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SMOOTHING SPLINE IN A
CONVEX CLOSED SET OF HILBERT SPACE

NATASHA DICHEvVA

A characterisation of a smoothing spline is sought in a convex closed set C of Hilbert
space: min{a||Tz||% + ||Az —z||%,z € C}, T and A are linear operators. A represen-
tation of the solution is obtained in the terms of the kernels of the above operators,
of the dual operators T*, A* and of the dual cone C°. A particular case is considered
when T is the differential operator and A is the operator-trace of a function.

Let X,Y, Z be Hilbert spaces with scalar products respectively (,)x, (;)v, (,)z. We
are given linear bounded operators

A:X->2Z T:X-Y.

Consider the operator equation Az = zg,2 € Z.
1. If A"Y(zp) # @, then o € X is called an interpolating spline, if the following
minimum is reached

1 Toll} = min ||Tz|?.
v 7ol = _min_ Tl
2. If A7Y(z) = 0, we introduce a real parameter @ >.0 and construct a
quadratic functional

(2) ¢a(z) = o||Tz|l} + || Az — 2oll3-
We say that o, € X is a smoothing spline, if
(3) $a(0:) = min o (z).

Characterisations of the solutions of problems (1) and (3) are given in [5].

A certain shape of the interpolating or smoothing spline is required in many applied
problems. The characterisation of such conditions can be often described by aset C C X,
which is convex and closed.
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Chui, Deutsch and Ward give a characterisation of the solution of the problem for
an interpolating spline in a convex set of Hilbert space ([3, 4])

: 2
(4) _ .. llz]}®.

In [2] a particular case of monotonicity is considered for both interpolating and
smoothing splines. The characterisation is done from the point of view of a general
optimisation problem in the terms of the Frechet-derivative and the polar cone.

We shall consider here the problem of finding a smoothing spline in a convex closed
set of Hilbert space. That is, o. is sought so that

(5) $a(0.) = min ¢a(z),

zeCCX

where ¢,(z) is the functional in (2). This problem arises for example, if the data are
corrupted by noise and one does not require exact interpolation, but a special form of
spline is required.

A new linear operator L can be defined ([5]), which is acting on FF = Y x Z. If
hH=lya,neY, 21 €2, fo=[ys2)], y2 €Y, 20 € Z, we define a scalar product in
F by

(fr, f2)r = ([y1, 21), [2, 22))  := (1, o)y + (21, 22) 2.

Let L be the linear bounded operator
L:X - F, Lz =Tz, Az],

and let a = [0y, zp] be an element of F.
LEMMA 1. ¢o(z) = ||Lz — a||%, where a = [0y, zo].
PROOF: By the definitions

(Lz — a, Lz - a)r = ([T'z, Az] — [0y, 2, [Tz, Az] - [0y, 20]) .
= ([Tz, Az — =), [Tz, Az — z)) . = o(Tz,T1)y + (AT — 20, AT — 20)2
= o|[Tz| + | Az — 2[|* = ¢a(s).

Therefore ¢o(z) = (Lz — a, Lz — a)p = ||Lz — af|%. 0
Then the problem (5) is equivalent to

(6) min || f —all?,

where K = L(C) = {[y,21 € Y x Z : y =Tz,2= Az,z € C}.
Denote the kernels of T and A respectively by

kerT={z€ X:Tz =0y}, ke A={z € X : Az = 0;}.
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LEMMA 2. IfT and A are linear bounded operators and ker T'Nker A = {Ox}, then
L is a linear bounded continuous operator and ker L = {0x.}

PROOF: L is a linear bounded operator, obviously. It follows it is continuous.

Let us show that ker L = {Ox}. If = € ker L, that is, Lz = Op, then Lz = [Tz, Az]
= [0y, 0], therefore Tz = Oy, Az = 0z, and = € kerT Nker A = Ox, or ker L = 0.

The following lemma follows from the inverse operator theorem.

LEMMA 3. If T and A are linear bounded operators, ker T Nker A = 0x, and L(X)
is closed, then there exists L' : L(X) C F — X and L™! is a linear bounded continuous
operator, too. '

Here L(X) = {ly,2) : y =Tz,z = Az,z € X }.

We shall find conditions for closeness of L(X) to be closed.

LEMMA 4. L(X) is closed if and only if ker T + ker A is closed.

PROOF: L(X) is closed if and only if L*(F) = T*(Y) + A*(Z) is closed in X, if and
only if ker T+ + ker AL is closed if and only if ker T + ker A is closed. 0

LEMMA 5. IfC is a closed convex subset of X, kerT Nker A = {Ox}, and ker T
+ ker A is closed, then K = L(C) is a closed and convex subset of F'.

PROOF: Let fi,f € L(C),\y > 0,A2 > 0,M\; + A, = 1. We shall show that
Af1 + Ao f2 € L(C),to0. There exists unique =; € C : f; = Lz;, and 29 € C : fo = L.
We have A; fi+Aafo = A\ Lzi+ X Lxy = L(Ajz1+Aozs) € L(C), because Az, + Aozp € C.

Let’s show, that L(C) is closed. If {fn} — f,fn € L{C), we shall show that f
€ L(C).

There exists unique z, € C : f, = Lzy, Lz, — f. Applying the inverse continuous
operator L7, it follows L™ 'Lz, — L7 f = z.

So we have z, — z, but C is closed, therefore z € C. It means f = Lz € L(C). 0

THEOREM 1. If C is a convex closed subset of X, kerT Nker A = Ox and ker T
+ ker A is closed, then the problem (5) has the unique solution

O = L_1PL(C)(a‘):

where Prc)(a) denotes the orthogonal projection of a on L(C).

PROOF: A classical result ([5, Theorem 2.1.2]) shows, that there exist unique solu-
tion of the problem (6) f, € K, such that

—all2 = mi 2
If. =l = min 1/ - ol

The point f, € L(C), in which min [|f — al| is reached, is the orthogonal projection
of a on L(C), that is, f. = Py)y(a). But f, = Lo, for some o,, and L is converse, (in
according with Lemma 3 and 4), therefore the solution has the form

(7) o = L™ (Pyc)(a))-

https://doi.org/10.1017/50004972700040223 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700040223

362 N. Dicheva (4]

0

Further we shall omit the brackets in L{C) and denote LC := L(C). Define the dual

operator A* of A by
(2, Az) = (A*z,z)

forallze Z,z € X.
We denote the dual cone of C by

C'={zeX:(z,y)<0,VyeC}.
It is easy to see, that
(8) fo = Prc(a) ifand only if a — f, € (LC - £.)* = (LC)" n f+.

THEOREM 2. Problem (5) has the unique solution o, if and only if

(9) —aT*To, + A*(2 — Aa,) € C°,
and
(10) @a(U‘) = (Zo - AO’., Zo).

PROOF: By (8), a — f. € (LC)® means, that
(a — f.,Lo) <0,Vo € C.
But f, € L(C), therefore there exist unique o, such that f, = Lo, = [To,, Ao.]. Then
(a— f,,,Lq) = ([0v, 20] — [To., Ac.],[To, Ac]) = ([-To., 2 — Ac.), [To, Ac))
(11) = —a(To.,To)+ (2 — Ao., Ao) < 0.

Therefore
(—aT*To.,0) + (A*(20 — Ao.),0) <0, o € C.

This means, that

—-aT*Ta, + A* (% — Ag,) € CY,

and (9) has been proved.
Again from (8) a — f, € f. It follows, that (a — f., f.)r = 0. But f, = (To,, Ac,),
so

([0y, z0) — [Ty, Aa,), [To,, Aa.]) = ([=To., 2 — Ac.],[To., Ac.))
= —a||To.|? + (z — Ao., Ac.)
= —a||To.|? - (Ao, — 20, Ao, — 2) — (Ao, — 20, 20)
= —®,(0.) - (Aa, — z0,20) = 0.
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Therefore ®,(0,) = (20 — Ao.,20). Note that equality in (11) is reached only for the
solution o,. We obtain then equation (10), and the theorem has been proved. 0

We shall look for the solution of problem (5) in a proper basis.
Let ki, k2, ..., kn be linearly independent elements of X, and A : X — Z = ZV.

The action of the operator A may be represented by
Ao = ((kl, o), (ka,0), ..., (kn, a)).

Let K be the space of linear combinations of &y, ks, ..., ky. The dual operator satisfies

AN = Nk
The Hilbert space Y may be represented as a direct sum
Y = (Tker A) @ (T ker A)*.

For the solution o, € X there exists yo € T ker A, with yo = Tz, for some element
Tg € ker A, and there exists y € (T ker A)*, so that

(12) To.=yo+y=Tzxo+y.

The following equations can be proved easily.
LEMMA 6.
(1) kerA= K<
(2) (TKY)* =T*"'(H), where H= KN (ker T)*.
(3) IfkerTNkerA=0x and dimkerT = ¢ < oo, then

dim H = dim K — dim(kerT) = N — g.
(4) (T*7'R)(t) = (h(z),G4(z —t)) ,, where h € (ker T)*.
Here G (z—t) is the Green’s function with TG, (z—t) = &, and §;(v) = v(t),v € X.

An algorithm for finding a basis in (T ker A)* follows if we use Lemma 6.

(1) A basis for H = K N (kerT)* is looked for

N
hizzhijkj,i=1,2,...,N—q.

j=t
(2) Ifei,eq...,eqis a basis for ker T', then
N
0=(hiex) =Y hij(kjen),i=1,2,...,N-qk=12,..,q.
j=1
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3) fi = T*Y(hy),s = 1,2,...,N — ¢ is a basis for T*"'(H) = (TK*)*
= (Tker A)L.
(4) For every y € (T ker A)* there exist Ay, Az, ..., Any_g, 50 that

N—q
y=Y \fi
i=1
Now from (12) we have the representation
(13) . ) TO’, =T.T0+Z/\ifi.

Let’s introduce the matrices

i=1,..., =1,..,N—
(14) H = (h)lZiin- F= ()T e
(15) /\= ()\1,/\2,...,/\1\1_(1), = (7”1,7"2,...,7”1\/).

LEMMA 7. For every y € (T ker A)! there exists r € ZV, so that
T*y = A'r, r = AH.

PROOF: From the above there exist Aj, Ay, ..., An_q, 50 that y = > A, f;. Thus

Ty =T" (3 Nfi) = DSoMT ) =D M =3 N> bk,
= Z Z /\ih,'jkj = Z Tjkj = At’l‘, r= (7'1, Toyveny TN).
Here
N-g¢
= Z Aihiz,
i=1
or, using a matrix form,
(16) 7= AH. I

Let us denote v = Ao, = ((kl,a.), e (kN,a,)). There exists a relation between A
and v.

LEMMA 8. MF =vHT.
PROOF: We have in (13) T'o, = Tz + Y. \ifi- Thus

(17) (To, £5) = (T, £5) + (3 Nifio f5) = @0, T F) + 3 Al ).

But (zo,T*f;) = (%o, h;) = 0 because of 75 € kerA = K+, h; € H C K. On the
other hand,

(18) (To., f;) = (0., hy) = (Unzh]lkl) = Zhjl(klaat) = Zh'jlvb
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Comparing the right sides of (17) and (18), it follows
(19) M =oHT. 0

LEMMA 9. If e,ey,...,€, is a basis for kerT and B = (b,k)lelg}{,, with b;x

= (kj, ex), then TB = 0.
PROOF: From (2) and (1) of the algorithm above, it follows that

0= Z/\,‘(hi, ek) = Z/\, (Z h.-jkj,ek) = Z /\,-hij(kj,ek) = erbkj, k= 1,2, .o q.

Therefore rB = 0. 0
From the representation (13) of the solution and Lemma 7 it follows that there exist
zo € ker A and r € ZV, so that

T*To, =T*Txzo + A*r.
The conditions (9) and (10) take the form
—aT*Tzy + A*(~ar + 2o — v) € C°,
a"T:co + ZA.-f;“z = (zp — v,v):
Let us remark
Tzo + 3 28

The following theorem is a consequence of Lemmas 7, 8 and 9.

2
= ITzoll2 + 3 S Nlfi, )5 = ITzol? + AFAT,

THEOREM 3. The solution o, of the problem (5) may be represented in the form
To, =Txy + Z Aifi, To € ker A,
if and only if g and X satisfy

—aT*Tzy + A*(~ar + 2z — v) € C°
a(ITzo||> + AFAT) = (20 — v,v),

where v € ZV,v € ZV are related to X by
r=AH, M =vHT, rB=0.
Let us consider problem (5) in the following situation. The knots

a=t1 <ty <...<ty=0b
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and values z1, 22,.. ., zy are given in the interval [a,b]. Let X = W3(a, b] be the Sobolev
space of functions with the usual norm

n
”f”%v; = Z”f(])”%z[a,b]
j=0

n

d
Let Y = L;[a,b] be the space of square integrable functions. Let T = e and let
AW} — Z = ZV be the operator-trace of the function,

Au = (u(th), ultz), . .-, u(tn)).

Let
C= {a € W a,b] : dtm 75 0},
the subset of m— convex functions in X, where m < n
LEMMA 10.
(1) A and T are linear bounded operators.
(2) C isa closed convex subset of X.
(3) If the number of the knots N is greater or equal to the order of the differ-
entiation n, then
ker{gtin} Nker A = 0y,
and ker T + ker A is closed in X.

Proor: To prove (3) note ker :t" = {z Zt O} consists of polynomials of order

smaller then n; while ker A = {u : u(t;) = 0,7 = 1,2,..., N} contains functions with
zeros at these NV points. The intersection of these kernels is empty, because a polynomial
of degree smaller than n cannot have N > n — 1 zeros.

Obviously kerT and ker A are closed, their sum is also closed. 0
Lemma 10 and Theorem 3 give the following result.
THEOREM 4. The problem

d*o

(20) o) = min: {8(0) = +Zo<t -7}

has unique solution o, for N > n. When o™ > 0,

N

3 (s - oult)olts) < a / o™ (£)o ™ ()t

i=1

with equality only for the solution o,(t).
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ProoF: The problem has unique solution by the previous results. The condition
(9) in this case is

n

—a(%)'(d;;‘) +> (7 — ou(t)) ki € C°.

i=1

From (11) it follows, that for all ¢ with o™ > 0 it must be performed

N d*o,.d"o

Z(z,- —o.(t))ot) € a T dp dt

i=1

Equality is acheived only for the solution ¢ = o,
alle™|3: = (2 — ou(ts))ou(ts).
In fact this equality is equivalent to the condition (10). 0
For T = ﬂ it is known, that
dt®

G

G+(.’L’ — t) = —(—m

A basis for ker T is {1,t,t%,...,t" '}, and therefore dimker T = q¢ = n. Then

N
hi = Z hijk;,
j=1

so that (h;,t*) = 0,1 =1,2,...,N —n,k=0,1,...,n — 1. It follows; that

N .
> htt=0,i=1,2,...,N-nk=0,1,...,n-1.
i=1

We have
-1

(Zh,,k z) ) Zh,] ,z=1,2,...,N—n.

By Theorem 3 the solution of (20) has the representation

n-1

) 2 his(t; =05 ) (t =%
g, (t Z)\Z ‘n,—l =Iq +ZTJ-T]W,

where the condition 7B = 0 is equivalent to

N
(21) ert;f'l =0,k=12,...,n
j=1
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On integrating n times,
N (t- _ t)Zn—l n—1 .

= RS S
0.(t) = zo(t) + ,-E=1 T @n = 1)1 + E cet”.

The function

— k
= Z 'I‘] om— 1 + Z th
Jj=1
under the constraints (21) is a natural spline ([1]) of degree 2n—1 with knots ¢, %5, ..., tn.

Since the restriction of s(t) over (—oo,a =t,) and (ty = b,00) is the polynomial } cxt*
of degree n — 1, we have the following result.

THEOREM 5. The solution of the problem (20) is a sum of a function z(t) with
zero-crossings ti,ty, ...,ty and a natural spline s(t) of degree 2n — 1 with knots in these

points.
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