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Chern Classes of Splayed Intersections

Paolo Aluõ and Eleonore Faber

Abstract. We generalize the Chern class relation for the transversal intersection of two nonsingular
varieties to a relation for possibly singular varieties, under a splayedness assumption. We show
that the relation for the Chern–Schwartz–MacPherson classes holds for two splayed hypersurfaces
in a nonsingular variety, and under a strong splayedness assumption for more general subschemes.
Moreover, the relation is shown to hold for the Chern–Fulton classes of any two splayed subschemes.
_e main tool is a formula for Segre classes of splayed subschemes. We also discuss the Chern class
relation under the assumption that one of the varieties is a general very ample divisor.

1 Introduction

Let X, Y be nonsingular subvarieties of a nonsingular complex variety V . If X and Y
intersect properly and transversally, then the intersection X ∩ Y is nonsingular, and
an elementary Chern class computation proves that

(1.1) c(X) ⋅ c(Y) = c(TV) ∩ c(X ∩ Y),
where c(X) denotes the push-forward to V of the total (homology) Chern class of
the tangent bundle of X, etc., and ⋅ is the intersection product in V . It is natural to
ask whether (1.1) holds if X, Y , X ∩ Y are allowed to be singular. In [AF13, §3], we
proposed the following generalization of (1.1).

Scholium Let X, Y be (possibly singular) subvarieties of a nonsingular variety V.
Assume that X and Y are splayed. _en

(1.2) cSM(X) ⋅ cSM(Y) = c(TV) ∩ cSM(X ∩ Y).

In (1.2), cSM(−) denotes the Chern–Schwartz–MacPherson class; this is a natural
generalization of the total Chern class to singular varieties, and we silently push this
class forward to the ambient variety V . _e cSM class is deûned for more general
schemes; X and Y could be reducible, and should not be required to be pure dimen-
sional. _e purpose of this note is to investigate (1.2) at this level of generality. For ex-
ample, we will prove that the Scholium holds for arbitrary splayed hypersurfaces, and
more generally for subschemes satisfying a hypothesis of “strong” splayedness. We
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1202 P. Aluõ and E. Faber

also prove (1.2) for splayed subschemes for a diòerent notion of Chern class deûned
for arbitrary subschemes of a nonsingular variety. Finally, we will discuss a “Bertini”
statement, according to which (1.2) holds if X is a suõciently general very ample di-
visor.

_e notion of splayedness was introduced and studied in the hypersurface case by
the second author in [Fab13], and explored further in [AF13]: X and Y are splayed if at
each point p of the intersection there exist analytic coordinates (x1 , . . . , xr , y1 , . . . , ys)
such that X may be deûned by an ideal generated by functions in the coordinates x i
and Y by an ideal generated by functions in the coordinates y j . We also say that two
sets {X1 , X2 , . . .} and {Y1 ,Y2 , . . .} are splayed if there are local analytic splittings so
that all the X i are deûned in the ûrst set of coordinates, and all theYj are deûned in the
second set of coordinates. _ese notions generalize to possibly singular varieties and
subschemes the notion of proper, transversal intersection of nonsingular varieties.

_e reader who is not familiar with characteristic classes may view (1.2) as a very
general formof identities involving the topological Euler characteristics of X,Y , X∩Y .
For example, let X and Y be splayed surfaces in P3, of degrees d and e, respectively;
assume that the Euler characteristic of a general hyperplane section of X (resp. Y) is a
(resp. b). _en itmay be checked that the Euler characteristic of the curve X∩Y is ea+
db − 2de. Similarly explicit formulas relate the Euler characteristics of general linear
sections of X, Y , X ∩ Y if these are subsets of projective space and X, Y are splayed
(cf. [Alu13]). _e Scholium reveals the underlying structure of all such identities and
generalizes them to splayed subsets in arbitrary nonsingular algebraic varieties.

Note that some transversality hypothesis is certainly needed for (1.2) to hold, as
the following example shows.

Example 1.1 Let X be a nonsingular quadric inV = P3, and let Y be a plane tangent
to X. _en cSM(X) = 2[P2]+4[P1]+4[P0] and cSM(Y) = [P2]+3[P1]+3[P0] (since
X and Y are nonsingular, these are simply the push-forward to P3 of the total Chern
classes of their tangent bundles). _us, the le�-hand side of (1.2) is

(2[P2] + 4[P1] + 4[P0]) ⋅ ( [P2] + 3[P1] + 3[P0]) = 2[P1] + 10[P0].

On the other hand, denoting byH the hyperplane class, c(TP3) = 1+4H+6H2+4H3;
and X ∩Y consists of two lines meeting at a point, a curve of degree 2 and topological
Euler characteristic 3, and hence cSM(X ∩ Y) = 2[P1] + 3[P0]. _us the right-hand
side of (1.2) equals

c(TV) ∩ cSM(X ∩ Y) = 2[P1] + 11[P0],

verifying that (1.2) does not hold in this case.

Several particular cases of the Scholium are proved in [AF13]. In this paper we
prove (1.2) under a hypothesis generalizing all those particular cases, but possibly
more restrictive than splayedness. We say that X and Y are strongly splayed if X =
D′1 ∩ ⋅ ⋅ ⋅ ∩ D′r , Y = D′′1 ∩ ⋅ ⋅ ⋅ ∩ D′′s where {D′1 , . . . ,D′r}, {D′′1 , . . . ,D′′s } are splayed sets
of hypersurfaces. For example, two hypersurfaces are strongly splayed if and only if
they are splayed. We do not know if splayed subschemes of higher codimension are
necessarily strongly splayed, and this seems an interesting question.
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_eorem I Let X, Y be strongly splayed subschemes of a nonsingular variety V. _en

(1.3) cSM(X) ⋅ cSM(Y) = c(TV) ∩ cSM(X ∩ Y).

Example 1.2 Let X be the union of a P4 and a transversal P3 in V = P5; we choose
coordinates (x0 ∶ ⋅ ⋅ ⋅ ∶x5) so that X has ideal (x0(x1 , x2)). Let Y be the quadric cone
with ideal (x2

3 + x2
4 + x2

5). Both X and Y are singular, and X is reducible and not
pure-dimensional; X and Y are strongly splayed.

_e Macaulay2 code from [Alu03] may be used to compute the cSM classes of X
and Y :

cSM(X) = [P4] + 6[P3] + 13[P2] + 13[P1] + 6[P0]
cSM(Y) = 2[P4] + 8[P3] + 13[P2] + 11[P1] + 5[P0].

According to _eorem I,

c(TP5) ∩ cSM(X ∩ Y) = cSM(X) ⋅ cSM(Y) = 2[P3] + 20[P2] + 87[P1] + 219[P0]
from which

cSM(X ∩ Y) = 2[P3] + 8[P2] + 9[P1] + 5[P0].
_is can be veriûed by again using [Alu03].

In fact, the proper level of generality for the result is that of constructible functions:
a cSM class in A∗V is deûned for every constructible function on V ; if X is a subva-
riety of V , cSM(X) = cSM(11X), where 11X is the indicator function of X. Intersection
of varieties corresponds naturally to the product of the corresponding constructible
functions.

_eorem II Let ϕ, ψ be constructible functions on a nonsingular variety V, and
assume that ϕ and ψ are strongly splayed. _en

(1.4) cSM(ϕ) ⋅ cSM(ψ) = c(TV) ∩ cSM(ϕ ⋅ ψ).

_e precise deûnition of strongly splayed in the context of constructible functions
is given in Deûnition 2.19; it generalizes naturally the notion for subvarieties. Note
that (1.4) amounts to the statement that the assignment

ϕ ↦ c(TV)−1 ∩ cSM(ϕ)
of a class in A∗V from a constructible function ϕ “preserves multiplication” for
strongly splayed constructible functions. Again, this is clearly false without some kind
of transversality condition on the constructible functions. It would be interesting to
determine weaker conditions than strong splayedness guaranteeing that this multi-
plicativity property holds.

Our proofs of _eorems I and II rely on intersection-theoretic considerations
based on a formula for the Chern–Schwartz–MacPherson class of a hypersurface
from [Alu99], and on a general statement about Segre classes proven in this note
(_eorem 2.9, which should be of independent interest). Jörg Schürmann has recently
shown that a proof of the Scholium for splayed (rather than strongly splayed) subvari-
eties may be obtained as a particular case of his Verdier–Riemann–Roch theorem for
Chern–Schwartz–MacPherson classes ([Sch]).
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It is natural to ask whether a version of the Scholium holds for other characteris-
tic classes for singular varieties. Substantial work has been carried out comparing the
Chern–Schwartz–MacPherson class to theChern–Fulton class, another class agreeing
with the Chern class of the tangent bundle for nonsingular varieties. See [Ful84, Ex-
ample 4.2.6(a)] for the deûnition (reproduced here in §3). We denote this class by cF.
_e diòerence cSM(X) − cF(X) is called the Milnor class of X, since it generalizes
Milnor numbers of isolated hypersurface singularities to arbitrary singularities.

_eorem III Let X, Y be splayed subschemes of a nonsingular variety V. _en

(1.5) cF(X) ⋅ cF(Y) = c(TV) ∩ cF(X ∩ Y).

_e proof of this result also follows from Segre class considerations, in fact of a
simpler nature than those leading to _eorem 2.9.

It is also natural to ask whether (1.2) and (1.5) hold when X and Y are in general
position. _e following is a prototype situation where this can be established.

_eorem IV Let V be a nonsingular variety, and let X ⊆ V be a general very ample
divisor on V. _en for all subschemes Y ⊆ V,

c(X) ⋅ cSM(Y) = c(TV) ∩ cSM(X ∩ Y),
c(X) ⋅ cF(Y) = c(TV) ∩ cF(X ∩ Y).

_eorem IV hints that a condition analogous to splayedness may satisfy results
along the lines of the Bertini or Kleiman–Bertini theorems. It would be interesting to
establish a precise result of this type. In general, however, a splayed Bertini theorem
cannot hold, as the following example illustrates.

Example 1.3 Let X be the so-called 4-lines divisor in C3, given by the polynomial
xy(x+y)(x+yz). It is well known that X is not analytically trivial along the z-axis; i.e.,
there is no analytic isomorphism between two hyperplane sections Xt1 and Xt2 , where
Xt ∶= X ∩ (C2 × {t}). If X were splayed with a general hyperplane at a general point
of the z-axis, then it would be possible to write the equation of the divisor using only
two coordinates at that point. _is would imply that nearby sections are analytically
isomorphic.

2 Proofs of Theorems I and II

2.1 Splayed Blow-ups

_roughout the paper, V will denote a smooth complex algebraic variety; several re-
sults extend without change to the context of nonsingular algebraic varieties over
an algebraically closed ûeld of characteristic 0. (See e.g., [Ken90] for a treatment
of Chern–Schwartz–MacPherson classes in this generality.) We call two subschemes
Z1 , Z2 ⊆ V splayed if at every point p in the intersection of Z1 and Z2 there is a local
analytic isomorphism ϕ∶V → V ′ × V ′′, and subschemes Z′1 ⊆ V ′, Z′′2 ⊆ V ′′ such
that Z1 = ϕ−1(Z′1 × V ′′) and Z2 = ϕ−1(V ′ × Z′′2 ). Equivalently, there are analytic
coordinates for V at p such that Z1 and Z2 are deûned in diòerent sets of variables.
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More generally, we will say that two sets of subschemes are splayed in V if at each
point there is a local analytic isomorphism ϕ as above such that the schemes in the ûrst
set are inverse images from the ûrst factor of the product V ′ × V ′′, and the schemes
in the second sets are inverse images from the second factor.
Denote by π i ∶ Ṽi → V the blowup ofV along Z i . Denote further by Ṽ12 the blowup

of Ṽ1 along the inverse image π−1
1 Z2 of Z2 and by Ṽ21 the blowup of Ṽ2 along the

inverse image π−1
2 Z1 of Z1. We begin by recalling the following fact, for which neither

the splayedness assumption on Z1, Z2 nor the smoothness of V is needed.

Proposition 2.1 _e blow-ups Ṽ12 and Ṽ21 are isomorphic, and they are isomorphic
to the blow-up of V along Z1 ∪ Z2, where the deûning ideal sheaf of Z1 ∪ Z2 in V is the
product of the ideal sheaves deûning Z1 and Z2.

Proof Both statements follow from the universal property of blow-ups; see, for ex-
ample, [EH00, Lemma IV-4] and [Li09, Lemma 3.2].

_e blow-up Ṽ12 ≅ Ṽ21 is the joint blow-up of [KT96, §2.7]. Also note that, with
this scheme structure, Z1 ∪Z2 may have embedded components even if Z1 and Z2 are
reduced.

We want to compare Ṽ12 to the ûber product of Ṽ1 and Ṽ2.
By the universal property of ûber products, there is a unique morphism α∶ Ṽ12 →

Ṽ1 ×V Ṽ2:

Ṽ12

��

%%

∃!α
##
Ṽ1 ×V Ṽ2

��

// Ṽ2

π2

��
Ṽ1 π1

// V

Proposition 2.2 Let V be an irreducible variety. _en α induces an isomorphism
from Ṽ12 to the unique irreducible component Ṽ1×̂V Ṽ2 of Ṽ1×V Ṽ2 mapping dominantly
to V.

Remark 2.3 M.Kwieciński ([Kwi94]) calls this irreducible component themodiûed
ûber product, and observes that it is a product in the category of proper birational
morphisms from varieties to V .

Proof Let α̂ be the induced morphism Ṽ12 → Ṽ1×̂V Ṽ2. Since π−1
1 (Z1) and π−1

2 (Z2)
are Cartier divisors, it follows that their inverse images in Ṽ1×̂V Ṽ2 are Cartier divisors,
and hence so is the inverse image of Z1 ∪ Z2. By the universal property of blow-ups,
we obtain amorphism Ṽ1×̂V Ṽ2 → Ṽ12, which is immediately checked to be the inverse
of α̂.
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Corollary 2.4 Assume that V is nonsingular and Z1 and Z2 are splayed in V. _en
α is an isomorphism Ṽ12 → Ṽ1 ×V Ṽ2.

Proof We claim that Ṽ1 ×V Ṽ2 is irreducible. Indeed, it suõces to verify this fact
locally analytically over every p in V , so by the splayedness condition wemay assume
that Z1 = Z′1 × V ′′, Z2 = V ′ × Z′2 in V = V ′ × V ′′. In this situation, Ṽ1 ×V Ṽ2 ≅
BℓZ′1V

′ × Bℓ′′Z′2V
′′.

Since BℓZ′1V
′ and BℓZ′2V

′′ are irreducible, this product is irreducible.
With notation as in Proposition 2.2, this shows that Ṽ1 ×V Ṽ2 = Ṽ1×̂V Ṽ2, and the

result follows from the proposition.

Remark 2.5 It is worth pointing out that α is not an isomorphism in general. For
example, letV = A2 and let let Z1 = Z2 be the origin p = (0, 0). _en Ṽ1×V Ṽ2 consists
of two components: an isomorphic copy of the blow-up of V at p and a component
isomorphic to E × E, where E is the exceptional divisor in Ṽ1 = Ṽ2. (_is is easily
veriûed by a computation with charts.)

Tracing the proof of Proposition 2.2, the problem is that while the inverse image
of e.g., Z1 in Ṽ1 ×V Ṽ2 is locally principal, it contains a whole component of the ûber
product (i.e., local generators of its ideal are zero-divisors), so this subscheme is not
a Cartier divisor of the ûber product. It is, however, a Cartier divisor in the modiûed
ûber product.

On the other hand, αmay be an isomorphism even if Z1 and Z2 are not splayed. For
instance, if Z1 and Z2 are any Cartier divisors, then all blow-ups are isomorphisms,
and so is the ûber product. For a more substantive example, take two coordinate axes
Z1, Z2 in V = A3. It can easily be seen via computation in charts that Ṽ1 ×V Ṽ2 is
irreducible and isomorphic to the blow-up of V along Z1 ∪ Z2. _us, in this case, α is
an isomorphism, although Z1 and Z2 are not splayed according to our deûnition.

Corollary 2.6 Let Z1, Z2 be splayed in V, and consider the blow-ups along Z1, Z2,
and Z1 ∪ Z2 as above.

Ṽ12

π̃2 ��

π̃1 // Ṽ2

π2
��

Ṽ1 π1
// V

_en the homomorphisms π̃2∗π̃∗1 and π∗1 π2∗ from A∗Ṽ2 to A∗Ṽ1 coincide.

Proof _emaps are all proper local complete intersection morphisms, and the dia-
gram is a ûber square by Corollary 2.4. By [Ful84, Example 17.4.1(a)],

π∗1 π2∗(α) = π̃2∗( ce(E ) ∩ π̃∗1 (α))

for all α ∈ A∗(Ṽ2), where E is an excess bundle and e is the diòerence in the codi-
mensions of π1 and π̃1. Here both π1 and π̃1 are birational, so e = 0 and ce(E ) = 1,
hence the equality follows.
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2.2 A Segre Class Formula

_e cSM class of a hypersurface D in a nonsingular variety may be expressed in terms
of the Segre class of the singularity subscheme JD in V . _e precise relationship
(from [Alu99]) will be recalled below. _e hypersurface case of _eorem I will then
follow from a statement on Segre classes of singularity subschemes of splayed hyper-
surfaces. In this subsection we prove a more general form of this statement (_eo-
rem 2.9).

Reminder. Segre classes are one of the ingredients of Fulton–MacPherson intersec-
tion theory, and the reader is referred to [Ful84, Chapter 4] for a thorough treatment
of these classes. _e following summary should suõce for the purpose of this paper.
_e Segre class s(S , X) of a proper subscheme S of a scheme X is the class in the Chow
group of S determined by the following properties:

● Birational invariance: If f ∶X′ → X is a proper birational morphism, then s(S , X) =
f∗s( f −1(S), X′) ([Ful84, Proposition 4.2(a)]).

● If S is a Cartier divisor in X, then s(S , X) = [S] − [S]2 + [S]3 − ⋅ ⋅ ⋅ ([Ful84, Corol-
lary 4.2.2]).

We use the shorthand [S]
1+S for the class [S] − [S]2 + [S]3 − ⋅ ⋅ ⋅.

By the ûrst property, blowing-up X along S reduces the computation of s(S , X) to
the computation of the Segre class for the exceptional divisor in the blow-up, which
may be performed by using the second property. In practice it is o�en very diõcult
to carry out this process, but useful formulas for Segre classes may be proved by using
this strategy. _e second property is a particular case of the following fact:

● If S is regularly embedded in X, with normal bundle NSX, then s(S , X) =
c(NSX)−1 ∩ [S] ([Ful84, Corollary 4.2.1]).

_is will be used below in order to compute the Segre class of the complete intersec-
tion of two hypersurfaces.

Let Z1 , Z2 ,V , etc. be as in Section 2.1. By the birational invariance of Segre classes
recalled above,

π1∗s(π−1
1 (Z2), Ṽ1) = s(Z2 ,V).

In the splayed situation, a stronger statement holds.

Lemma 2.7 Let Z1 , Z2 be splayed in V (as in Section 2.1). _en

s(π−1
1 (Z2), Ṽ1) = π∗1 s(Z2 ,V).

Proof Consider the diagram

Ṽ12

π̃2
��

π̃1 // Ṽ2

π2

��
Ṽ1 π1

// V
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as in §2.1. Let E2 = π−1
2 (Z2) be the exceptional divisor in Ṽ2, and let E′2 = π̃1

−1(E2) =
π̃2

−1(π−1
1 (Z2)). By the birational invariance of Segre classes,

s(π−1
1 (Z2), Ṽ1) = π̃2∗(

[E′2]
1 + E′2

) = π̃2∗π̃∗1 (
[E2]
1 + E2

) .

Since Z1 and Z2 are splayed, by Corollary 2.6, this equals

π∗1 π2∗(
[E2]
1 + E2

) = π∗1 s(Z2 ,V)

as claimed.

Remark 2.8 _e equality stated in Lemma 2.7 does not hold in general: V = A2,
Z1 = Z2 = the origin give a simple counterexample. It does hold whenever the ûber
product Ṽ1×V Ṽ2 is irreducible, as the arguments given above show, and thismay occur
even if Z1 and Z2 are not splayed. For example, if Z1 is a hypersurface of V , then
this condition is trivially satisûed regardless of splayedness. For a more interesting
example, two lines Z1, Z2 meeting at a point in V = P3 are not splayed according to
our deûnition, yet Ṽ1 ×V Ṽ2 is irreducible (cf. Remark 2.5).

We will use Lemma 2.7 in the proof of the following more general Segre class for-
mula, which is the key technical result needed for the ûrst proof of _eorem I.

Let D1, D2 be hypersurfaces in V , and let Z1 ⊆ D1, Z2 ⊆ D2 be subschemes. At the
level of ideal sheaves, we have

ID1 ,V ⊆ I1 , ID2 ,V ⊆ I2

where I1 = IZ1 ,V , I2 = IZ2 ,V . We consider the subschemeW of V deûned by the
ideal sheaf

IW ,V ∶= ID1 ,V ⋅I2 +ID2 ,V ⋅I1 .

_is subscheme is supported on (D1 ∪ Z2)∩ (D2 ∪ Z1) = (D1 ∩D2)∪ (Z1 ∪ Z2), with
a scheme structure depending subtly on Z1 and Z2. Under a splayedness assumption,
we will obtain a relation between the Segre classes of Z1, Z2, and W . _e relation
is best expressed in terms of the following notation: for ι∶ Z ⊂ V an embedding of
schemes, let

ŝ(Z ,V) = [V] − ι∗s(Z ,V)∨ .
Here, the dual ( ⋅ )∨ changes the sign of components of odd codimension in V .

_eorem 2.9 Let D1, D2 be hypersurfaces of a smooth variety V, and let Z1 ⊆ D1,
Z2 ⊆ D2, W be as above. Assume that {Z1 ,D1} and {Z2 ,D2} are splayed. _en

(2.1)
ŝ(W ,V) ⊗O(D1 + D2)

1 + D1 + D2
= ( ŝ(Z1 ,V) ⊗O(D1)

1 + D1
) ⋅ ( ŝ(Z2 ,V) ⊗O(D2)

1 + D2
)

in the Chow group of V.

Remark 2.10 In this statement we use the notation introduced in [Alu94, §2]: if
L is a line bundle on V and A = ∑ a(i) is a class in the Chow group, where a(i) has
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codimension i in V , then

A⊗L ∶= ∑
a(i)

c(L )i .

_e formula given in_eorem 2.9 is a good example of the usefulness of this notation:
the formula (and its proof) would look unintelligibly complicated if it were written
out without adopting this shorthand. _e notation satisûes simple properties (see
[Alu94, Propositions 1 and 2]). _ese will be used liberally in what follows. It is also
useful to observe that if A and B are classes in A∗V , then

(A ⋅ B) ⊗L = (A⊗L ) ⋅ (B ⊗L )
(this is evident from the deûnition).

Proof of_eorem 2.9 We consider a sequence of three blow-ups over V :

Ṽ π̃ // Ṽ12
π̃2 // Ṽ1

π1 // V ,

where π1 is the blow-up of V along Z1 with exceptional divisor E1; π̃2 is the blow-up
of Ṽ1 along π−1

1 (Z2)with exceptional divisor E′2; and π̃ is the blow-up of Ṽ12 along the
intersection of the residual subschemes of π̃−1

2 (E1) (resp. E′2) in the inverse images
of D1 (resp. D2). Note that under our splayedness hypothesis, this last center is a
complete intersection of codimension 2. We let Ẽ be the exceptional divisor of π̃. For
notational convenience, we o�enuse the samenotation for an object and for its inverse
image to a variety in the sequence. For instance, E1 will also denote its inverse image
π̃−1 π̃−1

2 E1 in Ṽ . Finally, π will denote the composition π1 ○ π̃2 ○ π̃∶ Ṽ → Ṽ12 → Ṽ1 → V .

Claim 2.11 π−1(W) = E1 ∪ E′2 ∪ Ẽ.

_e statement of this claim is that the ideal ofW pulls back to the product of the
ideals of (the inverse images of) E1, E′2, and Ẽ in Ṽ . In Ṽ1,

IW ,V ⋅OṼ1
= ID̃1 ,Ṽ1

IE1 ,Ṽ1
Iπ−1

1 (Z2),Ṽ1
+Iπ−1

1 (D2),Ṽ1
⋅IE1 ,Ṽ1

= IE1 ,Ṽ1
⋅ (ID̃1 ,Ṽ1

Iπ−1
1 (Z2),Ṽ1

+Iπ−1
1 (D2),Ṽ1

),

where D̃1 is the residual of E1 in π−1
1 (D1). In Ṽ12,

IW ,V ⋅OṼ12
= Iπ̃−1

2 (E1),Ṽ12
⋅IE′2 ,Ṽ12

⋅ (Iπ̃−1
2 (D̃1),Ṽ12

+ID̃2 ,Ṽ12
),

where D̃2 is the residual of E′2 in the inverse image of D2. _e ideal Iπ̃−1
2 (D̃1),Ṽ12

+
ID̃2 ,Ṽ12

deûnes the center of the third blow-up, so this shows that

IW ,V ⋅OṼ = Iπ̃−1 π̃−1
2 (E1),Ṽ ⋅Iπ̃−1(E′2),Ṽ

⋅IẼ ,Ṽ ,

as claimed.
By the birational invariance of Segre classes,

s(W ,V) = π∗
[E1] + [E′2] + [Ẽ]
1 + E1 + E′2 + Ẽ

,

and therefore
[V] − s(W ,V) = π∗(

1
1 + E1 + E′2 + Ẽ

∩ [Ṽ]) .
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Using the ⊗ notation recalled a�er the statement of the proposition,
1

1 + E1 + E′2 + Ẽ
∩ [Ṽ] = ( 1 − E1 − E′2

1 + Ẽ
∩ [Ṽ]) ⊗O(E1 + E′2)

= ((1 − E1 − E′2)( 1 − Ẽ
1 + Ẽ

) ∩ [Ṽ]) ⊗O(E1 + E′2)

= 1
1 + E1 + E′2

∩ ([Ṽ] − [Ẽ]
1 + Ẽ

⊗O(E1 + E′2)) .

_e term [Ẽ]/(1+ Ẽ) pushes forward to the Segre class of the center of the third blow-
up, which is the intersection of the (inverse images of the) residual of E1 in D1, with
classD1−E1, and of the residual of E′2 inD2, with classD2−E′2. _e intersection is reg-
ularly embedded in Ṽ12, as noted earlier, and its Segre class equals the inverse Chern
class of its normal bundle (by the third property of Segre classes recalled above):

π̃∗(
Ẽ

1 + Ẽ
) = [D1 − E1] ⋅ [D2 − E′2]

(1 + D1 − E1)(1 + D2 − E′2)
,

where evident pull-backs are omitted for notational simplicity. Using this fact, prop-
erties of the ⊗ notation, and the projection formula,

π̃∗(
1

1 + E1 + E′2 + Ẽ
∩ [Ṽ])

= 1
1 + E1 + E′2

∩ ([Ṽ12] −
[D1 − E1] ⋅ [D2 − E′2]

(1 + D1 − E1)(1 + D2 − E′2)
⊗O(E1 + E′2))

= 1
1 + E1 + E′2

∩ ([Ṽ12] −
[D1 − E1] ⋅ [D2 − E′2]

(1 + D1 + E′2)(1 + D2 + E1)
) .

A remarkable cancellation (and again the projection formula) now gives

π̃∗(
1

(1 + D1 + D2)(1 + E1 + E′2 + Ẽ)
∩ [Ṽ])

= 1
(1 + D1 + D2)(1 + E1 + E′2)

∩ ( 1 − (D1 − E1) ⋅ (D2 − E′2)
(1 + D1 + E′2)(1 + D2 + E1)

) ∩ [Ṽ12]

= [Ṽ12]
(1 + D1 + E′2)(1 + D2 + E1)

.

Summarizing, we have shown that

(2.2)
[V] − s(W ,V)
1 + D1 + D2

= π1∗π̃2∗(
[Ṽ12]

(1 + D1 + E′2)(1 + D2 + E1)
) .

In order to evaluate the right-hand side, note that

[Ṽ12]
1 + D1 + E′2

= 1
1 + D1

( [Ṽ12]
1 + E′2

⊗O(D1)) = 1
1 + D1

([Ṽ12] −
[E′2]
1 + E′2

⊗O(D1)) .

Pushing this forward by π̃2 shows that

π̃2∗(
[Ṽ12]

1 + D1 + E′2
) = [Ṽ1] − s(π−1

1 Z2 , Ṽ1) ⊗O(D1)
1 + D1

.
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Since Z1 and Z2 are splayed, by Lemma 2.7 this may be rewritten as

π̃2∗(
[Ṽ12]

1 + D1 + E′2
) = π∗1 (

[V] − s(Z2 ,V) ⊗O(D1)
1 + D1

) .

By the projection formula and (2.2) we have

[V] − s(W ,V)
1 + D1 + D2

= π1∗(
[Ṽ1]

1 + D2 + E1
) ⋅ [V] − s(Z2 ,V) ⊗O(D1)

1 + D1
.

_e last push-forward is handled similarly to the previous one, giving

π1∗(
[Ṽ1]

1 + D2 + E1
) = [V] − s(Z1 ,V) ⊗O(D2)

1 + D2
.

_erefore,

[V] − s(W ,V)
1 + D1 + D2

= ([V] − s(Z1 ,V)) ⊗O(D2)
1 + D2

⋅ ([V] − s(Z2 ,V)) ⊗O(D1)
1 + D1

.

_e stated formula follows from this by taking duals and tensoring byO(D1+D2).

_e argument shows that the formula in _eorem 2.9 holds as soon as Ṽ1 ×V Ṽ2 is
irreducible (cf. Remark 2.8), and the residuals of E1 in π−1

1 (D1) and E′2 in π̃−1
2 π−1

1 (D2)
have no common components. While we focus on splayedness in this paper, the for-
mula in _eorem 2.9 has a substantially more general scope.

Example 2.12 Let Z1, Z2 be two lines inV = P3 intersecting at a point. _en Z1 and
Z2 are not splayed according to our deûnition, but Ṽ1×V Ṽ2 is irreducible (Remark 2.5).
Choosing coordinates (x0 ∶ ⋅ ⋅ ⋅ ∶x3), we may assume that Z1 has the ideal (x0 , x1) and
Z2 has the ideal (x0 , x2). _en Z i is contained inD i = {x i = 0}; a computation shows
that the relevant residuals have no common components. A direct computation of
Segre classes, which may, for example, be carried out using [Alu03], conûrms that
formula (2.1) does hold.

Example 2.13 If Z1 = Z2 = ∅, then W = D1 ∩ D2. Assume that D1 and D2 have no
common components, so that W is a codimension 2 local complete intersection with
normal bundleO(D1)⊕O(D2). _is is, of course, the case if D1 and D2 are splayed,
and considerably more generally. We have

ŝ(W ,V) = [V] − ( D1 ⋅ D2

(1 + D1)(1 + D2)
∩ [V])

∨

= ( 1 − D1 ⋅ D2

(1 − D1)(1 − D2)
) ∩ [V]

= 1 − D1 − D2

(1 − D1)(1 − D2)
∩ [V],

and hence

ŝ(W ,V) ⊗O(D1 + D2) =
1 + D1 + D2

(1 + D1)(1 + D2)
∩ [V]

(use [Alu94, Proposition 1]). Formula (2.1) follows immediately in this case.
_e reader is encouraged to consider the opposite extreme Z1 = D1, Z2 = D2 and

verify that (2.1) reduces to [V] = [V] ⋅ [V] in this case (regardless of splayedness).
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2.3 Chern Classes of Hypersurface Complements

For a rapid review of Chern–Schwartz–MacPherson (cSM) classes, we refer the reader
to [AF13, §3.1] and references therein. Brie�y, every locally closed subset U of a com-
plete varietyV determines a class cSM(U) in the Chow group ofV , such that ifU = Z
is a nonsingular closed subvariety, then cSM(Z) equals the push-forward to V of the
total Chern class of the tangent bundle to Z. _is notion is functorial in a strong sense,
and satisûes an inclusion-exclusion property. If U1, U2 are locally closed in V , then

cSM(U1 ∪U2) = cSM(U1) + cSM(U2) − cSM(U1 ∩U2).
_e classes arose in the seminal work of M.-H. Schwartz ([Sch65a, Sch65b]) and
R. MacPherson ([Mac74]). See [Ful84, Example 19.1.7] for an eõcient statement of
MacPherson’s deûnition and result.

We will use the following formula computing the cSM class of a hypersurface D in
a nonsingular variety V in terms of the Segre class of the singularity subscheme JD,
locally deûned (as a subscheme of D) by the partial derivatives of a local equation
for D.

Lemma 2.14 ([Alu99, _eorem I.4]) Let D be a hypersurface of a nonsingular variety
V, with singularity subscheme JD. _en

(2.3) cSM(D) = c(TV) ∩ ( s(D,V) + c(O(D))−1 ∩ (s(JD,V)∨ ⊗O(D))) .

_is statement again uses the operations ⋅∨, ⊗ employed in §2.2. In terms of the
notation introduced before the statement of _eorem 2.9, (2.3) is equivalent to

(2.4) cSM(V ∖ D) = c(TV) ∩ ŝ(JD,V) ⊗O(D)
1 + D .

Now suppose that D1 and D2 are splayed divisors in V and let D = D1 ∪ D2. Note
that this implies that {D1 , JD1} and {D2 , JD2} are splayed. It is clear set-theoretically
that JD is supported on (D1 ∩D2) ∪ (JD1 ∪ JD2). _e splayedness condition implies
that the scheme structure of JD on this unionmatches the one studied in §2.2 vis-a-vis
W , Z1, Z2.

Lemma 2.15 With notation as above, D1 and D2 are splayed if and only if

IJD ,V = ID1 ,V ⋅IJD2 ,V +ID2 ,V ⋅IJD1 ,V .

_is is a restatement of [AF13, Corollary 2.6]. Only the “only if ” part will be needed
here.

Corollary 2.16 Let D1, D2 be splayed hypersurfaces in a smooth variety V, and let D
be D1 ∪ D2. _en

ŝ(JD,V) ⊗O(D)
1 + D = ( ŝ(JD1 ,V) ⊗O(D1)

1 + D1
) ⋅ ( ŝ(JD2 ,V) ⊗O(D2)

1 + D2
)

in A∗V.

Proof _is follows from Lemma 2.15 and _eorem 2.9, since if D1 and D2 are
splayed, then so are {D1 , JD1} and {D2 , JD2}.
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Corollary 2.17 Let D1, D2 be splayed hypersurfaces in a smooth variety V, and let D
be D1 ∪ D2. _en

(2.5) c(TV) ∩ cSM(V ∖ D) = cSM(V ∖ D1) ⋅ cSM(V ∖ D2).

Proof _is follows from Corollary 2.16 and (2.4).

Formula (2.5) was proposed in [AF13], where it was observed that under a strong
freeness assumption on the divisors it follows from an analogous formula for Chern
classes of sheaves of logarithmic diòerentials ([AF13, Proposition 3.2]). Several other
particular instances of the formula are studied in [AF13, §3]. Corollary 2.17 proves
the formula without extraneous assumptions.
For splayed divisors, _eorem I follows immediately from Corollary 2.17 and the

inclusion-exclusion property of cSM classes.

_eorem 2.18 (_eorem I, hypersurface case) Let D1, D2 be splayed divisors in a
smooth variety V. _en cSM(D1) ⋅ cSM(D2) = c(TV) ∩ cSM(D1 ∩ D2) in A∗V.

Proof With D = D1 ∪D2 as in Corollary 2.17 and noting that c(TV) ∩ α = c(V) ⋅ α
for all α ∈ A∗V ,

cSM(D1) ⋅ cSM(D2) = (c(V) − cSM(V ∖ D1)) ⋅ (c(V) − cSM(V ∖ D2))
= c(TV) ∩ ( c(V) − cSM(V ∖ D1) − cSM(V ∖ D2))
+ cSM(V ∖ D1) ⋅ cSM(V ∖ D2)

= c(TV) ∩ ( cSM(D1) + cSM(D2) − c(V))
+ c(TV) ∩ cSM(V ∖ D)

= c(TV) ∩ ( cSM(D1) + cSM(D2) − cSM(D))
= c(TV) ∩ cSM(D1 ∩ D2),

where the last equality follows by inclusion-exclusion.

2.4 Strongly splayed varieties and constructible functions

We say that two subvarieties Z1, Z2 of V are strongly splayed if Z1 = D′1 ∩ ⋅ ⋅ ⋅ ∩ D′r ,
Z2 = D′′1 ∩⋅ ⋅ ⋅∩D′′s , where D′i , D

′′

j are hypersurfaces, and {D′1 , . . . ,D′r}, {D′′1 , . . . ,D′′s }
are splayed in the sense of §2.1. We do not know if splayed subvarieties are necessarily
strongly splayed; the distinction is, of course, immaterial for hypersurfaces.

We can also consider this notion for constructible functions. By deûnition, every
constructible function can be written as a linear combination of indicator functions
of closed subvarieties. Since every subvariety is an intersection of hypersurfaces, it
follows that every constructible function may be written as an integer linear combi-
nation of indicator functions of hypersurfaces.
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Deûnition 2.19 Two constructible functions ϕ, ψ are strongly splayed if they admit
representations

(2.6) ϕ = ∑
i
a′i11D′i , ψ = ∑

j
a′′j 11D′′j

with {D′1 , . . . ,D′r}, {D′′1 , . . . ,D′′s } splayed sets of hypersurfaces and a′i , a
′′

i ∈ Z.

_us, if Z1 and Z2 are strongly splayed, then so are the corresponding indicator
functions 11Z1 , 11Z2 .

_eorem II Let ϕ, ψ be strongly splayed constructible functions on a nonsingular
variety V. _en

cSM(ϕ) ⋅ cSM(ψ) = c(TV) ∩ cSM(ϕ ⋅ ψ).

Proof We will prove this statement by induction on the number of splayed hyper-
surfaces needed to deûne ϕ, ψ (as in (2.6)). More precisely, assume that the equality

cSM(ϕ) ⋅ cSM(ψ) = c(TV) ∩ cSM(ϕ ⋅ ψ).

is known whenever

ϕ =
r
∑
i=1
a′i11D′i , ψ =

s
∑
j=1
a′′j 11D′′j

for a given pair (r, s) of positive integers, with {D′1 , . . . ,D′r} and {D′′1 , . . . ,D′′s }
splayed, and for all pairs preceding (r, s) in the lexicographic order. Wewill show that
the equality is then also true for (r+ 1, s). Since the statement is true for (r, s) = (1, 1)
by _eorem 2.18 (and ⋅ is symmetric), the general case follows by induction. _us we
are reduced to showing that

cSM(a11D + ϕ) ⋅ cSM(ψ) = c(TV) ∩ cSM((11D + ϕ) ⋅ ψ)

with ϕ andψ as above, under the assumption that {D,D′1 , . . . ,D′r} and {D′′1 , . . . ,D′′s }
are splayed. Since cSM is linear,

cSM(a11D + ϕ) ⋅ cSM(ψ) = a cSM(11D) ⋅ cSM(ψ) + cSM(ϕ) ⋅ cSM(ψ)
= a c(TV) ∩ cSM(11D ⋅ ψ) + c(TV) ∩ cSM(ϕ ⋅ ψ)

by the induction hypothesis

= c(TV) ∩ ( a cSM(11D ⋅ ψ) + cSM(ϕ ⋅ ψ))
= c(TV) ∩ cSM((a11D + ϕ) ⋅ ψ)

as needed.

_eorem II implies the full statement of_eorem I from the introduction. Indeed,
for ϕ = 11X , ψ = 11Y , under the assumption that X and Y (and hence ϕ, ψ) are strongly
splayed, _eorem II gives

cSM(11X) ⋅ cSM(11Y) = c(TV) ∩ cSM(11X ⋅ 11Y),

which gives (1.3) as 11X ⋅ 11Y = 11X∩Y .
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3 Proof of Theorem III

If X is a subscheme of a nonsingular variety, the Chern–Fulton class of X, cF(X), is
deûned by

cF(X) ∶= c(TV) ∩ s(X ,V).
W. Fulton introduced this class in [Ful84, Example 4.2.6(a)], and proved that it is in
fact independent of the choice of the ambient nonsingular variety V . If X is itself
nonsingular, then s(X ,V) = c(NXV)−1∩[X] (§2.2), so that cF(X) = c(X) = cSM(X)
in this case. _e classes cSM(X) and cF(X) diòer in general. For example, cF(X) is
sensitive to the scheme structure of X, while cSM(X) only depends on the support
of X.

_eorem III is a straightforward consequence of the following multiplicative for-
mula for Segre classes of splayed subschemes.

Lemma 3.1 Let Z1, Z2 be splayed subschemes of a nonsingular variety V. _en

(3.1) s(Z1 ∩ Z2 ,V) = s(Z1 ,V) ⋅ s(Z2 ,V)
in A∗(Z1 ∩ Z2).

Proof Consider again the ûber square of blow-ups

Ṽ12

π̃2
��

π̃1 // Ṽ2

π2

��
Ṽ1 π1

// V

as in §2.1. Let E1 be the exceptional divisor in Ṽ1, E2 the divisor in Ṽ2. By splayedness,
the inverse images π̃−1

2 (E1) and π̃−1
1 (E2) have no components in common. _us the

inverse image of Z1 ∩ Z2 in Ṽ12 is the complete intersection of π̃−1
2 (E1) and π̃−1

1 (E2).
_erefore

s(Z1 ∩ Z2 ,V) = (π1 ○ π̃2)∗
π̃∗2 (E1) ⋅ π̃∗1 (E2)

(1 + π̃∗2 (E1))(1 + π̃∗1 (E2))

= π1∗(
E1

1 + E1
⋅ π̃2∗π̃∗1

E2

1 + E2
) ,

by the projection formula

, = π1∗(
E1

1 + E1
⋅ π∗1 π2∗

E2

1 + E2
)

since the diagram is a ûber square

= π1∗(
E1

1 + E1
⋅ π∗1 s(Z2 ,V))

= s(Z1 ,V) ⋅ s(Z2 ,V)
again by the projection formula.
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Remark 3.2 Formula (3.1) also follows formally by settingD1 = D2 = 0 in (2.1); note
that ifID1 ,V andID1 ,V are trivial, then the the schemeW appearing in _eorem 2.9
equals Z1 ∩ Z2. However, then the proof given for _eorem 2.9 does then not work:
one has to assume that D1 and D2 are hypersurfaces containing Z1, Z2 respectively,
and this is in general incompatible with assuming that their classes vanish. Also, (2.1)
only holds in A∗V , while Lemma 3.1 proves (3.1) in A∗(Z1 ∩ Z2).

_eorem III, stated in the introduction, follows immediately from Lemma 3.1. As-
suming X and Y are splayed,

cF(X) ⋅ cF(Y) = (c(TV) ∩ s(X ,V)) ⋅ (c(TV) ∩ s(Y ,V))
= c(TV) ∩ (c(TV) ∩ (s(X ,V) ⋅ s(Y ,V)))
= c(TV) ∩ (c(TV) ∩ s(X ∩ Y ,V))
= c(TV) ∩ cF(X ∩ Y).

Example 3.3 With X and Y as in Example 1.2, we have

cF(X) = [P4] + 6[P3] + 11[P2] + 12[P1] + 3[P0],
cF(Y) = 2[P4] + 8[P3] + 14[P2] + 12[P1] + 6[P0]

(obtained using the code from [Alu03]). According to _eorem III,

c(TP5) ∩ cF(X ∩ Y) = cF(X) ⋅ cF(Y) = 2[P3] + 20[P2] + 84[P1] + 208[P0]

from which
cSM(X ∩ Y) = 2[P3] + 8[P2] + 6[P1] + 12[P0].

Again, this can be veriûed in this example by using the code in [Alu03].

4 Proof of Theorem IV

Wenow assume that X is a general section of a very ample line bundle onV ; in partic-
ular, X is itself nonsingular. If a Bertini theorem for splayedness held, then one would
expect that for any Y ⊆ V , the formulas established in_eorems I and III would hold.
We prove these formulas independently of such Bertini statements (and without in-
voking splayedness); as we pointed out in the introduction, a simple-minded ‘splayed
Bertini’ statement in fact does not hold (Example 1.3).

Our main tool is again a formula for Segre classes, which we reproduce here for
the convenience of the reader.

Lemma 4.1 Let Z ⊆ W be schemes and let D be a Cartier divisor in W, meeting
properly the support of every component of the normal cone of Z in W. _en

(4.1) s(D ∩ Z ,D) = D ⋅ s(Z ,W).

Proof Under the hypothesis of this statement, the blow-up of D along D ∩ Z is the
inverse image of D in the blow-up ofW along Z. _e statement follows then from the
projection formula.
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_e formula for the Chern–Fulton class in _eorem IV follows easily. Indeed, if X
is general and very ample, then it can be chosen to intersect properly the components
of the normal cone of Y ; further, X is nonsingular, so applying (4.1) and the deûnition
of Chern–Fulton class,

cF(X ∩ Y) = c(TX) ∩ s(X ∩ Y , X) = c(TX) ∩ (X ⋅ s(Y ,V)) = c(X) ⋅ s(Y ,V).
_us,

c(TV) ∩ cF(X ∩ Y) = c(X) ⋅ c(TV) ∩ s(Y ,V) = c(X) ⋅ cF(Y),
as stated in _eorem IV.
For the proof of the corresponding statement about cSM classes, a�er applying a

Veronese embedding we may assume that V ⊆ Pn and X is a general hyperplane
section. In this situation,

(4.2) cSM(X ∩ Y) = X
1 + X

⋅ cSM(Y).

_is follows from [Alu13, Proposition 2.6]. (_e proof of this proposition may be
summarized as follows: by inclusion-exclusion it can be reduced to the case in which
Y is a hypersurface. Using Lemma 2.14, the formula amounts then to a relation for
Segre classes that ultimately depends again on Lemma 4.1.) From (4.2),

c(TV) ∩ cSM(X ∩ Y) = ( c(TV) ∩ X
1 + X

) ⋅ cSM(Y) = c(X) ⋅ cSM(Y),

completing the proof of _eorem IV.
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