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Reciprocally related primes

DAMJAN KOBAL

Introduction
Number theory and especially primes are an infinite source of

inspirational ideas in elementary mathematics. Many of these ideas can
be understood and some also explained with very basic mathematical
knowledge. In our paper we explain the cycle which appears between the
first six multiples of the decimal expression of  and explore an inspiringly
simple relation between primes, which somehow makes them gather into
mysterious groups. And while exploring these simple questions, we are led
to unveil some aspects of the power and limits of human mind and those of a
computer.

1
7

Mysterious 7
One of the well-known observations related to number 7 is the fact that,

if one takes the 6-digit cycle of the decimal expression of , and compares it
to the cycles of the associated multiples

1
7

(1)

1
7 = 0.142857

⎯ ⎯⎯⎯ ⎯

2
7 = 0.285714

⎯ ⎯⎯⎯ ⎯

3
7 = 0.428571

⎯ ⎯⎯⎯ ⎯

4
7 = 0.571428

⎯ ⎯⎯⎯ ⎯

5
7 = 0.714285

⎯ ⎯⎯⎯ ⎯

1
7 = 0.857142

⎯ ⎯⎯⎯ ⎯,

one gets ‘cyclic shifts’ with the very same digits. Is number 7 unique or are
there other numbers with analogous ‘cyclic shifts’ of their decimal
expression cycles? Explanation of this phenomenon will follow shortly, but
let us first observe another related ‘mystery’. Consider the 6-digit number
142857, which appears as a cycle of the decimal expression of . Factorising
it we get

1
7

142857 = 3 · 3 · 3 · 11 · 13 · 37.
Now take one of these prime factors, for example 3, write  in decimal form
and notice its 6 digit period . Take the number 333333 and
factorise it . Doing the same for the other
three different factors, we notice an interesting pattern:

1
3

1
3 = 0.333333

⎯ ⎯⎯⎯ ⎯

333333 = 3 · 3 · 7 · 11 · 13 · 37
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1
3 = 0.333333

⎯ ⎯⎯⎯ ⎯
and  333333 = 3 · 3 · 7 · 11 · 13 · 37

1
7 = 0.142857

⎯ ⎯⎯⎯ ⎯
and 142857 = 3 · 3 · 3 · 11 · 13 · 37

1
11 = 0.090909

⎯ ⎯⎯⎯ ⎯
and 090909 =  3 · 3 · 3 · 7 · 13 ·37 (2)

1
13 = 0.076923

⎯ ⎯⎯⎯ ⎯
and 076923 = 3 · 3 · 3 · 7 · 11 · 37

1
17 = 0.027027

⎯ ⎯⎯⎯ ⎯
and 027027 = 3 · 3 · 3 · 7 · 11 · 13.

What is so special about prime numbers 3, 7, 11, 13, 37? What makes them
‘reciprocally related’ in such a nice way? Are there other ‘families’ of
‘reciprocally related primes’? For example, are primes 23, 29, 41
reciprocally related in a similar way?

Reciprocally related primes
We notice that, multiplying all the factors in the above factorisations,

we obtain

3 · 3 · 3 · 7 · 11 · 13 · 37 = 999999 = 106 − 1.
Obviously

1 =
3 · 3 · 3 · 7 · 11 · 13 · 37

999999
=

3 · 3 · 3 · 7 · 11 · 13 · 37
106 − 1

and since

1
106 − 1

=
1

106
+

1
1012

+
1

1018
+  …

also

1 =
999999
106 − 1

= 3 · 3 · 3 · 7 · 11 · 13 · 37 ·( 1
106

+
1

1012
+

1
1018

+  … ). (3)

Dividing this equation by any , for example
in the cases  or , we get

p ∈ {3,  3,  3,  7,  11,  13,  37}
p = 7 p = 13

1
7

=
3 · 3 · 3 · 11 · 13 · 37

106 − 1
=

142857
106 − 1

= 142857( 1
106

+
1

1012
+

1
1018

+  … )
and

1
13

=
3 · 3 · 3 · 7 · 11 · 37

106 − 1
=

76923
106 − 1

= 76923( 1
106

+
1

1012
+

1
1018

+  … )
respectively, which explains why these primes are ‘reciprocally related’ and
the pattern observed in (2) becomes obvious.

Our above reasoning was based on the factorisation of .
Analogously we can think about  for every . Let us define:

106 − 1
106 − 1 n ∈ �

Definition 1: For any positive integer  we define the set of reciprocally
related primes  as the set of all prime factors of .

n
���n 10n − 1
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In general if  factorises as , we have10n − 1 10n − 1 = p · q · r

99···99
← ⎯⎯⎯ →
n digits

= 10n − 1 = p · q · r

and

1 =
p · q · r

10n − 1
from where

1
p

= q · r · ( 1
10n +

1
102n +

1
103n +… )

1
q

= p · r · ( 1
10n +

1
102n +

1
103n +… ) .

From these observations we conclude that an analogous pattern to the one
presented in (2) can be observed for an arbitrary set of reciprocally related
primes :���n

Theorem 1: If  and particularly if , then  the
decimal form of the unit fractions  and ,
with digits , both have cycles of
length . If we consider the two integers  and  we have

10n − 1 = p · q· r p, q ∈ ���n
1
p = 0·a1a2… an

⎯ ⎯⎯⎯⎯⎯ ⎯ 1
q = 0·b1b2… bn

⎯ ⎯⎯⎯⎯⎯ ⎯

ai, bi ∈ {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}
n a1a2… an b1b2… bn

p · a1a2… an = q · b1b2… bn.

First we write the factorisations of  for
Table 1 and some of the  in Table 2.

10n − 1 n ∈ {1,  2,  3, … ,  20}
���n

9 = 3 · 3

99 = 3 · 3 · 11

999 = 3 · 3 · 3 · 37

9 999 = 3 · 3 · 11 · 101

99 999 = 3 · 3 · 41 · 271

999 999 = 3 · 3 · 3 · 7 · 11 · 13 · 37

9 999 999 = 3 · 3 · 239 · 4649

99 999 999 = 3 · 3 · 11 · 73 · 101 · 137

999 999 999 = 3 · 3 · 3 · 3 · 37 · 33667

9 999 999 999 = 3 · 3 · 11 · 41 · 271 · 9091

99 999 999 999 = 3 · 3 · 21649 · 513239

999 999 999 999 = 3 · 3 · 3 · 7 · 11 · 37 · 101 · 9901
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9 999 999 999 999 = 3 · 3 · 53 · 79 · 265371653

99 999 999 999 999 = 3 · 3 · 3 · 11 · 239 · 4649 · 909091

999 999 999 999 999 = 3 · 3 · 3 · 31 · 37 · 41 · 271 · 2906161

9 999 999 999 999 999 = 3 · 3 · 11 · 17 · 73 · 101 · 137 · 5882353

99 999 999 999 999 999 = 3 · 3 · 2071723 ·5363222357

999 999 999 999 999 999 = 3 · 3 · 3 · 3 · 7 · 11 ·13 · 19 · 37 · 52579 · 33667

9 999 999 999 999 999 999 = 3 · 3 · 1111111111111111111

99 999 999 999 999 999 999 = 3 · 3 · 11 · 41 · 101 · 271 · 3541 · 9091 · 27961
TABLE 1: Factorisation of  for 10n − 1 n ∈ {1,  2,  3,  … ,  20}
���1 = {3,  3}
���2 = {3,  3,  11}
���3 = {3,  3,  3,  37}
���4 = {3,  3,  11,  101}
���5 = {3,  3,  41,  271}
���6 = {3,  3,  3,  7,  11,  13,  37}
���7 = {3,  3,  239,  4649}
���8 = {3,  3,  11,  73,  101,  137}
���12 = {3,  3,  3,  7,  11,  13,  101,  9901}
���20 = {3,  3,  11,  41,  101,  271,  3541,  9091,  27961}

TABLE 2: Some of the sets ���n

Which prime numbers do appear in  sets and how do they group
together? Obviously, neither 2 nor 5 divide , so prime numbers 2
and 5 do not appear in any of the sets of reciprocally related primes .
But it is worth mentioning that (3) has a very simple analogue

���n
10n − 1

���n

1 =
2 · 5
10

 ⇒
1
2

= 0.5 and  
1
5

= 0.2

and it therefore makes sense to say that primes 2 and 5 are ‘reciprocally
related’. They are the only two primes associated with finite decimal
expressions  and . Because of the similar and very special
status of the primes 2 and 5 it would make sense to denote the associated set
as .

1
2 = 0.5 1

5 = 0.2

���0 = {2, 5}
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What about other primes? Which primes do appear in the sets of
reciprocally related primes ? Is it possible that all other primes are
members of certain sets of reciprocally related primes? It is easy to see that
the answer is affirmative.

���n

Theorem 2: If  is any number relatively prime to 10, then  divides
 for some .

m ∈ � m
10n − 1 n ∈ �

The theorem easily follows from the well known Euler-Fermat theorem
(see for example [1, p. 176]), which states that if , then

, where  is the Euler phi-function counting the
positive integers not exceeding  that are co-prime to .

gcd (a, m) = 1
aφ(m) ≡ 1 (mod m) φ (m)

m m
Theorem 2 can also be proved directly by very elementary reasoning.

Similar reasoning will later lead to the understanding of the ‘mystery’
presented in (1) above.

An alternative proof of Theorem 2: Let  be any number relatively
prime to 10. We know from elementary knowledge of rational numbers that

 is a rational number, which can be written in decimal form as

m ∈ �

1
m

1
m

= 0·a1a2… alb1b2… bk
⎯ ⎯⎯⎯⎯⎯ ⎯

with  being standard decimal digits and where the
repeating cycle of digits is over-lined.

ai, bj ∈ {0,  1,  2, … ,  9}

Therefore we have

10l

m
= a1a2… al.b1b2… bk

⎯ ⎯⎯⎯⎯⎯ ⎯
.

Defining an -digit integer  and a -digit integer
, we obviously get
l h = a1a2… al k

R = b1b2… bk

0.b1b2… bk
⎯ ⎯⎯⎯⎯⎯ ⎯

=
R

10k +
R

102k +
R

103k +  … =
R

10k − 1
and

10l

m
= h +

R
10k − 1

.

This equation is equivalent to

(10l − m · h)  · (10k − 1) = m · R.
Since  and  are relatively prime, so are  and . Thus  must
divide .

10l m 10l − m · h m m
10k − 1

In the next two corollaries we explain the interesting cycle of the
decimal cycles which appears in the decimal expressions of , for

 presented in (1) above.
k
7

1 ≤ k ≤ 6
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Corollary 3: If  is relatively prime to , then for every
 the fraction  is written in decimal form as

m ∈ � 10k

1 ≤ k < m k
m

k
m

= 0.b1b2… bn
⎯ ⎯⎯⎯⎯⎯ ⎯

.

(In decimal expression the cycle starts immediately after the decimal point.)

Proof: By Theorem 2,  divides  for some  and we take the
smallest  for which

m 10n − 1 n
n

m · r = 10n − 1.
Then

1
m

=
r

10n − 1
= r ( 1

10n +
1

102n +
1

103n +  … ) ,

where for , we have a -digit integer
and

bi ∈ {0,  1,  2,  … ,  9} n r = b1b2… bn

1
m

= 0.b1b2… bn
⎯ ⎯⎯⎯⎯⎯ ⎯

,

which completes the proof for .k = 1

If , then we have1 < k
k
m

=
k · r

10n − 1
= k · r ( 1

10n +
1

102n +
1

103n +  … ) .

The number  has fewer than  digits, as . Therefore, the
decimal expression of  has the cycle of the same length as the cycle of
decimal expression of . Rather than number , the number  appears in
the cycle of the decimal expression of .

k · r n k · r < 10n − 1
k
m

1
m r k · r

k
m

Referring to Theorem 2, to the Euler-Fermat theorem and to the
definition of Euler's phi-function , we know that if we take the smallest
 for which  divides , we surely have . Furthermore, it is

only possible that  in the case when  is a prime.

φ (m)
n m 10n − 1 n < m

n = m − 1 m

Corollary 4: If  is a prime such that  is the smallest  for which
 divides , then the fractions  for  written in decimal form

are given by cyclic transformation of the same digits (as .

p n = p − 1 n
p 10n − 1 k

p 1 ≤ k < p
1
p − 0.b1b2… bn

⎯ ⎯⎯⎯⎯⎯ ⎯)

Proof: The argument follows directly from elementary division procedure.
Namely, to find the decimal expression of , we first divide 10 by  to get
the quotient  and the associated remainder. In the next step we multiply
the remainder by 10 and divide this product by  to get the next decimal
digit and so on. Remainders are smaller then  and since the cycles are of
length , we know that all numbers  must appear as
the remainders of these divisions. Digits of a specific cycle of the decimal

1
p p

b1
p

p
p − 1 1 ≤ r ≤ p − 1
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form corresponding to  are uniquely defined by remainders. The
corresponding cycle of  is therefore just a cyclic transformation of the cycle
corresponding to , but starting with a digit, which belongs to the remainder
 in the division procedure associated with .

k
p

k
p

1
p

k 1
p

We can now find many cases analogous to the cycle given in (1). In
Table 3 we write (with the help of a computer) the smallest associated
numbers of the form  in which the first twenty primes (except 2 and
5) are factors.

10n − 1

prime factor of prime factor of
3 101 − 1 41 105 − 1
7 106 − 1 43 1021 − 1
11 102 − 1 47 1046 − 1
13 106 − 1 53 1013 − 1
17 1016 − 1 59 1058 − 1
19 1018 − 1 61 1066 − 1
23 1022 − 1 67 1033 − 1
29 1028 − 1 71 1035 − 1
31 1015 − 1 73 108 − 1
37 103 − 1 79 1013 − 1

TABLE 3:  for the first twenty primes (except 2 and 5)10n − 1

Analogous cycles to the one presented in (1) therefore appear also in
many other cases with much longer cycles. For example the cycle for .

 has length 16; the cycle for ,  has length 18;
cycle for ,  has length 22; the cycle for ,  has
length 58 and with a computer we can find many more. For example, the
cycle for ,  has length 982 and so on.

k
17

1 ≤ k < 17 k
19 1 ≤ k < 19

k
23 1 ≤ k < 23 k

59 1 ≤ k < 59

k
983 1 ≤ k < 983

To illustrate the meaning of Corollary 4 we write the 16-elements cycle
of the 16-digit decimal cycles belonging to numbers :k

17

1
17 = 0.0588235294117647

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 9
17 = 0.5294117647058823

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

2
17 = 0.1176470588235294

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 10
17 = 0.5882352941176470

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

3
17 = 0.1764705882352941

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 11
17 = 0.6470588235294117

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

4
17 = 0.2352941176470588

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 12
17 = 0.7058823529411764

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

5
17 = 0.2941176470588235

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 13
17 = 0.7647058823529411

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

6
17 = 0.3529411764705882

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 14
17 = 0.8235294117647058

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

7
17 = 0.4117647058823529

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 15
17 = 0.8823529411764705

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯

8
17 = 0.4705882352941176

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ 16
17 = 0.9411764705882352

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯
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Returning to Theorem 2, our main theorem, we know that any number
 or particularly any prime , which is relatively prime to 10, divides

 for some . Therefore any number relatively prime to 10 is a
factor of

m p
10n − 1 n ∈ �

999… 99
← ⎯⎯⎯⎯⎯ →

n digits

for some  and belongs to the associated set of reciprocally related primes
.

n
���n

Therefore an analogous pattern to the one we observed in (2) and which
is related to  appears within  for every .���6 ���n n ∈ �

Note also, that, from Theorem 2 it immediately follows that any number
relatively prime to 10 is a factor of

111… 11
← ⎯⎯⎯⎯⎯ →

n digits

for some .n

 containing 23, 29 and 41���n

Initially we observed the interesting reciprocal relation between the
primes 3, 7, 11, 13, 37 and asked rather naive question whether also for
example primes 23, 29, 41 might be reciprocally related in a similar way?
For Euler's phi-function we have
and therefore by Theorem 2 and the Euler-Fermat theorem we know that

. To understand  we would need to
factorise  which is certainly not an easy task. But  is not
the smallest set of reciprocally related primes containing 23, 29, 41. The
following rather elementary lemma will be helpful in finding the smallest set
of reciprocally related primes  containing 23, 29, 41.

φ (23 · 29 ·41) = 22 · 28 · 40 = 24640

23,  29,  41 ∈ ���24640 ���24640
1024640 − 1 ���24640

���n

Lemma 5: Assume  and  and  are relatively prime. If
divides  and  divides , then  divides , where  is
any multiple of  and .

a, m, n ∈ � m n m
aM − 1 n aN − 1 m · n ah − 1 h

M N

Proof: As  is a multiple of  and  we can write . If
we respectively insert values ,   and ,  into
the simple geometric series formula

h M N M · N′ = M′ · N = h
x = aM k = N′ x = aN k = M′

1 + x + x2 + … + xk − 1 =
xk − 1
x − 1

,

we see that , ,  and  all divide . Since  and  are
relatively prime,  divides .

aM − 1 aN − 1 m n ah − 1 m m
m · n ah − 1

From Table 3 we know the smallest numbers of the form  which
are the multiples of 23, 29 and 41.

10n − 1
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prime factor of

23 1022 − 1
29 1028 − 1
41 105 − 1.

If we factorise , , we find the smallest multiple of
22, 28 and 5 to be . Therefore, by Lemma 5, the
prime numbers 23, 29, 41 are factors of . We can check with a
computer, that this huge number (but indeed much smaller than )
is indeed the smallest multiple of 23, 29, 41 of the form . Therefore

 is the smallest of the sets , which contains 23, 29, 41. To
understand and fully describe , we would need to factorise

. How can one factorise such a big number? Could this be easily
done with a computer? Before addressing this questions let us pause to
think, how different could our task be if we considered a different triple of
primes? By Lemma 5 we could, for example, easily obtain Table 4.

22 = 2 · 11 28 = 2 · 2 · 7
2 · 2 · 7 · 11 · 5 = 1540

101540 − 1
1024640 − 1

10n − 1
���1540 ���n

���1540
101540 − 1

���n containing contains all the factors of

13,  17 and 19 10144 − 1

19,  23 and 29 102772 − 1

23,  29 and 31 104620 − 1

23,  29 and 41 101540 − 1

23,  37 and 73 10264 − 1

TABLE 4
Smaller prime numbers obviously do not necessarily mean an easier

task of factorisation. To get a taste of how big these numbers are, let us
write down the prime factors of  obtained by brute computer force.10144 − 1

10144 − 1 = 3 · 3 · 3 · 3 · 7 · 11 · 13 · 17 · 19 · 37 · 73 · 101 · 137 · 3169

· 8929 · 9901 · 52579 · 98641 · 333667 · 5882353 · 99990001

· 999999000001 · 3199044596370769 · 9999999900000001

· 11199462458035614290513943330720125433979169
An average modern PC, which can perform the above factorisation of

 in a split of a second remains powerless in trying to factorise
. With the help of Paul Zimmermann from INRIA (Institut

National de Recherche en Sciences et Technologies du Numérique), a co-
author of the February 2020 factorisation of RSA-250 (see [2]), referring to
Cunningham tables (see [3]) and some very technical procedures and with
the use of a computer we were able to factorise  (see[4]).

10144 − 1
101540 − 1

101540 − 1
The number  has altogether 74 prime factors. Of those only 3

and 11 appear twice. There are 28 prime factors with over 10 digits, 10
prime factors with over 30 digits, 6 with over 100 digits and the biggest
prime factor has 241 digits.

101540 − 1
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The ‘mysterious’ nature of the original set
is therefore fully understood and we also comprehend the nature of all other

. By increasing , these sets expand so very quickly that the beauty of
the pattern observed in the case of  (2) is lost in the sheer enormity of
sets like . But observing the sets of reciprocally related primes
we notice new mysteries. For example some prime numbers seem much
more ‘social’ than others. Of course it is obvious that the prime 3 appears in
every  (with multiplicity of at least two). With a computer we explored
all the primes appearing in the sets  for . How to explain
for example the fact that prime 5882353 appears 5 times, while there are
52203 primes before and 19556 primes after the prime 5882353, which do
not show up at all in our (1 − 80) sets of reciprocally related primes?

���6 = {3,  3,  3,  7,  11,  13,  37}

���n n
���6

���1540 ���n

���n
���i 1 ≤ i ≤ 80
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