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NON-SYMMETRIC ORNSTEIN-UHLENBECK PROCESSES 
IN BANACH SPACE VIA DIRICHLET FORMS 

BYRON SCHMULAND 

ABSTRACT. We use recent advances in the theory of non-symmetric Dirichlet forms 
to study a class of Banach space valued Ornstein-Uhlenbeck processes. As an example, 
we look at Walsh's stochastic model of neural response and show that it is a continu­
ous process in any Sobolev space Ha(a < 1/2), and that it takes values only among 
functions with unbounded variation. 

1. Introduction. The theory of Dirichlet forms provides analytic tools that help us 
understand the connection between Markov processes and potential theory. This connec­
tion is a two way street; we can use the process to study the potential theory of the form, 
or we can use the potential theory of the form to study the process. It is the latter direction 
that we will travel in this paper. 

The classical theory of Dirichlet forms, as described for instance in the fundamen­
tal works by Fukushima [31 and Silverstein [7], concerns symmetric forms over locally 
compact state spaces. Unfortunately, the conditions of symmetry and local compactness 
exclude many interesting examples in Banach spaces and spaces of distributions. Some 
authors got around these difficulties in particular situations, but it is only recently that a 
complete theory of non-symmetric Dirichlet forms over more general topological spaces 
has emerged. Two references on this more general theory are the recent book by Bouleau 
and Hirsch [2] and the book by Ma and Rôckner [6] that will soon appear. 

In this paper we show how the well-known and well studied Ornstein-Uhlenbeck 
process can be fit into the Dirichlet form framework. We will apply the theory of non-
symmetric Dirichlet forms to the construction and study of the infinite dimensional 
Ornstein-Uhlenbeck process X which solves 

(1.1) dX= -AXdt + dW, 

where A is an operator on a Hilbert space //, and W is the white noise with covariance 
operator given by the inner product on H. In Sections 3 and 4, we apply the Dirichlet 
form approach to a specific example. This example is Walsh's stochastic model of neural 
response [12] and we show that it is a continuous process whose values are functions in 
L2 that are not of bounded variation. This extends the results in [9] where these facts are 
proved in the symmetric case. 
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2. The Dirichlet form associated with an Ornstein-Uhlenbeck process. In this 
section we will find the Dirichlet form *£ associated with the process X that solves equa­
tion (1.1). Here is the outline of our strategy. The two ingredients that are intrinsic to 
equation (1.1) are the drift operator A and the Hilbert space H. Starting from these two 
we will first find the invariant measure \i. This measure lives on a Banach space that will 
eventually serve as the state space for our process. Using \i and the operator A we can 
then define *E, the form associated with X. Finally we will show that *£ is closable and 
that its closure has the Markovian property and the local property. 

We begin with a real, separable Hilbert space H whose norm and inner product are 
denoted by || • || and (•, •) respectively. Let (A, ©(A)) be a densely defined operator on 
H such that —A* generates a strongly continuous semigroup {e~tA*}. We assume that for 
some constants c\,C2 > 0 we have 

(2.1) \\e~^\\MH;H)<cie-^ Vf>0. 

It follows that T := JQ° e~tAe~tA* dt is a continuous, positive definite, self-adjoint opera­
tor and that the corresponding bilinear form 

(2.2) (h, k) := (h, Tk) = J (e~tA h, e~tA k) dt 

is positive definite and continuous on H. We note that in the case when A is symmetric, 
then T reduces to J^° e~2tA dt = (1 /2)A_1. We now use the bilinear form (2.2) to define 
the invariant measure \x. Let E be a real separable Banach space that includes H densely 
and continuously. By duality we have 

(2.3) £* ^ H* & H <-* E, 

which means £(z) = (I, z) for l e ET and z G H Ç E. We suppose that E is large enough 
to support the measure /i, that is, there exists a mean zero Gaussian measure [i on (£, ®) 
so that 

(2.4) [ h(z)k(z)ti(dz) = (h,k) 

for all h, k G E*. We can always do this, for example by letting E be the completion 
of//with respect to a measurable norm [4]; but often, as in the next section, it is more 
convenient to work on an even smaller space. For any h G //, let hn be a sequence in E* 
that converges to h in //-norm. Then {hn(-)} converges in L2(E\ /x) to a member of L2(/x) 
that we will call Xh. The collection {Xh}heH is jointly mean zero Gaussian with 

(2.5) cov(Xh9Xk) = (h,k). 

Before we can define £ we need the following lemma on the bilinear form in (2.2). 
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LEMMA 2.1. Forh,k G ©(A*) we have 

(2.6) (A*h,k) + (h,A*k) = (h,k). 

PROOF. From semigroup theory we know that if h G (D(A*), then the //-valued 
function t —» e~tA*h is differentiable and its derivative is 

(2.7) ^-e'tA*h = -A*e'tA*h = -e~tA*A*h. 
at 

Let h,k G ©(A*) and define the real valued function/(f) = (e~tA* h, e~tA* k). Then/ is 
differentiable and by (2.1) it goes to zero as t —> oo. Thus/(0) = — Jo°/'(0 dt, in other 
words 

(A, k) = |o°°(^rA*A*/z, *"***) + (*"** A, ^A*A*£) dr 
( 2 ' 8 ) = (A*A,Jfc) + (M*ifc). • 

Because we want to apply the theory of non-symmetric (sectorial) Dirichlet forms we 
will have to assume that the bilinear form (A*h,k) defined on ©(A*) is sectorial. This 
means that for some M > 0, we have for all h,k E Œ>(A*) 

\(A*h,k)\ <M{A*h,h)xl2(A*k,k)112 

(2.9) = (M/2)||A||||*||. 

This tells us that the form (A* A, k) has a continuous extension to all of//. We will denote 
this extension by (A* A, k) also. 

We define a subspace of L2(£; //) by 

(2.10) yrC^= {u:E -> R \ u(z) = </>(^i(z),..., £n(zj) for some 
<t> G C™(Rn) and £t G £*\{0} for / = 1, . . . , n), 

where Cg°((Rn) is the space of all real functions on Rn that are bounded and have bounded 
partial derivatives of all orders. Each function is fC^ is a(E, /^-continuous, and so 
measurable, and therefore can be regarded as an element in L2(E; /x). Since /i charges 
every non-empty a(£,£*)-°pen set we see that if w, v G ^TCg° and u = v /x-a.e., then 
u = v everywhere. 

Now for every u G fC^ we define a gradient function Vu: E—> E* by 

(2.11) (ViO(z) = Ê t f ^ i f e ) , • • • > *n(z))*«. 

Although the representation of u is not unique, (Vw)(z) is well-defined as we have 

(2. 12) £*((ViO(s),*)|r = ( | ^ ) ( z ) z,* G £. 
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where 

(2.13) {^kU)(z) = Js
u(z + skt=o z G E. 

The partial derivative in (2.13) is representation independent. 
Finally we define the form *£ on L2(\i) by 

(2.14) £>(£)= JC£° 

£(M,V) = f(A*Vu,Vv)dii. 
JE 

This is a densely defined, positive, sectorial form on L2(/i), these qualities being inherited 
from the bilinear form (A*h, k). 

We now need to show that *£ is closable, keeping in mind that it suffices to show the 
closability of its symmetric part *£(*/, v) = 1 /2 j(Vw, Vv) d[i. In order to show that *£ is 
closable we decompose it into closable parts. For k G E \ {0}, define the form 2^ by 

(2.15) 2)C£,) = J C 

^ , v ) = l / 2 / ( ^ ) ( A v ) ^ . 

Now according to Theorem 2.8 of [1], the closability of (2.15) follows if we have inte­
gration by parts in the /c-direction. That is, if there exists f5k G L2(/i) so 

for all u G ̂ FC£°, then *£* is closable. 

LEMMA 2.2. Ifk G Range(T) where T = J0°° e~tAe-tA* dt, then (2.16) holds, so the 
form Œ^it in (2.15) is closable. 

PROOF. Let u G fCJ° be given by u(z) = <f>(t\ (z),. . . , 4fe)) where £j , . . . ,£„ are 
linearly independent in F \ and (/> G Cg°(IR"). The random vector (l\,..., £„) has a mean-
zero Gaussian distribution (under /i) with a non-singular covariance matrix Z and hence 
a density on Rn given by 

(2.17) </>(*) = (27r r n / 2 | I | - 1 / 2 exp( - iy i - 1 j c ) . 

By change of variables, we get 

| ( j | i i ) JM - / E ( W ) ( ^ i ( 4 . . . , ln(z))li(kMdz) 

(2.16) J^ — uJdfi = - j u$kd[i 

i=\ 

= L j:(M){x)Uk)^(x)dx 

(2.18) = £ X>(x)4(£)(-3^)«^ 
•/RB,-=i 

^ r i=i 

= JEcP(iu...jn)f:(i:-
l(iu...jn))ii(k)d^. 
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Now since k G Range(T) we have k — Th for some h G H. From (2.2) we get £,-(&) = 

When (x,y) are mean-zero jointly Gaussian vectors we have E(y\x) — Z21Z7/-X, where 
Zi 1 is the covariance matrix of x, and (Z21 )// — cov(y/, x/). Therefore on (£, $, //) we have 

(2.19) £(X f c |^i , . . . ,^) = è ( 2 " \ « i , . . . , « ) | . ( ^ A ) , 

so that (2.18) may be rewritten as 

3 
J\dkU)dlJj = \uXhd[i. v3fc 

This gives (2.16) and so £& is closable. • 
Since Range(T) is dense in H we may find an orthonormal basis {k\, k2,...} for H in 

Range(T). Then for M,vG ^Cg° 

(2.20) ,'"1 

„ r. OO 

J(Vu,Vv)dn = J YJ{^u,ki){ki,Wv)d^ 

Since the sum of closable forms is closable, we conclude that *£, and hence £ in (2.14), is 
a closable form. For convenience we let (*£, ©(*£)) denote the closure also. We note that 
there are a lot of functions in £>(£) that are not in fC^. Suppose <j> G C(Rn) and that <j> 
and all of its first order partial derivatives are bounded by a polynomial. Let h( G //\{0} 
for / = 1, . . . , n and set u — (f)(Xh],..., XhJ. 

Then w G £>(£) and 

(2.21) £ ( M ) = ^J\\Vu\\2dii, 

where Vw := E"=i(a/0)(^,, • • • ,Xhn)ht. Furthermore, if the /z/'s are orthonormal and 
belong to 2)(A*), and if we set Au := E" = 1 (9^)(^ , , •. -,Xhn), then a calculation similar 
to the one in Lemma 2 gives us 

(2.22) nu,v) = - j \ ^ t S u - ^ 

If, in addition, we have A*ht G E* for all i, then this reduces to the more familiar 

(2. 23) £(w, v) = - /" J ^Au - £*(A*Vw, - ) £ | vdfi. 

You can even get away with functions </> that are not quite as smooth. In particular if 
u, v G £>(£), then (w V v) G £>(£) with 

(2.24) V(nVv) = l{ t t > v }Vii+l{ l l < v }Vv+il{ l l = v }(Vii + Vv). 
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We will use this result (see also [6; Chapter 4, Lemma 4.1]) in our calculations in Sec­
tions 3 and 4. The original form (2.14) on fCf admitted a square of field operator 
Y(u, v) := (A*Vw, Vv), so that E(w, v) = JT(w, v) d[i. This operator T can be extended 
to the closure (E, 2)(E)) and for convenience we again denote the extension by T. The 
chain rule holds for T, so if w, v G £>(E) and </>, ip G Cl

b(R), then <£(«), ^(v) G ©CE) and 

(2.25) r(</>(w), V>(v)) = <t>'(u)\l)'(v)T(u, v) /x-a.e. 

Using this fact it is easy to show, as in [10], that (E, (DCE)) has the following two im­
portant properties. 

DEFINITION. A form (E, ©(E)) is called local if, whenever w, v G £>(E) satisfy 
wv = 0 /i-a.e., then E(w, v) = 0. 

DEFINITION. A form (E, ©(E)) is called Markovian if « G 2)(E) implies w+ A 1 G 
£>(E) with E(w+ A 1, u - u+ A 1) > 0 and E(w - w+ A 1, u+ A 1) > 0. 

(E, ©(E)) is a closed, sectorial bilinear form on L2(JLX) with the Markovian property. 
It is therefore a Dirichlet form, and it is also local. Furthermore, (2.14) combined with 
Proposition 3.1 of [8] shows that the capacity associated with £ is tight on E. 

Since fCf (see (2.10)) is an Ej-dense set of continuous functions that separates 
points in E, we conclude that (E, ©(E)) on L2{E\ii) is quasi-regular in the sense of 
Ma and Rôckner [6; Chapter 4, Definition 3.1]. Consequently we can use their existence 
result [6; Chapter 4, Theorem 3.5] to obtain an ^-valued diffusion 

(û,!F,(X(r))^0,(Pz)zG£) 

associated with E. This is our Ornstein-Uhlenbeck process and it is a weak solution to 
(1.1) in the sense of [1], to which we refer the interested reader for further details. 

3. Walsh's stochastic model of neural response. 

NOTATION. In Sections 3 and 4 the unlabelled symbols || • || and (•, •) will refer to the 
norm and inner product in H = L 2 ( [0 ,L] ;^JC/^(X)) . Occasionally we will also use the 
norm and inner product of L2([0, L]; dx) and these will be labelled || • H^^) and (•, •)L2(^). 

Finally, c will stand for a generic positive constant whose value may change from line to 
line. 

In [12] Walsh proposed a model for a nerve cylinder undergoing random stimulus 
along its length. The cylinder itself is regarded as the interval [0, L] and {X(x, t, LU) : 0 < 
x < L,t > 0,LU £ £1} denotes the value of the nerve membrane potential at time t at 
a location x along the axis. He found that this potential could be approximated by the 
solution of the stochastic differential equation 

(3.1) dX= f^-y -x)dt + dW 
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where the Laplacian d2 /dx2 is given reflecting boundary conditions at the endpoints 0 
and L. Here W is a white noise on R+ x [0, L] based on the measure r\(dx) dt, where r\ 
models the intensity of the random stimulation acting along the nerve cylinder. 

On the space L2([0, L]; dx), the operator A is self-adjoint and strictly positive definite. 
This operator has an orthonormal basis {ej} of eigenvectors, namely 

(3.2) e0(x) = L~xl2 and ej(x) = 21/2L"1/2cos(7r/c/r1), j > 1 

Aej = Xjej = (1 + ir2j2L~~2)ej. 

The operator A generates a strongly continuous semigroup {e~tA} and it also generates 
a closed bilinear form e. The operator and form can be written explicitly as 

(3.3) £>(£) = {feL2:f'eL2} e(f, g) = jf'g' dx + Jfg dx 

<D(A) = {fe L2:f" G L2,/'(0) =/ ' (L) = 0} Af=f - / " . 

For / G (D(A) and g G *D{e) we have e(f,g) = JAfgdx. It is well-known that every 
function/ G 2)(e) is absolutely continuous and satisfies H/H^ < ceif) for some constant 
c > 0. From this it follows that if/, g G ©(e) then/g G ©(e) and 

(3.4) e(fg)<ce(f)e(g). 

We can now state the assumptions we need in order to apply Dirichlet form techniques 
to this example. We assume that the measure 77 is absolutely continuous with rj(dx) — 
r\(x) dx, where 77 G (D(e) and r\ is bounded away from zero. To fit Walsh's example into 
the framework of the previous section we must take 

(3.5) A = I-d2/dx2 and// = L2([0,L];JJC/T/(X)). 

We see that when we choose a non-constant function 77, we really use the same operator A 
on the same space //, but that H is equipped with a different but equivalent norm. Under 
this new norm the operators A and e~tA are no longer symmetric, but instead we have 

(3.6) e-tAy = r]e-tA(f/r]) and 

A+e-^f^vAe-^if/r]). 

In particular, (2.1) is fulfilled and we have from (2.2), (2.4), (3.2), (3.5) and (3.6) that the 
invariant measure \x lives on the space H. To see this, we calculate 

/l|z|&wx)M(&) = Jj2(eJ^)2
L2(dx)^(dz) 

= /E(^^) 2 M(*) 

(3.7) fOQ 

= E / 0 We-'UrieM'dt 

<c£dA-)<oo. 
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Thus, in this section we don't need to introduce additional spaces E and £*, we simply 
take E — H and do everything directly on this space. The last requirement from Section 2 
that we have to fulfill is (2.9), that is, we must to show that the bilinear form (A*h, k) is 
continuous on //. To see this, we first note that from (3.4) and (3.6) we have for/, g G //, 

(A*e-tAtf9e-tAtg) = jAe-tA(f/Tf)e-tA(g/T,)Vdx 

(3.8) =e{e-tA{f/ri)^e-tA{gh)) 

< 
V2 / - * , / x\l /2 

ce{e-*(flri)yl'e{e-<A(glrù) 

Now 

(3.9) 
e(e-'A(f/r!)) = j ' Ae-A(f/ij)e-'A(f/V)dx 

= fAe-2tA(f/V)(f/11)dx, 

sothatSS°e(e-'A(f/T,))dt=SA(\A-iXf/v)(f/v)dx= W/lWln*)-
Finally we have, 

\{A*f,g)\ = \j^{A*e-tA'f,e-tA'g)dt\ 

( 3 - 1 0 ) < c[f e(e-«<f/r,)) ^ { f <^(8/v)) dtf 

= c\ïf/v\\mdx)\\g/v\\mdx) 

<c\\f\\\\g\\-
We have satisfied the requirements (2.1) and (2.9) and so the form 

(3.11) £>(£) = JC2° 

£(w,v) = / (A*Vw,Vv)^, 
JH 

is a densely defined, positive definite, sectorial, closable form on L2(//; //). We will denote 
its closure by (*£, ©(£)) also. The form *E has the local and Markovian properties, and is 
the Dirichlet form associated with the weak solution of the equation (3.1). By the results 
in Section 2 we know that this process 

(3.12) ( f l , J , ( X ( 0 ) / > 0 , ( ^ w ) 

is an //-valued diffusion, that is, 

(3.13) Pz(t -* X(t) is //-continuous) = 1 /z-a.e. zEH. 
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4. Further sample path properties of Walsh's process. In the previous section 
we have shown how the theory of Dirichlet forms can be used to construct a function-
valued stochastic process X(t) which solves (3.1) and is associated with the form *£ in 
(3.11). So far, we know that X(t) is an //-valued diffusion, that is, 

(4.1) pii{t-^ x(t)is continuous in L2) = 1 

So we know that the functions x »—» X(x91, uo) are square integrable, what more can we 
say about them? How can we use the form *£ to obtain further information on these 
functions? 

We point out that in his original paper Walsh already proved, using Gaussian tech­
niques, that (t,x) i—> X(x, t, u) is jointly continuous with probability one, and even gave 
a modulus of continuity [12; Corollary 4.3]. So we do not consider continuity, but look 
at other properties of X(t). In fact, we will find that the properties which can be most 
profitably analyzed using *£, are those which can be described in terms of the coeffi­
cients in the cosine expansion of X(t). Before we continue then, let us look more closely 
at the cosine expansion of a randomly selected element z <E H — L2([0,L];(ix/r;(x)). 
Recall that we are working on the measure space (//, fi) where [i is the mean zero Gaus­
sian measure with covariance given by (2.4). Consider the sequence of random vari­
ables {{ej,z)L2(dx)iJ — 0 ,1,2, . . .} , where eo(x) = Zr1/2 and forj > 1 we have ej(x) = 
2 l /2L - 1 /2

 COS(7T/JCL-1) (see (3.2)). This sequence is mean zero Gaussian with covariance 

J {ei,z)L2m{ehz)L2{dx)ii{dz) = j{'qei,z){r]ehz)^(dz) 

(4.2) =y 0 (e-tA(mle-tA(vej))dt 

= £°e-*x>+»(r,ei9riej)dt 

= J rj(x)ei(x)ej(x)dx/(Xi + A/). 

Using the addition law for cosines, 

cos(tf) cos(Z?) = ~{cos(a + b) + cos(|a — b\)}, 

we obtain | Jr/^e/l < c\rji+jr+f/|;_/| |, where we define {rjj} to the coefficients in the cosine 
expansion of the function r/, i.e., 

(4.3) rij:=Jri(x)ej(x)dx9 j > 0. 

We have assumed that r\ is sufficiently smooth, namely that r\ E (D(e) (see (3.3)), so that 
Eĵ o I7//1 < °° [5; p. 331. We can now get a bound on the correlations, 

I con((eh -)LHdx), (ej9 - ) L W l < c 
(4.4) I 

Vi+j + V\i-

2(A/ + A7) 

<c\rji+j-¥rjlHl\. 

2Xi \ 1 f 2\j 

jrjejJ \J7]ej 
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Equation (4.1) told us that for every t, X(t,x) is a square integrable function of x. Let us 
now look at Sobolev spaces. For 0 < a < 1, define the space 

(4.5) fP= [z e Û : £ A ? ^ } ^ := ||z||2 < oo . 

Calculating as in (3.7) we find 

(4.6) C,Z(1/A,-)A; < f\\z\\2Mdz) < c2Z(l/A,-)A7, 

for some positive constants c\,C2. We know that Ay ~ cj2 (see (3.2)) and so conclude 
that ji{Hxl2) = 0 but n(Ha) = 1 for a < \. In addition, it can be shown [11] that the 
capacity associated with £ is tight on Ha for a < 1/2 and so 

(4.7) P^ (r —• X(t) is continuous in Ha) = 1. 

What about Hl l2l We know that 

(4. 8) P^ (X(0 G Z/1 /2) = //(if1 /2) = 0, for all f > 0 

but we'd like to draw the stronger conclusion that the process X(t) fails to enter the space 
H{l2 even at exceptional times, i.e., 

(4.9) P^ (X{t) G H] I2 for some t > 0) = 0. 

Unfortunately, at the present time, we are only able to prove it in the symmetric case, 
i.e., when rj(x) = d on [0,L]. This makes the random variables {{ej,z)^{dx) '• J > 0} 
independent on (//; /i) by (4.2). However, this independence is only used to establish the 
bound in (4.14). If a substitute could be found for (4.14), then the rest of the argument 
would work even in the dependent case. 

PROPOSITION 4.1. Ifr\ = dfor some constant d, then 

P,(\\X(t)\\l/2 = œforallt) = l. 

PROOF. Recall the définition of Hx I2, 

(4.10) Z/V2 = L G L2 : ||Z||2 =Z\'2(ej,z)hidx) < 

For « > 1 define the continuous function un by 

Un(z)=(±\]/2(eJ,z)2
LHdx))AN 

j=o ' 
(4.11) 

= (t^J
/2(r]eJ,z)2)AN. 
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Then u„ G ©(£) and 

V«„(Z) = I £/=o 2Xl/2(r1ej,z)i1ej if un(z) < N 
10 otherwise 

Since | (77e/, 77e/)| < c|r//+/ + r y ^ | is a bounded sequence, we have on the set {z : un{z) < 
N} 

<c(mj/2|(^,z)|)2 

(4.12) <c(ZA7
l /2)(SA] /2(^,z)2) 

< c - ^ 0 ( l + 7 ) - N 

= c[ l+ ••• + («+!)] 

<cn2 

Therefore 

(4.13) 
£(««)= 2/II VK„(Z)||WZ) 

7=0 

Using Chebyshev's inequality we get, for any t > 0, 

/*(ÊAj%-,z>£ î (<« < N) <e2'NEL^{-2tt^\ehz)lHdx) 

(4.14) 
= ^ n £ ( e x p ( - 2 A ; / 2 ( e „ z ) 2

2 ( , l ) ) ) . 
7=0 

If Z is a standard normal random variable and 0 < a < 1, then £(exp(—aZ2)) = (1 + 

2a)"1/2 < e~al2. From (4.2) we know E((e/,z)2
2(&)) = jT?e2/2A7. Choose 77 > 1 so 

large that if 7 > 7, then t\j/2 J-qe2/2\j < 1. Using (4.14) we get, for n>T, 

£(««) < ce2,Nn2 ft exp(-t J ve2 h^Xj) 

( 4 - 1 5 ) ' = r / " /• / ,-A 

= Ce
2 '^2exp(-/i:/r,e

2/2yAy) 

Now J rjej is bounded away from zero, and J\j < cj so that for some constant k, 

(4.16) £ /V 2 /2x/A; > *£(1 / . / ) > fclog(n/D 

for large n, where A: doesn't depend on .̂ Combining (4.15) and (4.16) yields 

(4.17) £(«„) < ce^nHn/T)-1". 
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By choosing t so that kt > 2, we see that *£(«„) —» 0 as n —-> oo. On the other hand, as 
n—*oo,un increases pointwise to the function 

(4.18) u(z)=\\z\\2
l/2AN, 

the convergence also taking place in L?(H\ n). This means un —• u in 'Ei-norm where 
*Ei := *E + (•, -)L2(^)- Using the fact that un is a monotone sequence, along with [6; 
Chapter 3, Proposition 3.5] and [6; Chapter 4, Lemma 4.5], we obtain 

(4.19) P^ (un(X(t)) -> u(X(t)) uniformly on [0, 71 for all r ) = 1, 

and so 

(4.20) P^ (t —•> w(X(r)) is continuous] = 1. 

Since u = N almost everywhere we have 

(4.21) Pp (u(X(tj) = N) = ti(u = N) = 1 for all U 

which combines with (4.20) to give 

(4.22) PM (u(X(tj) = N for all t) = 1. 

Letting iV-^oowe conclude 

(4.23) ^(ll*(0||?/2 = oo for all /) = 1. 

Two other properties of a function that can be related to its cosine expansion are 
Holder continuity and bounded variation. In fact, a slight modification of [5; Chapter 1, 
Theorem 4.5] and [5; Chapter 1, Section 6.3], where the topology of the unit circle is 
used, gives the following. 

LEMMA 4.2. For z G L2([0,L]; dx\ let Zj = {eJ9z)Li{dx)forj > 0. 
(i) Ifz is of bounded variation, then \ZJ\ — 0(1/j). 

(ii) Ifz is Holder continuous with coefficient a > j , then E|z/| < oo. 

To finish this section we would like to show that 

(4.24) Cap(z:|z,-| = O(l/j)) = 0 

and 

(4.25) Cap(z:Z|zy-| < oo) = 0 

and so conclude that, with probability one and at all times t, the function x t—> X(x, t, u) 
is of unbounded variation and is not Holder continuous for a > ^. These complement 
Walsh's fixed time result [12; Proposition 6.1] which says that, as a function of JC, X(t,x) 
looks like a Brownian motion path plus a C2-function. In proving (4.25) we must, at 
the present time, restrict ourselves to the symmetric case (as indeed Walsh did in his 
fixed time result, see [12; Proposition 6.1, p. 253]). The proof is basically the same as 
in showing Cap(//1//2) = 0 in Proposition 4.1 so we omit it. Even without the symmetry 
assumption we can prove (4.24) by using the following lemma which says that if a se­
quence of Gaussian random variables is weakly correlated, then it behaves much like an 
independent sequence. 
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LEMMA 4.3. Let tpn be the density on Rn for a mean-zero Gaussian measure with 
variances a2 for i — 1 , . . . , n and correlation satisfying 

(4.26) \Pij\ <(l /4)(c i + ; + C|M), 

where {CJ}°Z{ is a sequence of positive constants with Zc7 < 1. Then 

(4. 27) <pn(x) < [1 + ÇLcj)/1 - ÇLcj)]n'2Mx) 

where (j>n is the density for independent normal random variables with mean zero and 
variances a2 = cr?/(l + Ec/). 

PROOF. Without loss of generality we may assume a2 — 1 for all /. We have 

(4.28) (fn(x) = (27r)-n /2 |A|-1 /2exp(-^ /A-1xV x e Rn 

where A is the covariance matrix; an — 1 for all / = 1, . . . , n and a^ = pij for / ^ j , 
i — 1, . . . , n and j — 1 , . . . , n. We have the bound 

x'Ax — Lx2 + ^XiXjPij 

(4.29) { x 

< ^ i + j E \xtXj\(cH) + - Y, \xixj\c\i-j\-
4 t r 4 •/• 
^ ' ^7 ^ ^ 

Now, for example, 

n—\ n—2 

(4.30) 5ZI^"lc|i-7l = 2 c i S l*/*7+i I + 2 c 2 l ] |*;*/+2| + -> + 2cn-\\x\xn\ < 2ÇLCJ)\\X\\2 

¥j 7=1 7=1 

and similarly E*y7 |x/X/|c/+/ < 2(Zc/)||x||2. Plugging this information into (4.29) gives 

(4.31) xfAx<[l+ÇLcj)]\\x\\2. 

In a similar way we obtain the lower bound 

(4.32) [I - ÇLCJ)]\\X\\2 <x'Ax 

Now applying (4.31 ) to x = A~ 2 x gives 

(4.33) x'A~xx> \\X\\2/[1 + ZCJ]. 

Also, we find \A\ = \X\ • • • Xn\ > |An|
n, where 

(4. 34) Xn = mm(xAx/xx) 

is the smallest eigenvalue of A. Now (4.32) shows that the minimum eigenvalue exceeds 
(1 — Zc/) and so 

(4.35) | A | > ( 1 - I 9 ) n . 

Finally, substituting the bounds (4.35) and (4.33) into (4.28) gives the required result. • 
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PROPOSITION 4.4. 

Pji (x ]—> X(x, t) is not of bounded variation for all tj — 1 

iXCap(z : | z / | = O(l/j)) = 0. 

PROOF. For n > 1, define the continuous function 

(4.36) un(z) = (sup [jzj\) AN. 

Then un G ©(£) and, almost surely we have 
n 

(4.37) Vun(z) = Y/k-T]ek' sign((rjek,z)) • l(sup« [/Z/.|=|*z*|<;v)' 
k=l J 

so ||Vw„(z)||2 < cn2l(supn \jZj\<M) on//. Therefore 

2XMn)=^/l|V«wfe)||2/i(&) 
(4.38) „ 

< en2/i(sup jyzy | < Af). 

We would now like to use (4.4) and apply Lemma 4.3 with Cj = |4cT7y-|, where c is the 
specific constant in (4.4). Provided 2|4c7jf/| < 1, this gives 

(4.39) /i(supl/z/| <N) < [1+4CI|T]7- | /1 -4cI |^ |f /2P(sup|X /- | <N)9 
j=i j=i 

where X, are independent, mean zero Gaussian r.v.'s with âj = (j2 / \j(\ +4cZ|r;y|)). The 
sequence âj is bounded away fromO, i.e., a2 := infôj > 0. Since \XJ\/CTJ < \Xj\/a we 
get 

P(sup \Xj\/a < N/a) < P(sup \Xj\/aj < N/a) 
(4.40) ' y=i y=i 

= /y l( |Z| < i V / a ) . 

Choose M so large that I*J>M4CTIJ < 1 and that 

(4.41) (1 +4cZ;>Af?fc/l -4cI7>Mr?y)1/2/)(|Z| < TV/a) < 1. 

Applying (4.39) to the tail of the sequence we get, for n > M 

(4.42) Tiun) < cn2[(\ + AcL&w /1 - 4CE7>A/r?y)
1 /2P(|Z| < TV/a)]"^ 

which converges to zero as n —• oo, so we have convergence in £-norm. This sequence 
{un} of continuous functions also increases pointwise to 

(4.43) u(z)=(sup\jzj\)AN. 
7>1 
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The convergence also takes place in L2, and by (4.39) and (4.41) we see that u = N 
almost everywhere. 

The remainder of the proof is exactly as in Proposition 4.1, so we omit it and conclude 
with 

(4.44) PM(sup \jXj(t)\ = oo for all t) = 1 
7 = 1 

or 

(4.45) Pp (x —> X(x, i) is not bounded variation for all r) = 1. • 
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