynamics is similar to
Rossby waves in the atmosphere. While the interchange tends to favour structures with zero
parallel wave vectors k‖ ≈ 0, the DW requires non-vanishing k‖ �= 0. Both RBM and DW
have been found to be dominant in a broad range of tokamak edge conditions (Bonanomi
et al. 2019).

In tokamaks, turbulent structures develop a strong anisotropy due to the strong magnetic
field with variations primarily in the direction perpendicular to the magnetic field. In
turn, turbulence is often considered as a quasi-two-dimensional problem, similarly to
planetary atmospheres (Boffetta & Ecke 2012). In neutral fluids obeying the Navier–Stokes
equations, turbulence in two dimensions presents a dual-cascade picture, with a forward
cascade of enstrophy accompanied by an inverse cascade of energy (Kraichnan 1971).
This singular behaviour arises due to the fact that, in such fluids, two-dimensional
(2-D) turbulence is characterized by two nonlinear inviscid invariants, energy and
enstrophy, while only the former is conserved in three dimensions. This leads to a
self-organization of micro-turbulence at large scales into minimum enstrophy states
through a mechanism of selective decay. In the case of turbulence with large background
inhomogeneities, this leads to the generation of large-scale motions named zonal flows
(ZFs). In planetary atmospheres, these flows exhibit an azimuthal symmetry and have
long been considered important contributors to large-scale circulation (Rossby 1947).
In magnetic fusion devices, ZFs are poloidally and toroidally symmetric, varying only
across magnetic surfaces. Note that in magnetic fusion plasmas, the two-dimensional
state does not necessarily mean that enstrophy is conserved. As a consequence, inverse
energy cascade is not always active. However, this does not preclude the excitation
of ZFs, which are usually generated by non-local interactions in the Fourier space: a
non-vanishing flux-surface-averaged Reynolds stress is driven by the nonlinear coupling
of small-scale fluctuations. While electric Reynolds stress, i.e. coupling of electric
velocity fluctuations ΠE = 〈ṽEy ṽEx〉, with vE = E × B/B2 the electric drift depending
on the electric field E and magnetic field B, has long been deemed central in the
generation processes (Diamond & Kim 1991), the diamagnetic component, Π∗ = 〈ṽEy ṽ

∗
ix〉,

through the diamagnetic velocity, v� = B × ∇∇∇p/(enB2) with p is the plasma pressure,
now also appears as an important mechanism for the dynamics (Smolyakov, Diamond &
Medvedev 2000; Hallatschek 2004; McDevitt et al. 2010; Sarazin et al. 2021; Dif-Pradalier
et al. 2022).

Turbulence-generated ZFs are crucial for the self-regulation of turbulent transport.
Through their back reaction to turbulence, and their involvement in the ensuing
predator–prey dynamics, they play a dominant role in its saturation (Lin et al. 1998).
They act as a sink for turbulent energy, and constitute, together with the mean background
flow, the flow shear that decorrelates radially elongated eddies (Biglari, Diamond & Terry
1990; Terry 2000). Detailed reviews of the physics and formation of ZFs as well as their
role on self-regulating turbulent transport can be found in literature (Diamond et al. 2005;
Gürcan & Diamond 2015). Zonal flows are also regulators of linear instability mechanisms
(Sugama & Wakatani 1991) and have been put forward as a possible mechanism to
explain density limits in tokamaks (Hajjar, Diamond & Malkov 2018). However, the
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experimental measurement of ZFs and the Reynolds stress remains a challenge, and
sophisticated methods of data analysis are usually required to infer their existence, both
for ZFs (Fujisawa 2008; Pedrosa et al. 2008) and for the role of the Reynolds stress (Tynan
et al. 2006).

Additionally, ZFs organize naturally into staircases, which are persistent radially
localized sheared layers associated with corrugations in radial gradients of density or
pressure (Kosuga, Diamond & Gürcan 2013; Dif-Pradalier et al. 2015, 2017). Staircases are
also quite difficult to observe experimentally: the flow pattern has to be sufficiently stable
and large scale so that a diagnostic system can resolve its radial structure (Hillesheim et
al. 2016; Hornung et al. 2016; Liu et al. 2021). Thus, identifying regimes where staircases
are likely to occur, and providing signatures of the turbulence–flow interactions that can
be used to identify them, would be extremely useful to guide experimental observations.

A significant effort has been devoted to studying the generation and impact of ZFs
on turbulent transport, both analytically and in direct numerical simulations using both
gyrokinetic simulations as well as fluid models (Scott 2005b). Reduced models are also
common in the study of turbulence/ZF interactions. They allow large parameter scans
on confinement times while resolving turbulence scales. Also, they are useful tools for
understanding the key physics mechanisms that are often confounded with other effects
in first principle simulations. Among those, the pioneering work of Hasegawa-Mima
(Hasegawa & Mima 1978), who developed a turbulence model for drift waves, and the
work of Hasegawa–Wakatani (Wakatani & Hasegawa 1984) that expanded it to include an
intrinsic instability, named the collisional drift wave (CDW), due to the non-adiabatic
response of electron density fluctuations, can be cited. In the latter, the finite phase
shift is caused by parallel electron–ion collisions and the instability is controlled by the
adiabaticity parameter C that scales as the square of the parallel wave vector divided by
the electron–ion collision frequency. Since then, many models have been built on the same
principle, (Camargo, Biskamp & Scott 1995; Numata, Ball & Dewar 2007; Majda, Qi &
Cerfon 2018). Note that these models usually evolve the electron density together with
the vorticity and often assume cold ions. Therefore, the role of the diamagnetic drift in
the Reynolds stress is overlooked. Some reduced models have also been dedicated to the
interchange instability (Benkadda, Garbet & Verga 1994; Sarazin & Ghendrih 1998) with
some including the diamagnetic contribution to the Reynolds stress (Ivanov et al. 2020).
In these models, the linear instability is controlled by the mean curvature of the magnetic
field, g that scales with the Larmor radius divided by the major radius of the tokamak. A
few include both interchange and drift waves (Scott 2005a; Ghendrih et al. 2022).

Many of these reduced models are formulated in a gradient-driven form, meaning that a
constant pressure gradient is imposed throughout the simulation domain. In addition, one
usually assumes a scale separation between the background gradients and the turbulence.
While this has the advantage of providing a simpler local linear structure, it lacks crucial
mechanisms for turbulence saturation. Indeed, three main saturation mechanisms can be
identified: nonlinear mode–mode coupling, leading to the transfer of energy from linearly
unstable to linearly stable modes, nonlinear transfer of turbulent energy to large-scale flows
(ZFs) that do not contribute to transport and/or profile relaxation as a result of turbulent
fluxes. The second and third mechanisms are either neglected or present at reduced
magnitude (see § 5.2) because of the scale separation assumption in a local formulation.
These non-local interactions indeed pose a challenge, because both micro-scale turbulence
and large-scale profiles and flows have to be described self-consistently. This means that
the simulations require good spatial and temporal resolution over extended spatial domains
as well as over long times, which comes with numerical costs. In the edge of tokamaks,
especially just inside the last closed flux surface, multi-scale interactions are of particular
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importance. Large gradients are usually present – even more so when the plasma is in
H-mode – together with large radial electric fields, which requires a proper description of
the interactions between equilibrium profiles, flows and turbulence. Flux-driven models
are able to capture this dynamics, with the profiles evolving self-consistently as a balance
between the sources and transport.

Here, we present a minimal flux-driven model of tokamak edge turbulence, called
Tokam1D, with self-generated flows and profile interactions, featuring simple versions
of both interchange (which is an analogue of the RBM instability in the framework
of the model) and CDW instabilities, and a constant ion temperature in order to
include the diamagnetic component of the Reynolds stress. Since the present version
does not account for electromagnetic effects, it is restricted to L-mode regimes only
(cf. § 2). The model is reduced to one dimension (radial) by retaining a single parallel
and poloidal wavenumber for the fluctuations – possibly the linearly most unstable one.
By doing so, nonlinear mode–mode couplings are discarded in the dynamics of the
fluctuations, hence also possible energy and enstrophy cascades. Yet, nonlinear terms
are retained in the dynamics of the density and poloidal flow equilibrium profiles via
the particle turbulent flux and the Reynolds stresses. Turbulence saturation is therefore
governed by profile relaxation and the generation of ZFs. The compressibility terms in the
density equation are also included and prove important for the stabilization of interchange
at large scale. The two instability parameters: the adiabatic parameter C and the magnetic
inhomogeneity g, are found to have a destabilizing or stabilizing role depending on
the regime. Also, they govern the phase shift between the density and electrostatic
potential fluctuations, hence the strength of the turbulent transport at prescribed fluctuation
amplitude. Finally, turbulence self-organization is studied in the CDW instability regime
at g = 0 (the study of the competition and/or synergy between CDW and interchange
turbulence self-organization will be addressed in a forthcoming paper). It is shown that
having a flux-driven model greatly influences the radial flow structure and the energy
partition of the system. In particular, the ‘ZF energy collapse’ previously observed when
C is lowered (Numata et al. 2007) is not recovered. Although the same trend is observed,
the transition appears to be more gradual.

The paper is organized as follows. In § 2, the model is derived together with its energetic
properties. In § 3, the linear analysis of CDW and interchange instabilities is performed
and the importance of the compressibility terms is highlighted. The remainder of the
paper restricts the analysis of the nonlinear regime to g = 0 cases, featuring only CDW
turbulence. In § 4, the generation of flows is studied in the CDW regime. Zonal flows are
shown to act as a reservoir for turbulence energy, even more so at large C. Finally, in
§ 5, flow radial structure is studied. The role of the phase during a staircase nucleation is
emphasized and the importance of profile relaxation is pointed out.

2. Tokam1D: a reduced flux-driven interchange–CDW model

The governing fluid equations of the model rely on a certain number of simplifications
that are detailed below. Their derivation proceeds in the standard systematic way (see e.g.
Scott 1997; Beyer et al. 2000; Chôné et al. 2014) by considering the adiabatic regime
where the time and spatial scales of the plasma dynamics are much larger than those
of the cyclotron motion, namely the gyro-frequency and the sound Larmor radius ρs. In
this framework, velocity drifts retained up to the second order in the small expanding
parameter, typically the ratio between ρs and the gradient length R (also the tokamak
major radius) of the magnetic field ρ� ∼ ρs/R 
 1. These velocities are the electric and
diamagnetic drifts at first order, and the ion polarization drift at second order. Other finite
Larmor radius effects than the polarization drift are not retained.
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We consider a magnetized plasma of constant (in time and spatially uniform) ion Ti
and electron Te temperatures (with τ = Ti/Te) in a stationary magnetic field B. We focus
on the tokamak edge, just inside the last closed flux surface. The plasma is assumed to
be in L-mode so that one can neglect electromagnetic effects. Indeed, when approaching
the H-mode, the pressure gradient length Lp decreases strongly, so that the effective beta
parameter βeff = (qR/Lp)

2β – with β = 2μ0p/B2 the ratio of plasma pressure to magnetic
pressure, q the safety factor and R the major radius – can exceed unity. In this case, as early
noticed in Catto et al. (1974) and further detailed in Scott (1997), magnetic induction can
no longer be ignored since it controls the linear response of the parallel current to parallel
gradients in the three state variables (electric field, density and electron temperature). The
geometry can be approximated as cylindrical, using Cartesian coordinates as if the toroidal
axis were unwrapped onto a Cartesian plane, with the unit vectors (ex, ey, e‖), where x is the
radial, y is the poloidal (now vertical) and z is the parallel (along the field line) direction.

The magnetic field magnitude decreases as the inverse of the major radius, B(R) =
(B0R0/R)e‖. Considering that later on the system will be reduced to one dimension
by keeping only one mode for the fluctuations (§ 2.5), terms that are linked to the
magnetic inhomogeneity such as compressibility terms (divergence of the electric drift
and diamagnetic flux) can be written as

∇∇∇ ·
(

B × ∇∇∇h
B2

)
= ∇∇∇h ·

(∇∇∇ × B
B2

+ 2B × ∇∇∇B
B3

)
≈ − 2

RB
∂yh (2.1)

with h = n the density or h = Φ the electrostatic potential. Note that both the curvature
and the amplitude variation lead to the magnetic inhomogeneity. Note that, while the first
term on the right-hand side relates to Ampere–Maxwell’s law, which is small for tokamaks
at low β, the second term comes from the variation of B along the major radius of the
tokamak and should be kept. We call this term linked to the inhomogeneity of B as g, the
‘curvature term’

g = 2
ρs

R
. (2.2)

It controls the interchange instability. In the framework of the model, this instability is
analogous to the more familiar RBM, which have already received much attention in the
electrostatic (Guzdar et al. 1993; Beyer et al. 2000; Chôné et al. 2014) and electromagnetic
(Scott 1997; Dominici et al. 2019) regimes. More recently, their interplay with drift-wave
turbulence at the edge of tokamak plasmas has been investigated with the GBS code
(Giacomin & Ricci 2022).

Tokam1D then considers the flux-driven dynamics of the density and vorticity in a 1-D
radial plasma. It can be derived from the electron continuity and charge balance equations
where the E × B, diamagnetic and polarization drifts are considered. A generalized Ohm’s
law closes the system by relating the parallel current to the electric field and the electron
pressure gradient.

First, the model is derived in three dimensions. Then, it is reduced to one dimension
by keeping only one fluctuating mode for the poloidal (ey) and parallel (e‖) directions. Its
assumptions and limitations are discussed. Finally, an energy principle is calculated and
energy channels for the profile, flows and turbulence are clarified.

2.1. Electron continuity equation
The particle conservation equation, (2.3), evolves the electron density n taking into
account the E × B and diamagnetic drifts, vE and v�, the electron parallel current j‖,e
and the source of particles Sn. The polarization drift vpol, proportional to the mass of the
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species, is neglected for the electrons

∂tn + vE · ∇∇∇n + n∇∇∇ · vE + ∇∇∇ · (nv�e) − ∇‖( j‖e/e) = Sn. (2.3)

Owing to the large inertia of the ions, the total parallel current is approximated by
the electron parallel current: j‖e = −env‖e ≈ j‖. The compressibility terms, ∇∇∇ · vE and
∇∇∇ · (nv�e) are kept as derived from (2.1). They are crucial in the linear behaviour of the
instabilities as they stabilize the interchange instability at large scale, see § 3. Also, they
will prove essential in the energy budget equation § 2.6 and in the nonlinear analysis. In
this framework, (2.3) reads as follows:

∂tn + 1
B

{Φ, n} − 2nTe

eRB

[
∂y

(
eΦ
Te

)
− ∂y ln

n
n0

]
− 1

e
∇‖j‖ = Sn. (2.4)

With n0 a constant reference density used for normalization and Φ the electric potential.
The advection of density due to the electric drift is contained in Poisson brackets {Φ, n} =
(∇Φ × ∇n) · e‖.

2.2. Charge conservation equation
With the quasi-neutrality assumption, charge conservation reduces to ∇∇∇ · j = 0. Taking
both the diamagnetic current j� = (env�i − env�e) and the polarization current jpol =
envpol into account, it takes the form

∇∇∇⊥ · j�+∇∇∇⊥ · jpol + ∇‖j‖ = 0. (2.5)

Divergence of diamagnetic current can be written directly as

∇∇∇⊥ · j� = ∇∇∇⊥ · (−env�e + env�i) = −(1 + τ)
2Te

RB
∂yn, (2.6)

with τ = Ti/Te the temperature ratio. The polarization current can be computed from the
ion polarization drift, which can be written as

vpol = − mi

eB2
[∂t + vE · ∇∇∇] (vE + v�i) × B, (2.7)

where the parallel advection has been neglected assuming that the parallel gradient
length remains small as compared with the transverse ones. This expression of the
drift results from the partial cancellation of the advection by the diamagnetic velocity
with the anisotropic part of the pressure tensor, which is usually referred to as
the diamagnetic cancellation (Hinton & Horton 1971; Smolyakov 1998). Finally, the
Boussinesq approximation is used for the polarization current, allowing us to commute the
density with the divergence and avoid dealing with time derivatives of different quantities.
To keep track of the origin of this density term, we name it nΩ hereafter

∇∇∇⊥ · jpol ≈ −nΩmi

B2
∂t∇2

⊥

(
Φ + τTe

e
ln

n
n0

)

− nΩmi

B2

(
vE · ∇∇∇∇2

⊥Φ + ∇∇∇ ·
(

vE · ∇∇∇
(

τTe

e
∇⊥ ln

n
n0

)))
. (2.8)

The Boussinesq assumption is considered valid whenever the density gradient length is
large with respect to that of the electric potential and is routinely used in fluid models
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to simplify computation. Note that, depending on the model, the choice is made to
commute either a constant density nΩ = n0, such as in Tamain et al. (2016), Dudson
& Leddy (2017) and Stegmeir et al. (2018), or to commute the full density nΩ = n
(Yu, Krasheninnikov & Guzdar 2006; Angus & Umansky 2014; Ghendrih et al. 2022).
Although it is usually considered correct in the core, its validity is debated for simulations
including the scrape-off layer as the density fluctuations tend to be larger relative to the
background density; see dedicated contributions (Yu et al. 2006; Angus & Umansky
2014; Ross, Stegmeir & Coster 2018). The validity of the Boussinesq assumption can
be verified at the end of the simulation by comparing ∇⊥n · ∇⊥(Φ + τ ln(n/n0)) and
n∇2

⊥(Φ + τ ln(n/n0)). In the simulations performed, the mismatch proved to be of a
few per cent. Also, the magnetic field is assumed to commute with the ∇ operator. It
is acceptable as the B field is large and decays as 1/R, which is on much larger scales than
the density and electric potential inhomogeneities. Equation (2.5) then reads as follows:

−nΩmiTe

eB2
∂tΩ − nΩmi

B3

T2
e

e2
∇⊥,i

{
eΦ
Te

,∇⊥,i

(
eΦ
Te

+ τ ln
n
n0

)}

− 2Te

RB
(1 + τ)∂yn + ∇‖j‖ = 0, (2.9)

where ∇⊥,i{.,∇⊥,i(.)} represents Poisson brackets that can be developed assuming
Einstein’s notation, ∂x{., ∂x(.)} + ∂y{., ∂y(.)}. Here, the generalized vorticity is defined as
follows:

Ω = ∇2
⊥

(
eΦ
Te

+ τ ln
n
n0

)
. (2.10)

With ∇2
⊥ = (∂2

x + ∂2
y ) the perpendicular Laplacian.

2.3. Ohm’s law
Finally, Ohm’s law is derived using the electron parallel momentum conservation equation

nme[∂t + (vE + v�i) · ∇∇∇]v‖e + Te∇‖n = en∇‖Φ + meνei

e
j‖. (2.11)

Due to the small electron inertia, the first term proportional to me drops. In this case, the
generalized Ohm’s law reduces to a balance between parallel current, parallel Coulomb
force and parallel pressure. One is left with an explicit relationship between the parallel
current on the one hand, and density and electric potential on the other

j‖ = enTe

meνei
∇‖

(
ln

n
n0

− eΦ
Te

)
. (2.12)

The parallel current depends on the electron–ion collision frequency that itself depends
directly on the density and temperature: νei ∝ n/T3/2

e . The temperature is taken constant
in the present model but the density has to be made explicit so that we can deal with
the pre-factor as a constant. Then, we define νei,0 = νein0/nν , the electron–ion collision
frequency taken at reference density n0 with the density labelled nν to keep track of its
origin.
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In this case, the divergence of the parallel current reads as follows:

∇‖j‖ = en0Te

meνei,0

n
nν

∇2
‖

(
ln

n
n0

− eΦ
Te

)
. (2.13)

The parallel current is then introduced into the electron density and charge conservation
equations to close the system.

2.4. Three-dimensional model
The 3-D system of equations then involves the logarithm of the electron density
N = ln n/n0 and the generalized vorticity Ω = ∇2

⊥(φ + τN) with the electric potential
normalized to the electron temperature φ = eΦ/Te. The dimensionless three-dimensional
system can be written as follows:

∂tN + {φ, N} = g∂y(φ − N) + σ0∇2
‖ (N − φ) + D∇2

⊥N + SN, (2.14)

∂tΩ + ∇⊥,i
{
φ,∇⊥,i(φ + τN)

} = −(1 + τ)g∂yN + σ0∇2
‖ (N − φ) + ν∇2

⊥Ω. (2.15)

Regarding normalizations, time is normalized to the ion cyclotron frequency ωcs =
(eB)/mi and the lengths to the sound Larmor radius ρs = (mics)/(eB) with cs = √

Te/mi.
The magnetic curvature parameter is defined as g = (2ρs)/R, with R the major radius of
the tokamak. The parallel conductivity is considered constant and is defined as the electron
cyclotron frequency to the electron–ion collision frequency taken at n0, σ0 = ωce/νei,0. The
system is flux driven with a source of particles SN and the damping of small scales is
ensured by the diffusive terms D and ν.

As a last remark, note that (2.14)–(2.15) derive from (2.3) and (2.9) divided by n and
nΩ , respectively. When doing so, the density dependencies of the parallel current terms
should read (n0/nν)σ0 in (2.14) and (n0/nν)(n/nΩ)σ0 in (2.15). The simplifications done in
(2.14)–(2.15) are then to replace (n0/nν) and (n/nΩ) by one. This amounts to performing
the Boussinesq approximation with the total density nΩ = n, and to neglect the density
dependence of the collision frequency nν = n0.1 The latter dependency may be revealed to
be particularly important when looking for plasma bifurcations as density increases, such
as the density limit. Its effect will be investigated in a forthcoming paper. For the time
being, the normalized parallel conductivity is taken as constant and equal to σ0.

2.5. Semi-spectral formulation: from three dimensions to one dimension
In order to keep track of the nonlinear dynamics while dealing with a more tractable
system, each field is decomposed into a flux-surface-averaged and a fluctuating component
(2.16). In the spirit of previous similar models (Sarazin et al. 2000; Benkadda et al. 2001;
Bian et al. 2003), the fluctuating components are Fourier transformed and projected onto
a single parallel and poloidal wave vector (k‖, ky), so that (∇‖, ∂y) −→ i(k‖, ky). Here, c.c.
stands for the complex conjugate

(
N
φ

)
=

(
Neq
φeq

)
(x, t) +

(
Nk
φk

)
(x, t) exp[i(kyy + k‖z)] + c.c. (2.16)

As a caveat, note that the ‘eq’ subscript should not be misunderstood. Here, what is meant
by ‘equilibrium’ only refers to the flux-surface average of the considered quantity. This
zonal component is not at all assumed to represent any steady state of the system. When

1Assuming nν = n0 would imply an added term for (2.13). This term proportional to ∇‖n∇‖(ln(n/n0) − eφ/Te) is,
however, not retained in the Tokam1D framework. In § 2.5, a single poloidal and parallel mode is kept, such that terms
involving several k‖ (nonlinearities) are removed.
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discussing Neq and φeq in the remainder of this article, we shall loosely refer to them as
equilibrium quantities, bearing in mind the caveats mentioned above.

The implications of this choice call for further discussion. In particular, retaining a
single poloidal wavenumber ky implies that, in the time evolution of the fluctuating modes
Nk and φk, the model cannot consider the nonlinear terms that arise due to mode–mode
coupling. Indeed, these terms involve other modes k′

y �= ky which are by essence outside the
model. One of the consequences is that possible energy (and enstrophy) cascade processes
cannot be accounted for. Three important remarks can be made at this point:

(i) A refinement of the model would consist in adding a nonlinear saturation mechanism
to the fluctuations of the form ∂tNk = · · · − DNL|Nk|2Nk with DNL some positive
coefficient (Sarazin et al. 2000). It would account for part of the physics contained in
the missing nonlinear interactions, namely nonlinear energy transfer into dissipative
scales as one of the routes towards turbulence saturation. We have performed a
number of simulations with such a term present, and found that the resulting
dynamics was qualitatively analogous to simulations with stronger diffusion. So as
to keep the number of free parameters to a minimum, we therefore decided not to
include such a nonlinearity in the present study.

(ii) Even with DNL = 0, the model still retains important nonlinearities. The main
ones are the turbulent flux and the Reynolds stresses that govern respectively
the time evolution of the equilibrium density Neq and poloidal flow Veq profiles
(see (2.17)–(2.18) and (2.21)–(2.22)). Note also that, since these radial profiles enter
the time dynamics of the fluctuating modes, they result in nonlinear couplings
between different radial wave vectors kx (cf. all terms in (2.19)–(2.20) of the form
F(Aeq)G(Bk), where F and G stand for linear operators and A, B ∈ {N, V,Ω}). This
latter point is not explicit in the equations since they are not written in the Fourier
space in kx but in the configuration space x.

(iii) In the absence of an ad hoc nonlinear term in the dynamics of the fluctuating
fields (i.e. when taking DNL = 0), turbulence saturation in Tokam1D therefore relies
mainly on two mechanisms: (a) nonlinear transfer of turbulent energy to large-scale
flows (ZFs) that do not contribute to transport and (b) the relaxation of mean profiles
– as a result of turbulent fluxes – leading to a reduction of the turbulence drive
(lower gradients, i.e. thermodynamic forces). The last one is often overlooked since
it is absent from gradient-driven models. We argue these two mechanisms play a
key role close to marginal stability. As a matter of fact, this regime is likely to
be relevant in fusion reactor plasmas. Indeed, given the expected large volume of
reactor devices, they will likely be weakly driven – low power density – so that
the strong efficiency of turbulent transport – as attested by the stiffness of the
experimental temperature profiles in tokamak plasmas (see e.g. Ryter et al. 2000)
– should maintain the gradients close to marginality. Note that, since all the modes
are kept along the x direction, ZFs can further contribute to turbulence saturation
through wave coupling: (I) through turbulence vortex shearing, they can lead to the
generation of large kx wave vectors which are linearly stable (Diamond et al. 2005);
also, (II) they can mediate energy transfer to damped eigenmodes, as highlighted
e.g. in Hatch et al. (2011). Lastly, (III) they can also trap waves (Garbet et al. 2021),
further leading to the possible filamentation of distribution functions in the velocity
space and the subsequent collisional dissipation.

The final system of equations involves 4 fields. Two real fields for the equilibrium
components (2.17), (2.18), and two complex fields for the fluctuating parts (2.19), (2.20).
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parameter τ g C

expression
Ti

Te
2
ρs

R
(k‖ρs)

2σ0

dependencies ∝ Ti

Te
∝ T1/2

e

RB
∝ k2

‖
T5/2

e

n0B
values WEST 1 2.3 × 10−4 5 × 10−4

TABLE 1. Main parameters of the model and their typical values for the WEST tokamak.

It is solved using a fourth-order Runge–Kutta scheme in time and centred fourth-order
finite differences in the radial direction. Note that the dissipation terms are treated to the
second order in the present version of the code, equally limiting the order of the scheme.
Appendix D details the numerical scheme and the successful verification tests. Different
values for the diffusion and viscosity can be chosen for the equilibrium (D0, ν0) and the
fluctuations (D1, ν1)

∂tNeq = −∂xΓturb + D0∂
2
x Neq + SN (2.17)

∂tVeq = −∂xΠRS + ν0∂
2
x Veq − μVeq (2.18)

∂tNk = iky(φk∂xNeq − VeqNk) + igky(φk − Nk) + C(φk − Nk) + D1∇2
⊥Nk (2.19)

∂tΩk = −ikyg(1 + τ)Nk − ikyVeqΩk + iky∂x[φk∂x(Veq + τ∂xNeq)]

− iky∂xVeq∂x(φk + τNk) + C(φk − Nk) + ν1(∂
2
x − k2

y)Ωk, (2.20)

with Ωk = (∂2
x − k2

y)(φk + τNk). The adiabaticity parameter is defined as C = σ0k2
‖. It

is equivalent to the C1 parameter initially derived by Wakatani & Hasegawa (1984).
Typically, the parallel wavenumber is estimated considering a connection length, Lq =
2πqR, which gives k‖ = 2π/Lq = 1/(qR). Taking a typical edge plasma of the WEST
tokamak, major radius R = 2.5 m, minor radius a = 0.5 m, magnetic field at separatrix
Bsep ≈ 3 T and considering a density of n0 = 10−19 m−3, a temperature of Te ≈ 70 eV and
a safety factor q95 = 5, the main parameters of the model can be estimated. Their typical
values are given in table 1.

It appears from the parameter dependencies that the strong variation of density and
temperature profiles at the edge of tokamak plasmas translates into a wide range of g and
C values. Nevertheless, one has to keep in mind that (2.12) assumes a large electron–ion
collision frequency as compared with the electron inertial term. Therefore, the model loses
its validity if Te is too large or n too small. Also, C decreases with increasing density. This
density dependence, although not retained in the current version of Tokam1D, is deemed
important for the turbulence-flows energy partition, as highlighted in § 4.2. Finally, we can
note that g = 2ρs/R = 2ρ�a/R, with ρ� = ρs/a. It follows that g is expected to increase
for smaller aspect ratio machines operating at the same temperature and magnetic field.

The turbulent particle flux results from the advection of density by the radial E × B drift

Γturb = 〈nvEx〉 = −2ky Im(Nkφ
∗
k ) = −2ky|φk||Nk| sin �ϕ. (2.21)

With ∗ denoting the complex conjugate and �ϕ = ϕN
k − ϕ

φ

k the cross-phase between
density and electric potential fluctuations defined as the difference between the phases of
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the density, Nk = |Nk|eiϕN
k and of the electrostatic potential. This quantity can be estimated

through a linear analysis, see § 3.
The equilibrium flow Veq = ∂xφeq is generated by the Reynolds stress, which is the sum

of two components: E × B and diamagnetic (Smolyakov et al. 2000; Sarazin et al. 2021)

ΠRS = ΠE + Π� = 〈ṽEyṽEx〉 + 〈ṽEyṽ�ix〉 = −2ky Im
[
(φ∗

k + τN∗
k )∂xφk

]
. (2.22)

Finally, a friction μ is added to the equilibrium velocity equation in order to account
for neoclassical damping of the poloidal flow. The code allows for the friction to be
estimated through neoclassical assumptions such as in Gianakon, Kruger & Hegna (2002),
but we kept it constant in this study. Additionally, the code allows for a relaxation of the
poloidal flow towards the radial force balance equilibrium, ∂tVeq = · · · − μ(Veq − VFB

eq ),
as prescribed in Chôné et al. (2015). If the toroidal rotation is neglected, the force
balanced E × B velocity reads VFB

eq = vθ − ∂xpi/n, with pi the ion pressure and vθ =
K(ν�, ε)∇rTi/eB if one assumes that the poloidal velocity is governed by neoclassical
theory. Here, ν� accounts for the collisionality and ε for the inverse aspect ratio. In the
case of Tokam1D, due to the isothermal assumption, the velocity from radial force balance
would reduce to VFB

eq = −τ∂xNeq. The coupling of the E × B flow to the density gradient
through radial force balance has already been shown to be able to trigger and sustain
edge transport barriers in resistive ballooning mode turbulence simulations (Gianakon
et al. 2002; Chôné et al. 2015; Giacomin & Ricci 2020). Since our present study aims
primarily at investigating how turbulence self-organizes in the presence of self-generated
flows, we have decided to drop this radial force balance self-consistency in our study.
In this framework, the mean radial electric field in the Tokam1D simulations reported
here is only set by the balance between the Reynolds force and the flow damping
terms controlled by the friction μ and viscosity ν0 coefficients. As a consequence, in
particular, the present simulations cannot address possible transitions towards improved
confinement regimes such as the H-mode, which has long been known to be associated
with a strong modification of the mean radial electric field in the vicinity of the
separatrix, in response to the steepening of the pressure profile (Groebner, Burrell &
Seraydarian 1990). The impact of the radial force balance will be addressed in a future
dedicated work.

2.6. Energetics
Here, we consider the energetics of the system of (2.14), (2.15), which provides a
consistency check in order to prevent the appearance of spurious instabilities. Also,
partitioning the energy into distinct channels gives insight into the energy transfer between
turbulence, flows and profiles in the nonlinear regime. As it should, the model obeys an
energy conservation principle, which states that energy is conserved in the absence of a
source (particle source SN here) and sinks (due to dissipative and viscous terms). In other
words, linear and nonlinear energy transfer terms are conservative.

To formulate the energy balance equation, we multiply (2.14) and (2.15) by (1 + τ)N
and (φ + τN), respectively. After integrating by parts, and summing the two equations, the
interchange terms, proportional to the g parameter, are found to vanish. Such a cancellation
requires us to keep compressibility terms in the density continuity equation. The drift-wave
terms can be reorganized in the form of a parallel current j‖ = σn∇‖(N − φ). The
conservation of energy then takes the following form:

dEtot

dt
= PE − DE . (2.23)
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With Etot the total energy, PE the production term and DE the dissipation term

Etot =
∫

Etot dV =
∫

1
2

{
(1 + τ)N2 + [∇⊥(φ + τN)]2} dV, (2.24)

PE = (1 + τ)

∫
NSN dV, (2.25)

DE =
∫ j2

‖
σ0

dV + D(1 + τ)

∫
(∇⊥N)2 dV + ν

∫ [∇2
⊥(φ + τN)

]2
dV . (2.26)

With
∫

dV being the integration on the whole volume (x, y, z). It can be verified that the
advection terms, linked to Poisson brackets, vanish upon integration. The production term
involves the source of particles injected in the system. The dissipation term contains the
parallel plasma resistivity, the dissipation and the viscosity. The total energy Etot involves
two terms. The second one scales like the kinetic energy associated with both electric and
diamagnetic drifts, while the first one involves both electron and ion pressures. Notice
its somewhat peculiar structure already found in Scott (1997), neither proportional to
(1 + τ 2)N2 nor to (1 + τ)2N2. Note that the final result, ensuring that the sum is strictly
negative, directly results from σ depending only on radial direction and time. Therefore,
if one chooses to include a non-constant electron–ion collision frequency in the model, it
is necessary to consider a flux-surface-averaged quantity.

The energy conservation terms can be decomposed in equilibrium and fluctuating
components, following the same method used to derive (2.17), (2.18), (2.19) and (2.20).
Noticing that linear terms vanish after the volume integration, the pressure energy can be
restricted to

(1 + τ)N2 → (1 + τ)(N2
eq + 2|Nk|2). (2.27)

The factor 2 in front of |Nk|2 comes from the definition of (2.16). The generalized vorticity
energy reads

(∇⊥(φ + τN))2 →
{(

Veq + τ∂xNeq
)2 + 2|∂xφk|2 + 4τ Re(∂xφk∂xN∗

k ) + 2|τ∂xNk|2

+2k2
y

[|φk|2 + |τNk|2 + 2τ Re(φkN∗
k )

]
−2ky Im

[
φk∂xφ

∗
k + τNk∂xφ

∗
k + τφk∂xN∗

k + τ 2Nk∂xN∗
k

] }
. (2.28)

The total energy can then be organized into different channels: the equilibrium profiles of
density (2.29) and velocity (2.30) on the one hand, and in between fluctuating components
on the other hand. The latter can be split into electron and ion (terms proportional to τ )
components but for the sake of simplicity, only a turbulent energy that takes all the
fluctuations into account (2.31) is considered. Finally, a term corresponding to the
interaction between the density and the flows is also obtained (2.32). Its role is still unclear;
it remains small in all simulations

ENeq = (1 + τ)N2
eq + (

τ∂xNeq
)2 (2.29)

EVeq = V2
eq (2.30)
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Eturb = 2(1 + τ)|Nk|2 + 2|∂xφk|2 + 2|τ∂xNk|2 + 4τRe(∂xφk∂xN∗
k )

+ 2k2
y

[|φk|2 + |τNk|2 + 2τRe(φkN∗
k )

]
− 2ky�

[(
φk∂xφ

∗
k

) + τNk∂xφ
∗
k + τφk∂xN∗

k + τ 2Nk∂xN∗
k

]
(2.31)

ENeq−Veq = 2τVeqNeq. (2.32)

The total energy Etot, whose volume integral evolves according to (2.24)–(2.26), can
then be recast as

Etot = ENeq + EVeq + Eturb + ENeq−Veq. (2.33)

It allows one to study the transfer of energy between the density, flows and turbulence.
The dynamics between the flow and turbulence energies typically follows a predator–prey
behaviour. First, the energy of turbulence increases, until ZFs are created and pump out
energy from turbulence. This well-established behaviour has been studied in specific
models such as in Malkov & Diamond (2001) and in experiments (Schmitz et al. 2012).
It will be shown that the energy ratio between flows and turbulence greatly changes when
scanning the (g, C) parameters of the model: some domains in the parameter space are
characterized by large flow to turbulence energy ratio.

3. Linear behaviour of interchange–CDW instabilities

In the absence of any ad hoc nonlinear dissipative coefficient, i.e. for DNL = 0,
(2.19)–(2.20) are already in their linear form: they do not involve any coupling of the
chosen wave vectors at ky and k‖ with other wave vectors. To derive the linear dispersion
relation, the last step consists in assuming a scale separation between equilibrium and
fluctuation radial scales, the former evolving on larger spatial and temporal scales. As
a result, equilibrium gradients – and possibly higher-order derivatives of Neq and Veq –
can be considered constant on the scale of the fluctuations. These derivatives are then
considered as prescribed parameters, and each radial Fourier mode kx of the fluctuations
is then independent from the others. The analytical calculations are performed in Fourier
space

(Nk, φk) = (N̂k, φ̂k) exp[i(kxx − ωt)]. (3.1)

In this case, each Fourier mode is an eigenmode of the linear system. For the sake
of simplicity and because the weight of high-order derivatives is expected to be small
within the scale separation assumption, all derivatives higher than one are neglected in
the analysis (in particular, N ′′

eq and N ′′′
eq are assumed to be vanishingly small, with the

prime denoting the derivative along x). The derivative of the velocity terms, V ′
eq and

V ′′
eq are also neglected. We introduce the electron diamagnetic frequency ω∗e = −kyN ′

eq.
The equilibrium velocity leads to a Doppler shift on the frequency, therefore we solve for
ω̄ = ω − kyVeq. The determinant then reads

D(k, ω̄) =
∣∣∣∣ ω̄ + A B
ω̄k2

⊥τ + C ω̄k2
⊥ + D

∣∣∣∣ . (3.2)
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With the following notations:

A = −gky + i
(
C + k2

⊥D1
)

(3.3)

B = −ω∗e + gky − iC (3.4)

C = (1 + τ)gky + i
(−C + ν1τk4

⊥
)

(3.5)

D = i
(
C + ν1k4

⊥
)
. (3.6)

The linear growth rate and frequency are solutions of D(k, ω̄) = 0. The linear phase shift
between density and electric potential fluctuations corresponds to the phase of the complex
response function F(k, ω̄) = Nk/φk

F(k, ω̄) =
∣∣∣∣Nk

φk

∣∣∣∣ exp(i(ϕN
k − ϕ

φ

k )) = ω̄ − gky + i(C + k2
⊥D1)

gky − ω∗e − iC
. (3.7)

The turbulent particle flux scales like the sine of the cross-phase �ϕk. Its linear expression
is given by

sin(�ϕk) = sin(ϕN
k − ϕ

φ

k ) = Im(F(k, ω̄))

|F(k, ω̄)| . (3.8)

The growth rate, frequency and phase are studied as a function of the three plasma
parameters, g, C and τ by performing parameter scans. First, the interchange and CDW
cases will be studied, then the general dispersion relation is considered with a particular
focus on the compressibility terms.

3.1. Specific cases: interchange only or CDW only
Setting τ = C = 0 eliminates the drift instability, leaving only the interchange. Consider
no dissipation D = ν = 0 for simplicity. The dispersion relation then reduces to

ω̄2 − ω̄gky − gky

k2
⊥

[
gky − ω∗e

] = 0. (3.9)

The instability develops above the density gradient threshold

ωcrit
∗e = gky

(
1 + k2

⊥
4

)
. (3.10)

In particular, the instability disappears for negative density gradients, recovering the
asymmetric nature of the interchange instability with respect to the magnetic field
inhomogeneity (Liewer 1985). Also, the largest scales (small k⊥) are found to be
destabilized first. Interestingly, the instability threshold increases with g. This effect results
from the compressibility terms, as will be discussed in the following.

Then, let us consider the purely drift instability case, with finite C and τ but with g = 0,
assuming the same simplifications. The dispersion relation then reads as follows:

ω̄2 + ω̄
[
iC(1 + τ + k−2

⊥ ) + τω∗e
] − i

ω∗eC
k2

⊥
= 0. (3.11)

In the cold ion limit, τ = 0, one is left with the Hasegawa–Wakatani system (Wakatani
& Hasegawa 1984), for which two limits can be distinguished. The case C → 0
corresponds to the hydrodynamic, highly collisional, regime while C → +∞ corresponds
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to the adiabatic regime. Keeping only the leading-order terms, the solution in the
hydrodynamic case reads

ω̄± ≈ ±1 + i√
2

(
Cω∗e

k2
⊥

)1/2

. (3.12)

One effectively recovers the resistive drift instability, mostly unstable at large scales
(k⊥ ≈ 0), with the instability growth rate increasing with both the density gradient and the
adiabaticity parameter. It exhibits no threshold in the absence of dissipation coefficients,
and the instability develops whatever the sign of the density gradient. In the collisionless
regime C → +∞, the system reduces to the Hasegawa–Mima equation and one is left
with stable drift waves

ω̄+ = ω∗e

1 + k2
⊥

, (3.13)

where ω̄+ corresponds to the Doppler shifted drift-wave frequency as given in Hasegawa
& Mima (1978). The system is stable and oscillates at the drift frequency. Also notice that,
as expected, the turbulent flux (2.21) is strictly zero in this case since the phase shift �ϕ
between density and electric potential fluctuations vanishes.

It appears from the asymptotic analysis that the drift-wave instability is stable at both
small and large C. The interchange instability exhibits a threshold in density gradient and
is then stabilized at very large g, as further detailed in the following sections.

Also, the two instabilities (C = 0, g = 0) can be distinguished from their linear
cross-phase. On the one hand, interchange displays a much larger sine of the cross-phase,
typically close to �ϕk ≈ π/2. This is verified taking C = 0 and neglecting the
compressibility terms in both (3.9) and (3.7). One is left with F(k, ω̄) = ω̄/ω∗e with
ω̄ = i

(
gkyω∗e/k2

⊥
)1/2. Then, the phase relation is purely imaginary and the corresponding

cross-phase reads sin �ϕk = −1. On the other hand, the drift-wave instability exhibits
a lower cross-phase which further decreases as C increases. At large C, the adiabatic
regime forces Nk ∼ φk. It leads to a vanishing phase shift sin �ϕ = 0 implying a
vanishing quasi-linear transport. Taking the limit at large C one can replace ω̄ with
the drift-wave solution in (3.7). This leads to Im F(k, ω̄) = 0 and thus sin �ϕk = 0.
At low C using (3.12), the phase relation at leading order reads F(k, ω̄) ≈ −(1 + i)
(C/2k2

⊥ω∗e)
1/2, which implies sin �ϕk = −1/

√
2.

3.2. General case: coupling CDW and interchange instabilities
Both CDW and interchange instabilities are expected to coexist in the edge of tokamak
plasmas. Understanding their coupling is therefore essential. While drift waves are
stabilized at both small and large C, we show that the interchange instability does not
take over in these regimes in the Tokam1D model. Indeed, interchange is also stabilized
as the adiabaticity parameter is increased. Recall that the sine of the cross-phase gives an
indication of the efficiency of the transport. Thus, predicting its linear value together with
the growth rate helps us understand which regimes are expected to yield stronger transport.
Finally, we analyse the role of the compressibility terms in the general case, and show that
they stabilize the largest scale at very large g. The role of τ is considered in Appendix A.
We show that it can be stabilizing or destabilizing depending on the instability at play.
Also, it is shown that having a single ky is detrimental to the study of τ . Therefore, the
choice is made to keep τ = 1 for the rest of the study.

In the following, the dispersion relation is solved for different cases with fixed
equilibrium parameters. Whenever used, the density gradient is fixed to −N ′

eq = ρs/LN =
1/100, LN being the gradient length. The diffusion parameters are set to D1 = ν1 = 10−2.
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(a) (b)

FIGURE 1. (a) Growth rate without equilibrium flows as a function of kx and ky for g = 2 ×
10−3, C = 10−3. White crosses correspond to maxima in positive and negative ky. White contour
denotes the threshold γ (kx, ky) = 0. (b) Growth rate for the case collisional drift waves (CDW)
g = 0, interchange (inter) C = 0 and coupled CDW–inter C = g, as a function of C and g for
kx = 2π/400 and ky = 0.3. Both figures are computed considering: 1/LN = 1/100, D1 = ν1 =
10−2.

The size of the radial domain is Lx = 400 (this constrains min(kx)). The radial wavenumber
is defined as kx = m(2π/Lx), with m the radial mode number and Lx the size of the
simulation domain.

The growth rate is plotted as a function of kx and ky for C = 10−3 and g = 2 × 10−3 in
figure 1(a). The white contour corresponds to the linear threshold γ (kx, ky) = 0 with these
parameters. The white crosses note the positions of the maxima for positive and negative
poloidal wavenumbers. In figure 1(b), the effect of C and g on the growth rate is explored.
Here, the wavenumbers are fixed: (kx, ky) = (0.06, 0.3). Three cases are shown: a CDW
only case with g = 0, an interchange only with C = 0 and a case ‘both’ with g = C.

In figure 1(a), the growth rate is maximum for the largest radial scale achievable for
the system: kx = 2π/Lx, and finite poloidal scale: ky ∼ 0.35. Note that in practice the
solution kx = 0, although given by the linear analysis, would corresponds to a constant
fluctuation along x direction which is imposed to zero by the Dirichlet boundary condition
on both boundaries. The growth rate displays a symmetric pattern for positive and
negative poloidal and radial wavenumbers. Also, it decays like −k2

⊥ due to small-scale
dissipation governed by the D and ν coefficients. In figure 1(b), the growth rate of
the (kx = 2π/400, ky = 0.3) mode is plotted as a function of the g and C parameters.
The case interchange only leads to a larger growth rate, with γ increasing rapidly
with g. It is abruptly stabilized at g = 10−2 due to compressibility terms. The CDW
are found to be stable, as expected, in both small and large C limits. For the chosen
equilibrium parameters, the CDW only case (g = 0) exhibits a smaller growth rate as
compared with interchange. When both instabilities are taken into account, the growth
rate stays relatively small. The CDW then proves to have a stabilizing effect on the
interchange instability when C = g with the growth rate being barely above the pure
drift-wave case.

A more thorough analysis is provided by studying the full parameter space (C, g) while
scanning the values of kx and ky. The radial and poloidal wavenumbers of interest here
are those that maximize the growth rate. The result is shown in figure 2 as a function
of C and g. The white contour corresponds to the threshold γ (g, C) = 0. This figure
displays the growth rate γ , the absolute value of the sine of the cross-phase |sin �ϕ| and
ky corresponding to the maximum growth rate. The radial wavenumber that maximizes γ
is always equal to kx = 2π/Lx.
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(a) (b)

(c)

FIGURE 2. Linear analysis of the system without equilibrium flows as a function of C and g
for a fixed density gradient. (a) Growth rate γ . (b) Sine of the cross-phase between density
and electric potential fluctuations. (c) Poloidal wavenumber ky corresponding to the maximum
growth rate. The radial and poloidal wavenumbers (kx, ky) are chosen such that the growth rate
is maximal.

The growth rate governed by the two coupled instabilities, in figure 2(a), is maximal at
large g and small C: the interchange instability alone leads to a larger growth rate. The drift
C parameter acts as a stabilization to the interchange instability. At large g, the growth rate
is always negative whatever the value of C. This is due to the compressibility terms and
will be detailed in the next section.

In figure 2(b), the sine of the cross-phase is maximal for interchange dominated cases,
at large g for a fixed C, consistently with the analytical developments performed in
§ 3.1. Indeed, the case interchange only is expected to yield sin �ϕ = −1 when the
compressibility terms are neglected. In the case of figure 2(b), the compressibility terms
do not seem to change this behaviour. The cross-phase decreases with C at fixed g.
That is also expected from the asymptotic analysis performed earlier. The growth rate
is negative at high C whatever the value of g. In other word, drift waves dominate at large
C while interchange takes over at low C. Finally, the most unstable poloidal wavenumber
varies from 0.15 to 0.4 in the studied parameter domain. The variation remains marginal
considering g and C are changed over two decades each.

Remember that Tokam1D considers a constant and unique poloidal wavenumber ky
(ky = 0.3 in the simulations). In turn, this can lead to spurious effects such as the
stabilization of the interchange instability at very large gradients. Indeed, since the
instability shifts towards higher values of ky as the gradient increases, the retained ky may
become linearly stable while larger ky modes get excited. In such regimes, Tokam1D will
then consider the system as linearly stable while it is actually still unstable, but at smaller
scale (larger ky). However, note that, for physics-relevant parameters, the stabilization does
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(a) (b)

FIGURE 3. (a) Growth rate computed using parameters of figure 2 without the compressibility
terms. (b) First density gradient R/Ln to destabilize the system as a function of g. The red and
blue shaded regions correspond to the stable parts of the red and blue curves, respectively.

not occur as the density profile stays close to marginality. Moreover, the density starts from
a flat profile and slowly builds up with the source. Therefore, there is little chance that the
profile suddenly stiffens to reach stabilization. Also, we note that taking a single ky leads
to a stabilization of the interchange instability at very low values of C and g, C < 10−7 and
g < 10−5, which is out of the scanned parameter space. Other than these specific cases, we
expect the role of ky to be marginal on the linear results, and no strong qualitative changes
have been observed. A possible upgrade of the reduced model Tokam1D would consist in
considering a non-constant poloidal wave vector ky, that would depend on the equilibrium
gradients. Such a refinement has not been retained in the present study.

3.3. Compressibility terms stabilize interchange instability at large scales
The compressibility terms, due to the divergence of the electric velocity and diamagnetic
flux in the particle balance equation (2.3), involve the magnetic curvature g∂y(φ − N)
(2.14). Those terms stabilize the interchange instability at large scales. Taking the same
case as in figure 2 and turning off the compressibility terms, one obtains the growth rate
of figure 3(a). In that case the interchange instability is not stabilized and the growth
rate diverges with g. Additionally, one can look for the minimum gradient needed to
destabilize the system figure 3(b). Similarly, due to compressibility terms, this critical
gradient increases at large magnetic curvature. Note that there is a threshold for both cases
at low g due to the dissipation terms D and ν.

The stabilization due to compressibility terms can be obtained analytically. A simplified
system with, C = 0, τ = 0 and no dissipation or viscosity D = ν = 0 leads to the
interchange instability. In order to distinguish the compressibility terms coming from
the diamagnetic and E × B terms, the interchange parameter is written as g� and gE,
respectively, even though both are actually equal to g as they come from the same curvature
term. The threshold can be written as

ωcrit
∗e = gEky

[
1 + g2

�k2
⊥

4ggE

]
, (3.14)

where it seems that the interchange instability threshold is linearly proportional to
compressibility. In the absence of compressibility terms and without dissipation or
viscosity, there is no threshold and ωcrit

∗e = 0.
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4. Nonlinear regime: ZF generation

The linear properties of the system change with the parameters C and g. Moreover,
turbulence self-organization and saturation mechanisms are fundamentally different
depending on the type and intensity of the system’s forcing. The objective here is to
characterize the self-organization by analysing the generation of ZFs and staircases as
a function of C and forcing. The choice is made to restrict ourselves to the g = 0 cases to
simplify the analysis. The interplay between CDW and interchange turbulence, requiring
finite g values, will be thoroughly investigated in a future contribution. First, the generation
of ZFs is analysed in terms of the ratio of the ZF to turbulence energy and Reynolds stress.
Then, the generation of a staircase is studied.

We analyse a set of flux-driven simulations in the drift-wave regime, at g = 0 and C
ranging from 3 × 10−4 to 8 × 10−1. Simulations are performed on Lx = 400 ρs using a grid
of Nx = 1024 radial points and using time steps dtnum = 0.1. The dissipation coefficients
are constant, D = ν = 10−2 and the equilibrium velocity friction is set to μ = 10−4. The
poloidal wavenumber and the ion to electron temperature ratios are chosen constant for
every simulation at ky = 0.3 and τ = 1. Finally, Neumann boundary conditions with
vanishing gradients are used for the density at x = 0 and for the velocity at both ends.
The density is taken equal to Neq = 0.1 at x = Lx and the fluctuations are set to zero at the
boundaries. Simulations are run until the particle confinement time, τp, reaches a statistical
steady state. It is computed from the density profile and the source

τp =

∫
Neq dx∫
SN dx

. (4.1)

The source is chosen to be a Gaussian, with the maximum located at the left boundary
of the simulation domain. The amplitude is adjusted for each simulation, such that the
‘target profile’ is 6 times the critical gradient for each value of C. The target profile
is defined as the gradient in the absence of turbulence such that the dissipative flux of
particles equals the integral of the particle source. The diffusive gradient is shown figure 4
together with the critical gradient for each value of C. Constraining the source with the
critical gradient ensures that the steady-state gradient will be above but not too far from
the threshold. Proceeding this way, the distance to marginality can be controlled. The
steady-state gradient is shown in the same figure. Due to the flux-driven characteristics,
the simulations now evolve in a 2-D space where different gradients are accessible for each
value of C depending on forcing and dissipation.

As shown in figure 4, the critical gradient increases with C. To keep the target profile
at a constant relative distance to the critical gradient the source amplitude is increased
from SN(0) = 1.5 × 10−5 at C = 2 × 10−4 to SN(0) = 4.3 × 10−4 at C = 8 × 10−1. The
poloidal wavenumber corresponding to the maximum growth rate stays close to the chosen
value ky = 0.3 for the considered values of C.2 The steady-state gradient moves closer to
the diffusive gradient as C increases. This results from the fact that the contribution of
turbulence to the total flux is reduced: the system is better confined at large C.

It should be emphasized that the variation of C only is not enough to conclude on
the transition from a hydrodynamic to an adiabatic regime. Instead, one considers the
transition to the adiabatic regime when C/κ is large, with κ = ∂xNeq the logarithmic

2One may legitimately argue that, in the saturated nonlinear regime, the turbulence spectrum may well peak at
another value of ky. In this case, choosing for ky the value that maximizes the linear growth rate might not be the optimal
option. This is, however, the only reliable prediction in hand for this broad parameter scan.
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FIGURE 4. Absolute critical density gradient indicating the instability threshold, corresponding
diffusive gradient (|∂xNdiff

eq | = 6|∂xNcrit
eq |) and steady-state gradient as a function of the adiabatic

parameter C.

derivative (Özgür 2024). For flux-driven simulations, the density gradient evolves together
with the adiabaticity parameter. In particular, the density gradient increases with C,
resulting in a smoother evolution of C/κ . In the simulations performed, for C scanned from
3 × 10−4 to 8 × 10−1, the corresponding C/κ evolves from 10−2 to 8 × 10−1. However,
this calculation is performed using the root-mean-square value of the density gradient
and does not take into account possible corrugations due to staircase generation. It is
not obvious whether one should take into account only the large-scale gradients or also
include small-scale structures in the adiabaticity estimation. Therefore, C alone is used
as the control parameter in the following sections and the gradient is indicated wherever
deemed necessary.

4.1. Rich dynamics and flow patterns
In the present model, ZFs are generated nonlinearly by the Reynolds stresses. The action
of these sheared flows on the fluctuations then regulates turbulence and therefore the
transport. In fact, it is not the amplitude of these flows but whether or not they organize into
well-defined sheared layers, leading to corrugations of density or pressure profiles, called
staircases, that is the determining factor. It may critically impact the resulting turbulence
saturation and therefore the overall quality of confinement. A strong shear may be expected
to tilt and elongate turbulent structures, leading to their decorrelation, provided that the
shear persists longer than the lifetime of the turbulent structure.

In figure 5 are presented four different velocity patterns as a function of time and radial
coordinate x for C = 8 × 10−4, 10−2, 5 × 10−2 and 5 × 10−1. Each case is taken when the
profiles have reached steady state and is plotted for 1.2 × 104 time steps, corresponding to
1.2 × 105 cyclotron periods ω−1

cs . Note that the scale of the colour bars is different for each
case.

In all simulations, ZFs are active and prove crucial to mitigating turbulence. When
the flows are artificially switched off by removing the Reynolds stress drive, a large,
system-size radial mode develops. In those cases, the system enters a quasi-periodic
regime where a large density gradient builds up and relaxes through a strong transport
event. An example of this regime is given in Appendix B. When flows are present, they
can be radially structured and stable, as in figure 5(d) or intermittent as in figure 5(c).
For the other cases (a,b) the system exhibits intermediate structuration with meandering,
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(a) (b)

(c) (d)

FIGURE 5. Four examples of equilibrium velocity Veq = −〈Er〉 at equilibrium (τ > τp).
Panels show (a) C = 8 × 10−4, (b) C = 10−2, (c) C = 5 × 10−2, (d) C = 5 × 10−1.

splitting and merging events. An example of splitting appears in case (a) at x = 100 with
a fork-like pattern of the flow. Merging occurs in case (b) at x ≈ 220. The radial structure
of the flow also depends on damping. An example is shown in Appendix C, for the case of
figure 5(b), where greater flow time stability is obtained when the dissipation coefficients
on fluctuations D1 and ν1 are increased.

The dynamics depends on the adiabaticity parameter: at low C, the system develops
smooth structures that evolve slowly. When C increases, the dynamics of turbulence and
flows is faster. Moreover, diagonal stripes are visible for cases (b,c), associated with
ballistic transport events of particles called avalanches. It is known that staircases can act
as micro-barriers for these avalanches, efficiently limiting their radial extension (Kosuga
et al. 2014). In general, the flows can either stop the avalanches or, if the avalanches are
strong enough, they can travel through the shear layer, perturbing it in the process. In the
observed cases, when the flows are radially structured, they always manage to recover their
radial structure after an avalanche. Importantly, it is found that the radial size of the ZF is
an emergent property independent of the box size Lx. For simulations performed at very
low Lx ≈ 10 , a single ZF can fill up all of the simulation domain.

In the confined region of tokamak plasmas, one expects an additional radial electric
field that exists alongside this turbulence-driven flow (remember that Veq ∼ −〈Er〉 in
dimensionless variables). Indeed, the radial force balance relates the mean Er to the ion
pressure gradient and the Lorentz force. This physics is ignored in the present version
of Tokam1D, the focus being on the self-regulation of turbulence by self-generated ZFs.
Therefore, the flows here are mostly sinusoidal and symmetric around zero.

The diagonal stripes are also visible in the amplitude of the density fluctuations.
Figure 6(a) shows the amplitude of the density fluctuations for C = 10−2, corresponding to
the flows in figure 5(b). Density fluctuations are propagating both in and outward at similar
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(a) (b)

FIGURE 6. Density fluctuation for case C = 10−2. (a) Amplitude of the Fourier component
Nk as a function of time and space, the white line notes the snapshot for which is plotted the
fluctuation field. (b) Two-dimensional fluctuating density field Ñ(x, y, t) = Nk(x, t) exp(ikyy) +
c.c. taken at z = 0 (cf. (2.16)) for t = 6.03 × 106. The black line shows the equilibrium velocity
around the same time snapshot.

speed. The associated turbulent particle flux is always positive, resulting in an outward
transport. For the case shown, the typical avalanche length is comparable to the radial
size of the velocity structures. The right-hand side features the form of the turbulence in
the (x, y) plane for t = 6.03 × 106. It is computed using the complex density fluctuation
field and the definition (2.16). On top of the density fluctuation is shown the equilibrium
velocity after being coarse grained on a few time and radial points. The tilt of the turbulent
structures in the (x, y) plane corresponds to the velocity direction, indicating that flows are
efficiently elongating turbulent structures in the poloidal direction. Noticeably, the phase
of the fluctuations can exhibit quasi-profile discontinuities, as visible e.g. at x ∼ 160.

4.2. Transition from turbulence to flow dominated regime at large C
Zonal flows act as a repository for the energy of the system. The more energy is stored
inside the ZFs, the less is available for turbulence to generate transport. Numata et al.
have shown that there was a collapse of relative energy stored in the flows at low C
(Numata et al. 2007). Here, we show that, in flux-driven regimes, the density gradient also
adapts to the presence of flows and turbulence. Therefore, the transition from a turbulence
dominated regime to a flow dominated regime is much smoother. This is in agreement
with previous work (Numata et al. 2007), provided one accounts for the gradient evolution
together with the flows.

Using the energy channels defined (2.29)–(2.32), we can evaluate whether the free
energy is captured by turbulence or is stored in the flows. Flows and turbulence energy
EVeq and Eturb are coarse grained on a few turbulence auto-correlation times. Then, the
root-mean-square (r.m.s.) radial profiles are computed

Erms
turb(x) =

√
〈E2

turb(x, t)〉t, (4.2)

with 〈. . .〉t a time average. To get a single value per simulation, the radial average of
the energy partition is performed, 〈Erms

Veq/(E
rms
Veq + Erms

turb)〉x. The flow and turbulence energy
channels are shown in figure 7(b) as a function of C and their partition ratio is shown

https://doi.org/10.1017/S0022377824001624 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001624


On the importance of flux-driven turbulence regime 23

(a) (b)

FIGURE 7. (a) Flow to turbulence energy partition ratio as a function of C with the colour
indicating the absolute value of the density gradient in log scale. Error bars represent the standard
deviation of the r.m.s. profiles. (b) Corresponding normalized flow and turbulence energies.

in figure 7(a). The colour of the points corresponds to the steady-state density gradient,
already shown in figure 4.

The flow to turbulence energy partition ratio increases with the adiabaticity parameter;
see figure 7(a). At low C the system is dominated by turbulence with approximately
0.001 % of the energy stored in the flows. In the adiabatic regime, at large C, flows account
for 80 % of the total energy. Consistently, the density gradient increases with C. It is
illuminating to look at each channel separately. In figure 7(b) the turbulence and velocity
channels computed using (4.2) and divided by the total energy are shown. Most of the
energy variation is carried by turbulence: it evolves from 3 × 10−4 of the total energy at
low C to 4 × 10−6 at large C.

On the basis of these observations, we focus on the expected impact of density on
the ZF and turbulence dynamics. Although taken constant in the present simulations,
the adiabaticity parameter C = (k‖ρs)

2ωcs/νei should actually scale like 1/Neq. High
density plasmas are then characterized by small C values (assuming constant k‖ρs). In
this case, on the basis of figure 7(a), one expects a low ZF to turbulence energy ratio.
This suggests that the turbulent transport should increase when density increases or
respectively when C decreases. The trend is qualitatively similar to results in Numata
et al. (2007) but not quantitatively. More precisely, the ZF magnitude decreases rather
monotonically at large density (collisionality) and does not exhibit the collapse reported
in Numata et al. (2007). The difference results from the self-consistent evolution of
Neq in flux-driven simulations. In the absence of nonlinear mode–mode coupling , the
system has two ways to saturate turbulence: by profile relaxation (transport) and ZF
generation. In low C cases, for which the energy stored in ZFs is minimal, the former
mechanism is favoured. The richness of the saturation channels permitted by flux-driven
simulations thus leads to a less abrupt transition of the system. It should be noted that
figure 7(a) is consistent with the ZF collapse reported in Numata et al. (2007) provided
one also moves from one density gradient to another when decreasing C (green and
red curves in figure 5 of Numata et al. 2007). A steep increase of ZF energy has also
been found in gyrofluid modified Hasegawa–Wakatani simulations including warm ions
(Grander, Locker & Kendl 2024). In this latter contribution, mode–mode interactions
are retained, leading to a self-consistent turbulent cascade, but the background density
gradient is imposed, limiting the liberty of the system to explore the (C, ∂xNeq) parameter
space.

A few experiments have reported the strong reduction of ZFs – or proxies for ZFs
– when approaching the density limit in L-mode tokamak plasmas (Xu et al. 2011;
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Hong et al. 2017; Long et al. 2019). In this context, the ZF collapse at large density in
gradient-driven simulations of Hasegawa–Wakatani turbulence (Numata et al. 2007) has
recently been put forward as a possible explanation for these observations (Hajjar et al.
2018; Singh & Diamond 2022). Our simulations suggest, however, that, in the flux-driven
regime relevant to tokamak plasmas, this reduction of ZFs could be much more gradual.
Although not discarding the physics as a possible explanation for the issue of density
limit in the L-mode, these new results advocate for a renewed exploration of the link
between ZF reduction and density limit in a self-consistent flux-driven regime. Whether
these findings may explain the reason why ZFs are found to play a secondary role in the
density limit mechanism reported in Giacomin et al. (2022) remains an interesting yet
open question. Last, note that the above analysis has only focused on the impact of density
on the adiabaticity parameter, C, that governs the transition from the adiabatic to the
hydrodynamic regime in Hasegawa-Wakatani turbulence. However, increasing density also
increases the friction coefficient acting on the poloidal flow, hence on ZFs (μ parameter
in (2.18)). Gianakon et al. (2002) provide a heuristic expression for this neoclassical
coefficient. This density dependency has already been proven to be key to the modelling
of Low to High (L-H) confinement bifurcations in flux-driven simulations of resistive
ballooning turbulence (Chôné et al. 2014, 2015). This improvement of the model is left for
future work.

5. Staircase dynamics

The amplitude and the energy of the ZFs and hence the zonal to total energy ratio are
large at large C. However, the radial structure does not depend directly on C as structures
are observed at both small and large C values. Here, we focus on the formation of staircases
and on the importance of the feedback loop between the density gradient and flows, still
in the CDW turbulence regime at g = 0. In particular, we observe that the staircases
disappear when we break this feedback loop.

5.1. Staircase nucleation
Staircases are robust structures. We have found that they always manage to recover after a
perturbation. Here, we look at the nucleation of a staircase when restarting a steady-state
simulation after having smoothed out the corrugation in Neq and Veq and damped out the
fluctuations Nk, Ωk. The system then has no memory of the past structures. The chosen
simulation corresponds to C = 5 × 10−4, with the steady-state flows shown figure 5(a).
The nucleation of the flow pattern is shown in figure 8(a) together with the dynamics of
the density profile in figure 8(b). The black rectangle indicates the time window of the
nucleation process which is studied in the following.

Upon restart, at t = 3 × 104 in figure 8, the equilibrium density gradient is above the
linear threshold. Therefore, instability and flows appear directly in the whole domain after
a short growth time. Qualitatively, a similar staircase structure is recovered. However, there
are approximately 7 structures in figure 8, as compared with the initial 9 structures.

Focusing on the nucleation of a particular staircase step located at x = 123, which is
indicated with a vertical dashed line, the time evolution of the flows and Reynolds stress
at this location are shown in figure 9.

An exponential growth of both electric and diamagnetic components of the Reynolds
stress is observed. The flows result from a secondary instability (Diamond et al. 2005) and
are governed by the Reynolds stress components. For this simulation, both components of
the Reynolds stress are important for the generation of the flows, with the diamagnetic one
being slightly larger at initial times.
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(a) (b)

FIGURE 8. (a) Equilibrium velocity after being smoothed out at t = 3 × 104. Nucleation is
indicated with dotted lines. (b) Evolution of the equilibrium density as compared with its value
at the restart: Neq − Neq(t = 3 × 104).

FIGURE 9. Energy of the equilibrium flow, total Reynolds stress and its components as a
function of time for x = 123.

The dynamics of the phase is essential in the generation of both components. Bearing
in mind that fluctuations can be decomposed into amplitude and phase, φk = |φk|eiϕφ

k , the
electric component of the Reynolds stress can be recast as

ΠE = 〈ṽExṽEy〉 = −2ky|φk|2∂xϕ
φ

k . (5.1)

The ZF dynamics is governed by the divergence of the Reynolds stress. The separate
roles of the phase and of the amplitude clearly appear when computing the logarithmic
derivative of ΠE

∂xΠE

ΠE
= −2ky

2∂x|φk|
|φk| + ∂2

x ϕ
φ

k

∂xϕ
φ

k

. (5.2)

The value of ΠE is displayed in figure 10(a) together with its decomposition. The Reynolds
force is detailed in figure 10(b).

In figure 10(a), it appears that both the amplitude and the phase are important for ΠE
growth. When computing the Reynolds force, see figure 10(b), the phase itself dominates
the dynamics. The key role of the phase was already pointed out in Guo & Diamond (2016)
and in Sarazin et al. (2021). It shows that it is essential for a reduced model to retain the
complete fluctuations as both amplitude and phase play a role in the generation of flows.
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(a) (b)

FIGURE 10. Electric Reynolds stress decomposition as a function of time for x = 123. (a)
Reynolds stress. (b) Logarithmic derivative of the Reynolds stress, relating to the Reynolds force.
The phase jumps have been removed by ‘unwrapping’ the phase in the post-processing.

The diamagnetic component of the Reynolds stress, (2.22), can be decomposed in the
same way. Considering the conjugate of density fluctuations as N∗

k = |Nk|e−iϕN
k , the tensor

reads

Π� = −2kyτ Im(N∗
k ∂xφk)

= −2kyτ |Nk||φk|
[
∂xϕ

φ

k cos �ϕ + ∂x|φk|
|φk| sin �ϕ

]
. (5.3)

With �ϕ = ϕ
φ

k − ϕN
k the cross-phase between the density and electric potential

fluctuations. The first term on the right-hand side is proportional to the electrostatic
component of the Reynolds stress while the second relates to the turbulent flux of particles.
It writes

Π� = τ
|Nk|
|φk| cos �ϕΠE + τ∂x (log|φk|) Γturb. (5.4)

The correlation between these two components of the total Reynolds stress ultimately
depends on the relative weight of the second term with respect to the first. If it is negligible,
then the two tensors appear correlated. In this case, the sign of the phase coupling (cos �ϕ)
then determines whether Π� and ΠE are in or out of phase. For CDW turbulence, the
two tensors appear correlated and in phase (C(Πe,Π�) ≈ 0.7 for C = 3 × 10−4), which
is even stronger at large C (C(Πe,Π�) ≈ 0.98 for C = 8 × 10−1). This is expected, since
the phase between density and electrostatic potential fluctuations decreases approaching
the adiabatic limit. The diamagnetic contribution is also larger than the electrostatic
contribution with Π� > 1.5ΠE for C < 10−2, then slowly decreases towards Π� ≈ 1.1ΠE
at large C. As a matter of fact, turbulence in the CDW regime is carried mostly by density
fluctuations, which results in |Nk|/|φk| > 1.

5.2. Profile relaxation crucial to self-organization
Profile relaxation is an important saturation mechanism for the turbulence in tokamaks.
It is thus crucial to allow this mechanism for studying turbulence saturation and
turbulence–ZF interactions in these systems. In order to assess the importance of this
mechanism, in this section we artificially prevent any profile relaxation by fixing the
density gradient and perform a restart of a steady-state flux-driven (FD) simulation in
a gradient-driven (GD) framework. Note that the flux-surface-averaged density gradient
does not evolve in time at all in these restarted simulations. This is in marked contrast with
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(a) (b)

FIGURE 11. (a) Equilibrium velocity from GD restart of steady-state simulation at C = 5 ×
10−4: switch from FD to GD is made at t = 3 × 104. (b) Density gradient and its radial derivative
before and after the GD restart. The density profile before the restart is taken at t = 2.9 × 104.

the more common GD simulations of the Hasegawa–Wakatani system that one can find in
the published literature (see e.g. Majda et al. 2018). Indeed, in these latter cases, the density
fluctuations contain a zonal component (ky = 0) whose time evolving gradient adds up
algebraically to the one (constant in time) set by the background density. Yet, a restoring
force prevents this back reaction from balancing the initial gradient – and therefore to
annihilate it – so that the self-consistent dynamics of the system gets frustrated. Another
difference with respect to more standard simulations – apart from the absence of nonlinear
mode–mode coupling in Tokam1D (cf. § 2.5) – is that fluctuations are not assumed to be
periodic in x in Tokam1D.

We choose the case C = 5 × 10−4 and continue the simulation while fixing the gradient.
The density profile has been smoothed so that the corrugations are removed, as exemplified
in figure 11(b). In figure 11(a), the equilibrium velocity Veq and the density fluctuation
amplitude |Nk| are shown as a function of space and time. The first half of the simulation is
the steady-state FD simulation. At t = 3 × 104, the equilibrium density profile is smoothed
using a Savitzky–Golay filter of order 3 on a 301 point window size. The second half of
the simulation corresponds to the GD regime using the smoothed density profile.

Figure 11(a) shows that the flows exhibit roughly the same amplitude in both FD and
GD settings. However, their radial structure is very different. The chosen case is radially
structured in the steady-state FD case, while no clear layering emerges in the GD case. The
flow layers are still present just after the restart but this configuration cannot be sustained
in the GD regime. These observations suggest that the system – at least in the regimes
explored – must be able to store energy in the density (pressure) profile in addition to
the flows in order to develop well-localized flow layers. In other words, the staircase
structure requires two critical ingredients: localized shear flow layers in association with
large density (pressure) gradients, which appear to reinforce each other. The loss of one
of these ingredients prevents the appearance of the whole structure. In the GD regime,
the density gradient is frozen in time so that this mechanism is absent. This symbiotic
relationship between flow layers and pressure corrugations appears to be instrumental in
the staircase dynamics.3 The electrostatic potential fluctuations, plotted in figure 12(a),
exhibit a slightly larger magnitude in the GD regime as compared with the FD regime.

3As explained earlier, to prevent the complete relaxation of initial profiles, any GD local model inevitably includes a
restoring force that aims at clamping – in a controlled manner – the mean gradients to their initial values. In the present
numerical experiment, the restoring force can be considered infinite from t = 3 × 104 onwards, since the mean profile is
not allowed to evolve at all. Less critical conditions are usually applied. In any case, the consequence is that freedom is
lost, at least partially, by imposing an additional and experimentally irrelevant constraint on the mean profile.
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(a) (b)

FIGURE 12. (a) Electric potential fluctuations for the GD restart of the steady-state simulation
C = 8 10−4. (b) Radial derivative of electric potential fluctuation phase.

Also, their dynamics looks similar to that of the equilibrium flow in the GD regime,
from t = 3 × 104 onwards. In particular, the radial distance of propagation of avalanches
is much larger in the GD regime, sometimes reaching the system size.

The presence of avalanches in itself may appear surprising. Indeed, avalanches are often
understood, by analogy with sandpiles, as resulting from a domino-like effect (Diamond
& Hahm 1995): a localized strong flux tends to flatten the profile locally and steepens it on
both sides due to conservation laws. The strong gradients on both sides then lead to strong
local fluxes, further leading to local flattening. The process can repeat over long distances,
resulting in the formation of voids and bumps that propagate radially up and down hill,
respectively. Local profile relaxation then appears to be key to the whole dynamics. In
GD simulations where the density gradient is frozen in time, this mechanism is absent
and cannot therefore explain the existence of avalanches on Veq. Interestingly, it appears
that the electric potential fluctuations magnitude |φk| and phase gradient ∂xϕ

φ

k exhibit an
avalanche dynamics, as can be seen in figure 12. They both govern the electric component
of the Reynolds stress, (5.1). It is so far unclear whether one or the other – or both – is
the main drive for the dynamics of Veq, the other quantity being slaved to it via the back
reaction of the flow shear. Note that both terms, the phase gradient and the fluctuation
magnitude, are contributors to the turbulent energy. Therefore, discriminating one scenario
with respect to the other is not obvious solely from an energetics standpoint. This remains
an open issue for future works.

6. Conclusion

The primary goal of this paper was to understand how turbulence and ZFs interact
in a flux-driven formulation, resulting in a redistribution of the turbulent energy and its
effect on turbulent transport. In order to achieve this, a reduced, nonlinear model, called
Tokam1D, that captures the dynamics of the two key instabilities, namely the CDW and the
interchange (or RBM in three dimensions) is proposed. The model, which includes both
an electric and a diamagnetic Reynolds stress nonlinearities, is derived in some detail,
first in a general form, and then the underlying assumptions leading to the reduction are
clearly presented. It was noted that the total energy can be defined for the full flux-driven
system, and shown to be conserved. A linear study shows that both instabilities are well
captured by this model, showing that, with a given value of viscosity, the drift instability
is saturated at both large and small values of the adiabaticity parameter C, while the
interchange exhibits a threshold in density gradient but is stabilized at very large g due
to the effect of compressibility terms.
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These two instabilities are possibly the key players in the physics of turbulent transport
at the tokamak edge, especially in density limited and L-mode plasmas, and the reduced
model allows a detailed study of the competition and the interaction between, on the one
hand, the two instabilities, and on the other hand, the ZFs and the underlying turbulence,
while allowing a self-consistent evolution of both the density and the poloidal flow
profiles.

Unlike GD simulations that impose a constant pressure gradient, the FD Tokam1D
model enables self-consistent evolution of equilibrium profiles. This allows for a more
natural representation of how turbulence interacts with background profiles, leading to
more realistic saturation mechanisms, including profile relaxation, sometimes through
avalanching and flow self-organization, which leads to self-organized criticality. It makes
the dynamics primarily near marginal, even if it was initially far from it, possibly linked
to the experimental phenomenon of profile stiffness (Mantica et al. 2009).

Being a reduced 1-D model, where the fluctuation dynamics is mainly linearized and
projected onto a fixed poloidal ky and parallel k‖ mode, the model focuses mainly on the
interplay with ZFs and profile relaxation due to its FD nature. One can further add a
nonlinear saturation term to account for mode–mode coupling, but in the absence of this
proxy for nonlinear coupling, the primary saturation mechanism is that of the density
profile relaxation – in the spirit of quasilinear theory – and the storage of turbulent energy
in equilibrium poloidal flows. These two mechanisms play important roles in weakly
forced systems that remain close to marginality.

One of the issues that is considered in some detail in this paper is the dynamics
and structuring of the equilibrium flow Veq at vanishing g, which corresponds to
the Hasegawa–Wakatani limit, where the effects of magnetic field inhomogeneity are
neglected. We have scanned the so-called adiabaticity parameter C to study its impact
on flow self-organization in this regime. The scans are usually performed with adapted
magnitudes of the particle source, so that the steady-state equilibrium density gradient
remains close to the linear threshold regardless of the C value (cf. figure 4). Note that,
even though the role of the competition between CDW and interchange in ZF formation
will be explored in a future work, several key results have already emerged from the current
analysis.

First, unlike previous numerical observations based on fixed gradient simulations that
reported a sharp collapse of the ZFs at low C, with a threshold that is proportional to the
fixed gradient parameter, our results show that the energy stored in ZFs decreases smoothly
as the adiabaticity parameter C is reduced. In our FD model, the absence of such a collapse
can be attributed to the simultaneous adjustment of the equilibrium density profile, which
provides a self-organized distribution of local gradients and therefore a distribution of
local thresholds for the C parameter to compete against. This underscores the importance
of self-consistent profile evolution in FD models and suggests that such models may
provide a more accurate representation of tokamak edge turbulence compared with their
GD counterparts. It was also observed that the electric and diamagnetic components of
the Reynolds stress are large and organized in such a way that they add up at large C.
Unfortunately, since our model also suppresses fluctuation–fluctuation interactions, the
standard dual-cascade picture of 2-D turbulence cannot be activated for any value of C, it
is difficult to disentangle the two effects. Our results provide a clear opportunity for a 2-D
FD model to resolve this issue.

Second, we observe that the ZFs organize themselves into staircases at both small and
large C values. The steps in these staircases can be characterized by well localized flow
layers, that act as micro (particle) transport barriers leading to increased density gradients.
These structures are well known in the study of plasma turbulence, and they were
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previously observed in FD gyrokinetic simulations of ion temperature gradient-driven
turbulence (Dif-Pradalier et al. 2017), however, the dynamics observed in our simulations
– such as meandering, merging and splitting of staircase layers – underlines the complex,
non-trivial dynamics of these structures.

Third, the staircases are found to be robust and to recover after a natural – or artificial
– perturbation. This suggests that staircases may survive in the presence of additional
physics, and mechanisms that our model lacks and therefore they may have relevance even
in realistic conditions of a tokamak edge turbulence.

Finally, one of the key findings of this study is the numerical observation of the role
that the phase dynamics plays in the formation of staircases. The cross-phase between
density and potential fluctuations coincides with the localization and strength of the steps
of the staircase, underlining the importance of properly retaining the phase dynamics
in turbulence models. Importantly, the ability of ZFs to develop radial structures – i.e.
well-organized steady layers that are localized radially – looks bound to the capacity of the
system to store energy in the mean density (pressure) profile: in other words, the staircase
pattern of the pressure profile does not appear to be the mere consequence, a simple
signature of the sheared layers, but more critically a key ingredient of their generation and
sustainment. These observations could be used in order to interpret and direct experimental
efforts to identify these structures in real tokamak plasmas, where they are very difficult
to observe.

In conclusion, this study has introduced Tokam1D, as a reduced model of turbulence
capable of capturing essential aspects of FD turbulence in tokamak edge plasmas,
demonstrating the key role of ZFs in regulating turbulent transport and underlining the
importance of self-consistent profile evolution in FD simulations, offering new insights
that could guide both theoretical and experimental efforts to better understand and control
turbulence in fusion plasmas. Future work will extend this analysis to include the interplay
between CDW and interchange instabilities and explore the implications for confinement
and transport in more complex plasma regimes.

Acknowledgements

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the programme ‘Anti-diffusive dynamics:
from sub-cellular to astrophysical scales’, where work on this paper was undertaken. This
work was supported by EPSRC grant EP/R014604/1. G.D.P., Y.S. and O.P. acknowledge
that this work was partially supported by a grant from the Simons Foundation.

Editor Paolo Ricci thanks the referees for their advice in evaluating this article.

Funding

This work has been carried out within the framework of the EUROfusion Consortium,
partially funded by the European Union via the Euratom Research and Training
Programme (Grant Agreement No 101052200 – EUROfusion). The French contribution
to this work has been partially funded by the Research Federation Fusion par Confinement
Magnétique (FRFCM). Views and opinions expressed are, however, those of the author(s)
only and do not necessarily reflect those of the European Union, the European Commission
or SERI. Neither the European Union nor the European Commission nor FRFCM can be
held responsible for them.

This work was supported by the EUROfusion Theory and Advanced Simulation
Coordination (E-TASC) initiative under the TSVV (Theory, Simulation, Verification, and
Validation) ‘Physics of the L-H Transition and Pedestals’ (2021–2025).

https://doi.org/10.1017/S0022377824001624 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001624


On the importance of flux-driven turbulence regime 31

Declaration of interests

The authors report no conflict of interest.

Data availability

The data that support the findings of this study are available upon reasonable request.

Appendix A. Dual role of ion to electron temperature ratio

The role of the ion to electron temperature ratio, τ = Ti/Te, in the linear instabilities is
studied in the framework of Tokam1D. A more complete contribution about the role of
τ can be found in Casati et al. (2008) for Ion Temperature Gradient (ITG) and Trapped
Electron Mode (TEM) instabilities. The case of Tokam1D is peculiar: a single poloidal
wavenumber ky is chosen. Therefore, in the following we will treat both the case ky = cte
and the case where kx and ky are chosen such that they maximize the growth rate, dubbed
ky(γmax). We will show that τ can be either stabilizing or destabilizing depending on the
instability at play. Also, it will appear that fixing a single ky can lead to very different
results as compared with the full 2-D case.

First, let us study the case with both CDW and interchange instabilities. In figure 13(a),
we plot the growth rate as a function of τ for 4 different density gradients. The interchange
parameter is fixed at g = 2 × 10−3 and the adiabatic parameter at C = 10−3. The growth
rate is shown for the case ky = 0.3 in full lines and ky(γmax) in dotted lines. In figure 13(b),
the value of ky leading to the maximal γ is indicated for each τ and gradient. The
horizontal dotted line indicates ky = 0.3, as chosen for Tokam1D.

For small τ , the effect on the growth rate is limited. The most prominent effect is visible
for small density gradients where the growth rate increases from γ ≈ 0 at τ = 10−3 to
γ = 2.5 × 10−3 at τ ≈ 6. At larger τ , there is a large discrepancy between the cases at
fixed ky, and the cases ky(γmax). When several ky are allowed, τ appears to be destabilizing
whereas it is stabilizing in the fixed ky case. This is a result of the ion to electron
temperature ratio shifting the ky value of maximum growth rate from ky ≈ 0.35 to ky ≈ 0.1,
see figure 13(b). This highlights that Tokam1D is not suited to studying the role of large ion
to electron temperature ratios in the linear and nonlinear dynamics since it requires several
ky to be described. For τ = 1, the growth rates for the case at fixed ky and ky(γmax) have
been observed to be similar for most of the tested equilibrium parameters. It is considered
relevant.

The parameter τ is stabilizing as it tends towards infinity. What happens between τ = 1
and τ −→ +∞ depends on the instability at play. Displaying the same analysis as in
figure 13, for the case interchange only and CDW only, one obtains the result of figure 14.

For both CDW and interchange instabilities, τ is slightly destabilizing when small. Note
that it can be enough to destabilize the system; see the case of drift waves at 1/LN = 10−2

which display a positive growth rate at τ = 3. When larger, τ is always stabilizing for
the Tokam1D case at fixed ky but can be stabilizing or destabilizing depending on the
instability at play for the general ky(γmax) case. At large τ , for the CDW case, in figure 14(a)
τ is stabilizing. For interchange, τ appears as destabilizing for the general case and
stabilizing for the fixed ky case. The behaviour of the general case with coupled instabilities
displayed figure 13 then depends on which instability is dominant.

We can conclude that τ exerts a dual effect on both the instabilities, depending on
the dominant instability, density gradient and value of τ . More importantly, it is made
clear that Tokam1D is not suited to the study of large τ since the growth rate exhibits a
maximum at a poloidal wavenumber that significantly evolves with τ .
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(a) (b)

FIGURE 13. (a) Growth rate as a function of τ for different density gradients, C = 10−3, g =
2 × 10−3. The case at fixed ky is indicated by full lines. (b) ky corresponding to the maximum
growth rate (dotted lines in a). Here, D1 = ν1 = 10−2.

(a) (b)

FIGURE 14. (a) Growth rate as a function of τ for different density gradients, C = 10−3,
g = 0. (b) Same as (a) with C = 0 and g = 2 × 10−3. Here, D1 = ν1 = 10−2.

Appendix B. Artificially switching off ZFs

It has now been clear that ZFs play a role in stabilizing the turbulence for more than 20
years (Lin et al. 1998). Here, we show that they are essential, even in the case where they
are shown to be very small. We take a case with a low flow to turbulence energy ratio,
at C = 2 × 10−4 and g = 10−4. In this simulation, the flows account for ≈0.1 % of the
turbulence energy. We show that by artificially suppressing them, the simulation diverges
and a large radial mode fills the simulation box. The results are shown in figure 15.

A large relaxation mode occurs when the ZFs are switched off due to the gradient being
large. The profile relaxes until it gets below the linear threshold. Then the system enters
a periodic state where the gradient builds up, a large radial mode appears and the profile
gets relaxed.

Appendix C. Larger dissipation leads to more structured flows

What leads to the radial structure of the flows? In the presented simulations, structured
flows can appear both at low and large C, with no clear dependence on linear properties or
turbulence parameters. Flows are shown to lose their structure when switching from FD to
GD simulations. The source and dissipation also appear as key players when it comes to
the radial structure.

We take the case C = 10−2, shown figure 5(b), and we vary the dissipation coefficients
in the fluctuation equations while keeping the source constant. Doing so, the linear
threshold is modified as it depends directly on the dissipation. Since the source is kept
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FIGURE 15. Turbulent flux Γturb as a function of time and radius. The ZFs are artificially
switched off at T = 3 × 104.

(a) (b)

(c) (d)

FIGURE 16. Variation of fluctuation dissipation coefficient D1 and ν1. Panels show (a,c) D1 =
ν1 = 5 × 10−3, (b,d) D1 = ν1 = 2 × 10−2. The equilibrium velocity is displayed in (a,b) while
the density fluctuation amplitude is shown in (c,d).

constant, the distance to the linear threshold is also modified. Two cases are performed,
at D1 = ν1 = 2 × 10−2 and D1 = ν1 = 5 × 10−3. The results in terms of flows and density
fluctuations are shown figure 16.

In figures 16(a) and 16(b) are shown the equilibrium flows for both cases. Both ZFs
have similar amplitude, with the latter being more structured and stable in time. In
figures 16(c) and 16(d) are displayed the corresponding density fluctuation amplitudes.
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The low dissipation case leads to larger fluctuations. The size of the turbulent structures
does not seem to vary much in between the two cases.

It is apparent that a larger dissipation leads to more stable flow structures. The distance
to the linear threshold seems to play a role, case D1 = ν1 = 2 × 10−2 evolves very close
to its linear threshold, with its gradient being only 1.1 times the linear threshold. Case
D1 = ν1 = 5 × 10−3 stands far from threshold with its gradient being 2.6 times the
linear threshold. The underlying linear characteristics of the system are similar, for the
high dissipation case ω = 0.02, γ = 0.005 and sin �ϕ = −0.35. For the low dissipation
case, ω = 0.017, γ = 0.0044 and sin �ϕ = −0.3. However, it should be noted that these
characteristics are computed with the smoothed steady-state gradient and do not take into
account the corrugations. Possibly, the bifurcation occurs as a result of small-scale effects.
The link between corrugation, radial structure and stiffness of the system (in terms of
variation of turbulent flux with density gradient) should also be explored.

Appendix D. Numerical implementation and verification

The 1-D radial system of equations is written in FORTRAN90 and solved using a
fourth-order Runge–Kutta scheme in time and centred fourth-order finite differences in
space. The dissipation terms are treated to the second order using the semi-implicit
Crank–Nicolson scheme. A basic sketch of the workflow used in Tokam1D is given
in figure 17. The numerical scheme is symmetric. Dissipation is applied 2 times on
�t/2, before and after the equation evolution. The arrays are saved every Xd = 2 dx
and Td = 100 dt points into HDF5 files. Neumann boundary conditions with vanishing
gradients are used for the density at x = 0 and for the velocity at both ends. Dirichlet is
used for the density imposed as Neq = 0.1 at x = Lx and the fluctuations set to zero at both
boundaries. Finally, at the end of a restart, a file is written containing arrays, parameters
and boundary conditions to the maximum accuracy. A subsequent simulation can then
restart from this file.

The time step, dt, needs to be small with respect to the typical time involved in the
system. In the present case, it should be compared with the growth rate γ and the real
frequency ω of the instabilities. One needs to ensure that γ dt 
 1 and ω dt 
 1. As
shown in figure 2, these inequalities are well fulfilled since the growth rate and frequencies
are, respectively, of the order of 10−3 and 10−2 for typical values of the parameters. When
the equilibrium density profile is corrugated, it can locally develop large gradients, leading
to larger values of γ . The conservative choice dt = 0.1 then leaves a comfortable margin
to ensure proper convergence even in these large γ regions.

In addition, one can compute the Courant–Friedrichs–Lewy (CFL) condition of
numerical stability:

vmax ≤ dx
dt

. (D1)

Here, vmax is the maximum characteristic speed of waves or information propagation
in the simulation. In the reported simulations, the grid step size is dx = 400/1024 ρs
and the time step is ωcs dt = 0.1, where ρs is the sound Larmor radius and ωcs the ion
cyclotron pulsation. The condition leads to vmax < 4 ρrmcsωcs ≈ 4vth, where vth is the
thermal velocity of the particles. In the framework of this reduced fluid model, we deal
with drift velocities of the order of ρ�vth 
 vth, where ρ� = ρs/a 
 1 is the sound Larmor
radius normalized by the minor radius of the tokamak. It results in the CFL condition being
well fulfilled with the time step ωcs dt = 0.1. Tests with smaller and larger time steps have
shown that the simulations were actually well converged. For post-processing purposes,
data are saved every 100 dt. The compromise is to have a sufficiently small diagnostic
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FIGURE 17. Tokam1D numerical workflow.

FIGURE 18. Agreement of the fluctuations’ exponential growth between simulation and linear
analysis. Performed for case (C, g, τ ) = (4 × 10−3, 10−3, 1). Initial density profile gradient
length LN = 50.

time step so that physical quantities exhibit a continuous dynamics, while not saving an
unnecessarily large amount of data. The actual retained value ensures that the physical
processes of interest are well captured even after this coarse graining in time.

The model is first verified in the linear regime during the exponential growth of the
fluctuations. With this aim, simulations are initialized with single modes kx = mk2π/Lx,
with mk the radial mode number and Lx the radial size of the simulation. When scanning
the launched modes mk, one can check whether the exponential growth is in agreement
with the linear prediction. These tests have been performed by launching GD simulations
with no flows and parameters (C, g, τ ) = (4 × 10−3, 10−3, 1). A total of 9 simulations
are launched, with modes mk = 1, 3, 5, 7, 9, 11, 15, 30, 60. The resulting growth rate is
successfully compared with the linear prediction in figure 18.

The nonlinear saturated regime of the simulations is also verified to be well resolved.
Typical kx spectra of the fluctuations are shown to span several orders of magnitude, as
shown in figure 19.
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FIGURE 19. Fluctuation kx-spectra for the fluctuations of density Nk, electric potential φk and
vorticity Ωk. Performed for the case C = 3 × 10−3 at statistical steady state.
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