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Low-calorie sweeteners (LCS) are commonly used as sugar substitutes in the diet to provide a
desired sweet taste without increased energy intake. The number of LCS available on the mar-
ket has increased considerably over the years and despite extensive evaluation of their safety
prior to approval, debate continues around the effects of consumption on health. In Europe,
Member States are obligated to monitor exposure to LCS and methods currently used tend to
rely on self-reported dietary intake data alongside LCS concentrations in products. However,
the acquisition of accurate data can be costly in terms of resources and time and are inherently
imprecise. Although LCS are intensely sweet, they are chemically diverse and a limitation of
many studies investigating the health effects of consumption is that they often fail to discern
intakes of individual LCS. An approach which objectively assesses intakes of individual
LCS would therefore allow robust investigations of their possible effects on health.
Biomarker approaches have been utilised for the objective investigation of intakes of a
range of dietary components and the feasibility of any such approach depends upon its validity
as well as its applicability within the target population. This review aims to provide an over-
viewof current understanding of LCS intake and explore the possibility of implementing a bio-
marker approach to enhance such understanding. Several commonly used LCS, once
absorbed into the body, are excreted via the kidneys; therefore a urinary biomarker approach
may be possible for the investigation of short-term exposure to these compounds.

Low-calorie sweeteners: Intense sweeteners: Biomarkers: Exposure assessment

Since the 1980s, the prevalence of obesity has more than
doubled globally(1) with significant implications in terms
of the development of chronic conditions such as CVD,
type 2 diabetes mellitus and hypertension(2). Given that
the overall pattern of weight gain has been attributed
to a culmination of a host of factors(2), it is of no surprise
that a multi-faceted approach has been proposed to ad-
dress the issue. One factor implicated in the development
of weight gain, as well as a range of adverse health
outcomes, is the over-consumption of non-milk ex-
trinsic sugars from foodstuffs, particularly from sugar-
sweetened beverages(3–8). A logical strategy to address
these issues would be to reduce the intakes of these
beverages. However in practice, this approach may be

difficult given the apparent innate preference for
sweet taste among human subjects(9). To satisfy the desire
for sweet-tasting products without exacerbating the
problem of overconsumption of non-milk extrinsic
sugars, low-calorie sweeteners (LCS) have become
more commonly used as substitutes in a wide range of
products(10).

This review will provide an overview of current under-
standing in relation to intakes of LCS and will consider
existing methods for monitoring exposure to these com-
pounds. It will also explore the possibility of implement-
ing a novel biomarker approach for investigating LCS
exposure, which could be used to gain a better under-
standing of LCS consumption and health.
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Low-calorie sweeteners

LCS can be broadly divided into two groups; bulk sweet-
eners (e.g. polyols), which have a similar sweetness to su-
crose and are also commonly used for other functional
purposes in products(11,12), and intense sweeteners,
which are many times sweeter than sucrose and are main-
ly used only for their sweetening properties(11). The focus
of the remainder of this review will be on intense sweet-
eners. Intense sweeteners which are currently approved
for use in the European Union (EU), together with
their general characteristics, are listed in Table 1. The
use of LCS has increased considerably over recent
years and they can now be found in a wide variety of
food and non-food products(10). The level of sweetness
that they impart, relative to sucrose, ranges from thirty
times sweeter (cyclamates) to 37 000 times sweeter
(advantame) and despite possessing the common charac-
teristic of being intensely sweet, they represent a chem-
ically diverse group of compounds. The overall
contribution of LCS to energy intake is negligible and
it is upon this basis, along with the fact that they are
also non-cariogenic, that they are commonly used.
Prior to approval, the safety of LCS consumption in
human subjects is established through extensive evalu-
ation of existing safety and toxicological data, usually
culminating in the assignment of acceptable daily intake
(ADI) and maximum permitted use levels(13–15).

Acceptable daily intake

An ADI, which is expressed as mg/kg body weight, has
been defined as the amount of a chemical that can be con-
sumed daily over the period of a lifetime with no appre-
ciable risk to health(16). To assign an ADI, long-term,
multiple-dose animal studies are typically used to initially
establish the no observed adverse effect level by identify-
ing the highest level of exposure which causes no adverse
effects in the most sensitive species of animals(13–15). To
account for variation between species and within human
subjects, safety factors are then applied (Fig. 1). In the ab-
sence of serious adverse effects (e.g. teratogenicity) in ani-
mal studies, an overall safety factor of 100 is usually
applied to the no observed adverse effect level(14), al-
though higher or lower safety factors can also be applied.

Health effects of low-calorie sweeteners intake

Despite extensive evaluation of the safety of LCS, the
potential health effects of consumption has remained
topical within the area of nutrition research(11,17,18).
Moreover, the long-term efficacy of using LCS in place
of non-milk extrinsic sugars as a weight management
tool has yet to be conclusively established(19–25). A recent
meta-analysis of randomised controlled trials and pro-
spective cohort studies into the effects of LCS consump-
tion on weight status, reported that in prospective
cohort studies, a small positive association was observed
between LCS consumption and increased BMI (0·03
kg/m2) but not body weight or fat mass. However in ran-
domised controlled trials, LCS consumption was asso-
ciated with modest, albeit significant reductions in body

weight (−0·80 kg), BMI (−0·24 kg/m2), fat mass (−1·10
kg) and waist circumference (−0·83 cm)(26). The potential
mechanisms by which LCS consumption might influence
appetite and food intake were reviewed by Mattes and
Popkin(27) and they concluded that, although the evidence
was lacking for many putative mechanisms (such as ceph-
alic phase stimulation, gut peptide response and increased
palatability of products), further research in the free living
population via long-term randomised controlled trials
was warranted. In addition to body weight status, LCS
consumption in relation to a range of adverse health out-
comes including cancer(28,29), CVD(30,31), diabetes melli-
tus(32,33) and preterm deliveries(34) has also been
investigated. No convincing evidence of a risk in the de-
velopment of any adverse effects as a result of LCS con-
sumption has been presented to date. The French Agency
for Food, Environmental and Occupational Health and
Safety recently undertook a review of the evidence with
regard to many of these outcomes and concluded that,
although the data do not demonstrate a risk, further re-
search is required to establish the long-term beneficial
effects of LCS consumption on health(35). Furthermore,
the French Agency for Food, Environmental and
Occupational Health and Safety also recommended that
future cohort studies should aim to distinguish the intakes
of individual LCS, so that the effects of single and mul-
tiple LCS use can be investigated more effectively(35).
The ongoing debate around the safety of LCS consump-
tion has served to fuel a somewhat negative perception
within the lay media and the population in general. A re-
cent study by Harricharan et al.(36) investigated the atti-
tudes of dietitians from several European countries
towards LCS and highlighted a diversity of opinions ran-
ging from negative, ambivalent to positive; they suggested
the provision of guidance similar to that which has been
undertaken in the USA(37).

Assessment of exposure to low-calorie sweeteners

In accordance with EU Regulation 1333/2008, EU
Member States are required to monitor levels of LCS in-
take within the population to ensure that the ADI is not
being exceeded(38). Assessment of exposure to LCS
requires the consideration of food intake data along
with LCS concentrations within products and can be
expressed, according to the International Programme
on Chemical Safety(39), as:

Σ(Food LCS concentration× Food consumption)
Body weight

Given that currently there are almost 400 food addi-
tives approved for use in the EU, the potential costs asso-
ciated with collecting accurate intake data at the level of
the individual are considerable. However, as the primary
aim of monitoring is to ensure that the ADI is not being
exceeded(40), a tiered approach is usually adopted, begin-
ning with a conservative screening step and progressing
to more refined, and thus costly assessments, if
indicated(39,40).
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Tiered approaches for assessment of low-calorie
sweeteners exposure

An example of a tiered approach for assessing exposure to
LCS is illustrated in Fig. 2. Tier 1, which is carried out at
European wide level, will usually consist of an initial
screening method designed to generate a highly conserva-
tive estimate so that potentially at risk groups can be easily
identified. Examples of such screening methods include
the Sweetener Substitution Method(41) and the Danish
Budget Method(42). In the Danish Budget Method, con-
servative assumptions are made about the occurrence of
LCS in food and beverages and an individual’s energy
and fluid requirements; this will result in an overestimate
of exposure. If, following the initial screening step, the
ADI is deemed to be exceeded, further more refined
assessments would then be indicated. Tier 2 involves the
assessment of actual consumption of foods and beverages
known to contain LCS along with the maximum permit-
ted use levels. A Tier 3 assessment would be indicated if
the ADI is estimated to be exceeded following the Tier 2
assessment and this will consist of a more refined calcula-
tion using actual levels of consumption and actual concen-
trations in products in order to further elucidate the risk.

Methods of assessing exposure to low-calorie sweeteners

Dietary intake is traditionally assessed using tools such
as food diaries, 24-h recalls and FFQ(43). These assess-
ment tools rely on self-reported data and a number of in-
herent limitations exist which often results in
inaccuracies(44–47). The optimal methodology for asses-
sing habitual LCS exposure is a 1–2-week prospective,
brand level diary, including information on portion
sizes along with brand-specific information on LCS con-
centrations in products(48). Given that obtaining such
refined individual level data can be time and resource in-
tensive for investigators, as well as labour intensive for
participants, a variety of dietary assessment tools have
been utilised in the past including 24-h recalls(49–53),
FFQ covering various durations(54–57) and food diaries
lasting 2 d(58), 5 d(59), 7 d and 14 d(60). Some studies
used a combination of retrospective and prospective in-
take data in order to first identify potential high

consumers and then to further investigate these high con-
sumers(61,62). It is apparent therefore that many of the
published studies do not satisfy these criteria, potentially
making it difficult to make direct comparisons.

Data on LCS concentrations in products can be
obtained from a number of sources; the least resource in-
tensive, yet least accurate, is to use maximum permitted
use levels. This source of information is commonly used
in initial, conservative estimates of exposure, or when it
is not possible to obtain more refined data(48). However,
the actual levels used in products are unlikely to meet
these values, particularly when a blend of two or more
LCS is used within a particular product, as is frequently
done. Therefore using maximum permitted use levels in
the calculation will result in an overestimate of exposure.
Concentrations in specific products have been obtained
from manufacturers(49,56,60–64), providing a more accurate
measure; however, difficulties in obtaining such in-
formation in the past have been highlighted(65,66).
Furthermore, with product innovations and changing
tastes among consumers, the concentrations of LCS with-
in products are likely to evolve over time, potentially intro-
ducing error into subsequent estimates of exposure unless
ongoing data are received from manufacturers. Another
method for determining LCS concentrations in products
is to directlymeasure them analytically and to this end, nu-
merous methodologies for the determination of LCS in
foods and beverages have been published(10). Recent stud-
ies investigating LCS exposure have adopted this ap-
proach(50–53,57,58) and, although it allows for a more
accurate and objective measure of LCS concentrations in
products, it is also likely to be costly. Furthermore, with
the ubiquity of LCS in today’s market and the trend to-
wards more widespread use, adopting such an approach
as part of future assessments may prove unfeasible.

Recent developments in low-calorie sweeteners exposure
assessment

A desire to harmonise food additive exposure assessment
across the EU led to guidelines on how Member States
should collect intake data for exposure assessments(40)

and this was further enhanced through the recent imple-
mentation of the Flavourings, additives and food contact

Table 1. Intense sweeteners approved for use in Europe

E-number Sweetness* ADI (mg/kg BW) Year of approval

Intense sweeteners
Saccharin and its salts E954 300–500 0–5 1977
Aspartame E951 180–200 0–40 1984
Acesulfame-K E950 200 0–9 1984
Cyclamates E952 30 0–7 1984
Thaumatin E957 2000–3000 No ADI 1984
NHDC E959 1900 0–5 1988
Aspartame-acesulfame salt E962 350 See aspartame and acesulfame-K 2000
Sucralose E955 600 0–15 2000
Steviol glycosides E960 300 0–4{ 2011
Advantame E969 37000 0–5 2014

NHDC, neohesperidine dihydrochalcone; ADI, acceptable daily intake; BW, body weight.
* Relative to sucrose.
{ Expressed as steviol equivalents.
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exposure tool (FACET)(66). As a result of the FACET
project, a publicly available exposure software package
has been released (available at: http://expofacts.jrc.ec.
europa.eu/facet/login.php). One of the strengths of the
FACET project is that cooperation was obtained from
FoodDrinkEurope, an alliance of national food and
drink industries in the EU, for the provision of informa-
tion on the concentrations of targeted food additives in
products, including aspartame and acesulfame-K and
this will result in a more sustainable system of monitor-
ing exposure over time.

Alternatively, the Monte Carlo risk assessment software
tool, developed as part of the EU-wide ACROPOLIS
(Aggregate and cumulative risk of pesticides: an on-line inte-
grated strategy) project, may also be used for the assessment
of exposure to chemicals in foods (available at: https://mcra.
rivm.nl/Account/Login). This tool is designed to allow a cu-
mulative assessment of exposure to multiple chemicals from
multiple sources(67) and has been successfully applied for the
assessment of acute and chronic exposure to a group of pes-
ticides in a number of European countries(68). Like the
FACET tool, the ACROPOLIS tool is freely accessible.

Actual low-calorie sweeteners exposure

European based studies carried out over the last 20 years
have largely reported that the intakes of LCS fall well with-
in the ADI (Table 2), with only the intake of cyclamate
potentially exceeding the ADI in some population sub-
groups. Similar results were reported in studies conducted
in Korea, Australia and New Zealand and Brazil(50–52,60).
A review by Renwick(48) reported that the overall intakes
of LCS had not increased significantly during the preced-
ing decade, although it has been reported elsewhere that
the numbers of people consuming LCS were increasing(69).

Nutritional biomarkers: concepts and considerations

The focus of this review will be on nutritional biomar-
kers of exposure and within this specific context,

biomarkers will be defined as cellular, biochemical, ana-
lytical, or molecular measures that are obtained from
biological media such as tissues, cells or fluids and are
indicative of exposure to an agent(39). As such, nutrition-
al biomarkers of exposure, by their very nature, are in-
dependent of the sources of bias associated with
self-reported dietary intake data and can therefore pro-
vide a more objective measure of intake(70,71). Such bio-
markers can be used as measures of intake, for the
assessment of nutritional status or in order to validate
more traditional dietary assessment tools(72). Although
the application of a biomarker approach is not new in
nutrition research, it has been suggested that many exist-
ing nutritional biomarkers have not been properly vali-
dated and the field of biomarkers is yet to be fully
exploited(73). A number of considerations are important
for properly implementing such an approach; the target
biomarker must be specific to the food or food compo-
nent, be reproducible and be sensitive to changes in
intakes over time(74). Furthermore, the relevant bio-
marker should be obtained in a minimally invasive
way(75) and the biological sample should be collected,
processed and stored in an appropriate manner, so
that a true reflection of intake can be obtained(76).
Factors that may affect the validity of a biomarker in-
clude genetic variability, physiologic factors, dietary fac-
tors, the biological sample of choice and the analytical
method used to measure it(73).

Four classes of nutritional biomarkers, namely recov-
ery, concentration, replacement and predictive biomar-
kers, have been described according to the relationship
between the biomarker and intake of the component of
interest(73). Recovery biomarkers exhibit a strong time
defined relationship between intake and excretion and
can therefore be used to estimate absolute intakes.
Examples of such biomarkers are doubly labelled water
for energy intake(77) and urinary nitrogen(78,79) and
potassium(78) for protein and potassium intakes, respect-
ively. Concentration and replacement biomarkers differ
from recovery biomarkers in that they exhibit a lower
correlation with absolute intake(73); however, they are

Fig. 1. (Colour online) Safety factors applied to the no observed
adverse effect level to establish the acceptable daily intake
(Source: Logue et al.(15)). ADI, acceptable daily intake; NOAEL, no
observed adverse effect level.

Fig. 2. Tiered approach for food additive exposure estimates
(adapted from EC(40)). MPLs, maximum permitted levels; ADI,
acceptable daily intake.
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useful for the purposes of ranking individuals according
to intake and therefore can be used in the investigation
of the relationship between the food or food component
and disease(72). Examples of such biomarkers are carote-
noids and aflatoxins(73). The class of predictive biomar-
kers was first proposed by Tasevska et al.(80) when
describing the use of urinary fructose and sucrose as mar-
kers for sugar intake. Although relatively small amounts
of a dose were recovered in the form of urinary sucrose
and fructose, it was demonstrated that a higher level of
correlation (R > 0·6) with dietary intake existed than
with concentration or replacement biomarkers and there-
fore this class of biomarker would fall between recovery
and concentration biomarkers. As part of the validation
process, it is important to characterise the relationship
between the target biomarker and intake of the food or
food component of interest(81), as such information will
inform the application of the biomarker (e.g. to estimate
absolute intakes, rank individuals or monitor
compliance).

Two broad strategies for the development of a bio-
marker approach have been described; discovery- and
hypothesis-driven(81). Discovery-driven approaches have
become more prominent recently with the use of metabo-
lomics to identify previously unknown biomarkers or
panels of biomarkers that are associated with dietary pat-
terns or the consumption of specific foods or food com-
ponents(82). Hypothesis-driven approaches differ in that
prior knowledge of the component of interest and its
metabolic fate are required and this information subse-
quently informs a more targeted approach to biomarker
development(81).

Potential application of a biomarker approach for
investigating low-calorie sweeteners intakes

The metabolic fates of LCS are well known (Table 3) and
therefore a hypothesis-driven approach would appear to
be the most appropriate for the implementation of a

biomarker approach for investigating exposure.
Following ingestion, aspartame is hydrolysed to aspartic
acid, phenylalanine and methanol, each of which com-
monly occur in a normal diet(83,84), while thaumatin
undergoes normal protein digestion(85). Neohesperidine
dihydrochalcone, although not known to exist in nature,
is structurally similar to naturally occurring flavonoid
glycosides and undergoes a similar metabolic fate to
these analogues with the same or similar metabolites(86).
This finding would indicate that no obvious specific can-
didate biomarkers exist for these compounds.
Acesulfame-K(87) and saccharin are almost completely
absorbed and excreted unchanged via the urine,(88–90)

while cyclamate (30–50 %)(91) and sucralose (10–15
%)(92,93) undergo partial absorption and the absorbed
proportion is excreted unchanged via the urine with the
unabsorbed proportions excreted via the faeces. In
about 20 % of the population, cyclamate can be con-
verted to cyclohexylamine via bacterial hydrolysis in
the gut, which is absorbed and also excreted via the
urine(94). Furthermore, the extent of cyclamate conver-
sion to cyclohexylamine can be variable during chronic
exposure(95). Steviol glycosides also undergo bacterial hy-
drolysis to steviol which is then absorbed and excreted
via the urine as steviol glucuronide(96–98). Advantame is
converted to advantame acid and a small proportion is
absorbed (about 6 %) and excreted via the urine while
about 90 % of a dose is excreted via the faeces(99).

Saccharin, acesulfame-K, cyclamate and sucralose
undergo no or limited metabolism following absorption
into the body; therefore candidate biomarkers, in the
form of the parent compounds, exist for these LCS.
For steviol glycosides and advantame, the excretory pro-
ducts may act as suitable biomarkers for intakes. A high
level of specificity of the candidate biomarkers exists as
they are not found elsewhere in the diet or formed en-
dogenously and given that at least a proportion of each
of these compounds is excreted via the urine, a urinary
biomarker approach may be feasible. Indeed, such an

Table 2. Exposure estimates of low-calorie sweeteners in Europe over the past 20 years

Country
Year of
study Population studied

Sample
size

Average sweetener exposure (% ADI)*

AuthorAce-k Asp Cyc Sac Suc

UK Not stated Aged 3–74 years 188 10·3 – – 6·5 – Wilson et al.(63)

Italy 1996 Aged 13–19 years 212 0·1 (1·5) 0·1 (1·0) 2·2 (5·6) 4·2 (10·6) – Leclercq et al.(60)

France 1997 Insulin dependent
diabetes mellitus, aged
Aged 2–20 years

227 7 (27) 6 (20) – 8 (26) – Garnier-Sagne
et al.(59)

Netherlands 1997–1998 Aged 1–97 years 6250 <0·5 (0·7) <0·3 (1·3) 0·9 (3·6) 0·4 (0·4) – Van Rooij-van den
Bos et al.(58)

UK 2001 Aged 1·5–4·5 years 1110 6 (25) 8 (30) 41 (128) 23 (77) – FSA(64)

Italy 2000–2001 Aged 14–17 years 362 0·3 (0·7) 0·2 (0·4) 4·5 (4·5) 0·7 (0·7) – Arcella et al.(61)

Belgium 2004 Aged 15 years and over 3083 10 4 5 6 5 Huvaere et al.(51)

Europe 1995–2005 Adults aged 18–65 years Not clear 2–6 0–3 – – – Vin et al.(102)

Europe 1992–2005 Children aged 1–18 years Not clear 7–31 2–8 – – – Vin et al.(102)

Portugal 2006–2007 Aged 13–15 years 65 2·6 0·8 – – – Lino et al.(57)

No data reported for other LCS. ‘–’ indicates no data reported.
Ace-k, acesulfame-K; ADI, acceptable daily intake; Asp, aspartame; Cyc, cyclamate; Sac, saccharin; Suc, sucralose; FSA, Food Standards Agency.
* Mean % ADI presented with high consumers (% ADI) where available.
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approach for assessing exposure to acesulfame-K and
saccharin was previously described by Wilson et al.(63)

who measured levels of excretion in 24-h urine samples
and found excellent levels of correlation in an intake/
excretion study (R2 > 0·99 for both compounds), demon-
strating a clear dose–response relationship for both com-
pounds. Slightly lower correlations were observed when
validated against an FFQ which is probably more indica-
tive of a limitation with the FFQ rather than the bio-
marker as the FFQ did not account for non-dietary
sources of the LCS. The dose–response relationships
for cyclamate, sucralose, steviol glycosides and advan-
tame, however, are less clear so future work will be
required to elucidate these relationships before the useful-
ness of measuring urinary concentrations for investigat-
ing intakes is established.

To fully characterise the relationship between urinary
excretion and intakes of these LCS, a suitable and vali-
dated analytical method is first required(76). To this
end, a liquid chromatography, tandem-MS/MS method
of simultaneously determining urinary levels of
acesulfame-K, cyclamate, saccharin, steviol glucuronide
and sucralose has recently been developed and vali-
dated(100) and allows for investigations of the feasibility

of implementing a biomarker approach for assessing
intakes of these compounds.

Potential limitations of a urinary biomarker approach
for assessing low-calorie sweetener intakes

Although a biomarker approach would potentially offer
many advantages over more traditional methods of in-
vestigating exposure to LCS, potential limitations should
also be acknowledged. As urinary biomarkers, only
short-term exposure (previous 24–48 h) can be investi-
gated(81). The mode of sampling is also an important fac-
tor to consider for the implementation of a biomarker
approach and if 24-h urine samples are required, a lack
of compliance could also represent a limitation. To
mitigate this limitation, however, methods of assessing
compliance have been developed such as the paramino-
benzoic acid method(101). It must also be acknowledged
that a biomarker approach, utilised on its own, will not
provide information on the source of exposure.
Therefore in the event that the ADI of a particular
LCS is being exceeded, more traditional methods
would be required to identify the main sources of expos-
ure(39). As such, for the purposes of monitoring exposure

Table 3. Metabolic fates and routes of excretion of low-calorie sweeteners approved in Europe

Sweetener (CAS
Registry No.) Applications Metabolic fate Route(s) of excretion* Author

Saccharin (81-07-2) Oral hygiene products,
table-top sweetener,
soft drinks

Not metabolised, excreted unchanged Urine Byard et al.(88), Ball
et al.(89)

Acesulfame-K
(55589-62-3)

Chewing gum, soft
drinks, dairy products

Not metabolised, excreted unchanged Urine Christ & Rupp(87)

Aspartame
(22839-47-0)

Soft drinks, chewing
gum, confectionery

Hydrolysed to aspartic acid, phenylalanine
and methanol

N/A Butchko et al.(83),
Magnuson et al.(84)

Cyclamate
(139-05-9)

Table-top sweetener,
soft drinks,
confectionery

80 % of the population do not metabolise
cyclamate. In 20 %, it undergoes partial
hydrolysis in the gut to cyclohexylamine.
Extent of hydrolysis can vary between and
within individuals

Faeces, urine Renwick(94)

Thaumatin
(53850-34-3)

Mainly used as a flavour
enhancer

Undergoes normal protein digestion N/A JECFA(85)

NHDC (20702-77-6) Chewing gum, soft
drinks,
pharmaceuticals

Metabolised by gut microflora to similar
metabolites to naturally occurring
flavonoids

Urine Borrego &
Montijano(86)

Salt of aspartame–
acesulfame
(106372-55-8)

Soft drinks, chewing
gum, confectionery

Dissociates to individual sweeteners in
digestive fluids and undergoes same
metabolic fates

See information for
acesulfame-K and
aspartame

European
Commission(103)

Sucralose
(56038-13-2)

Table-top sweetener,
soft drinks, chewing
gum

Not metabolised, excreted mainly
unchanged but 2 % of absorbed portion
excreted as conjugates

Faeces, urine Grice & Goldsmith(92),
Roberts et al.(93)

Steviol glycosides{ Table-top sweetener,
soft drinks, juices

Bacterial hydrolysis in the gut to steviol
which is then absorbed and excreted as
steviol glucuronide

Urine Geuns et al.(96), Geuns
et al.(97), Wheeler
et al.(98)

Advantame
(714229-20-6)

Milk products, frozen
dairy, chewing gum

Converted to advantame acid and mainly
excreted as such with two minor
metabolites

Faeces, urine Ubukata et al.(99)

CAS, Chemical Abstract Service; NHDC, neohesperidine dihydrochalcone; N/A, not applicable as broken down to normal dietary components; JECFA, Joint FAO/
WHO Expert Committee on Food Additives.
* No CAS Number.
{ Principal route of excretion listed first.
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in the population, a biomarker approach would likely be
most useful when used as an adjunct to more traditional
methods.

In summary, knowledge of the intakes of LCS is a le-
gislative requirement in the EU and although the recent
development and implementation of the FACET project
will help harmonise methods among EU Member States
and improve knowledge with regard to exposure to food
additives, a successfully implemented biomarker ap-
proach for investigating LCS intake would undoubtedly
be a useful adjunct to such monitoring activities.
Furthermore, with ongoing interest and debate around
the efficacy, as well as safety, of long-term LCS use, a
biomarker approach would help elucidate the intakes of
specific and combinations of LCS, and thereby address
a limitation in the evidence to date, as highlighted
by the French Agency for Food, Environmental and
Occupational Health and Safety.
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