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Globalization of Distinguished
Supercuspidal Representations
of GL(n)

Jeftrey Hakim and Fiona Murnaghan

Abstract. An irreducible supercuspidal representation 7 of G = GL(n, F), where F is a nonarchimed-
ean local field of characteristic zero, is said to be “distinguished” by a subgroup H of G and a qua-
sicharacter x of H if Homp (7, x) # 0. There is a suitable global analogue of this notion for an irre-
ducible, automorphic, cuspidal representation associated to GL(n). Under certain general hypotheses,
it is shown in this paper that every distinguished, irreducible, supercuspidal representation may be
realized as a local component of a distinguished, irreducible automorphic, cuspidal representation.
Applications to the theory of distinguished supercuspidal representations are provided.

1 Introduction

This paper is devoted to providing evidence which supports the heuristic which,
loosely stated, says that whatever is true for distinguished automorphic, cuspidal rep-
resentations of GL(#n) should also be true for distinguished supercuspidal represen-
tations of GL(n). Before defining “distinguishedness” and stating our results more
precisely, let us provide a simple example which involves the pair (GL(Zn), Sp(Zn)) .
Given a number field F, it is shown in [15] that there cannot exist any automorphic,
cuspidal representations 7w of GL(2n, Fa) which are distinguished by Sp(2#, Fs) in
the sense that the period integral

/ ¢(h) dh
Sp(211,F)\Sp(2n,Fa)

is nonzero for some ¢ in the space of m. The corresponding result for supercusp-
idal representations, proved in [14], says that if F is a nonarchimedean local field
of characteristic zero then there cannot exist any supercuspidal representations 7 of
GL(2n, F) which are distinguished with respect to Sp(2n, F) in the sense that there
exists a nonzero Sp(2n, F)-invariant linear functional on the space of 7. Our main
theorem, Theorem 1, allows us to immediately deduce a local result, such as the one
just cited, from the corresponding global result. In examples such as the case of
(GL(n), U(n)) (considered in [12] and discussed below), this is useful since the
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global result is considerably simpler to prove than the local result.

Given a group G, a quasicharacter x of a subgroup H and a representation 7 of
G, one can consider the space Hompy(m, x) of linear forms A on the representation
space W of m such that /\(7r(h)w) = x(WA(w), forall h € Hand w € W. For
example, taking y = 1 and assuming that Frobenius reciprocity applies, then the
nonvanishing of Hompg (7, 1) is equivalent to the existence of a suitable model for ™
as a space of functions on H \ G. It is therefore not surprising that the representations
7 with Homp (7, 1) # 0 turn out to be basic building blocks in the harmonic analysis
on H \ G in many examples. The central focus of this paper is the case in which
G = GL(n, F), for some nonarchimedean local field F of characteristic zero, and 7 is
an irreducible supercuspidal representation of G. In this setting, we will say that 7 is
(H, x)-distinguished if Homp (7, x) # 0.

Now suppose that we are dealing with a nonarchimedean local field F,, which is
a completion of some number field F at some finite place vy. Consider the adele
group Gy = GL(n, Fy) and suppose that Hp is an adelic subgroup associated to a
reductive F-subgroup of GL(n). Assume that x = ®, X, is an automorphic character
of Hp, that is, a 1-dimensional automorphic representation of Hy. An irreducible,
automorphic, cuspidal representation 7 of Ga is said to be (H, x)-distinguished if
the restriction of y to Fy' N Hy agrees the corresponding restriction of the central
character of 7 and if the space of 7 contains a function ¢ such that the period integral

Py(p) = / o(h)x(h)~" dh
(FX NHA)H\Ha

is nonzero, where H denotes the group of F-rational points in Hy. This definition is
stated in a slightly broader context in the next section. Given an irreducible supercus-
pidal representation 7 of G,, = GL(n, F,,), we say that an irreducible, automorphic,
cuspidal representation 7 of Gy is a globalization of T if T is equivalent to the local
component of 7 at vy. The existence of a globalization for 7 is discussed in [1], [2],
[3] and [6]. Our main result in the present paper states that every distinguished,
irreducible, supercuspidal representation 7 admits a distinguished globalization 7.

2 Statement of the Main Result

Let F/F’ be an extension of number fields of degree one or two. Our attention will be
focused on a particular finite place vy of F’ which is inert in F. Let wq be the place of F
which lies above vy. We consider the F’-group G which is obtained from the F-group
GL,, by restriction of scalars. Let G = G(F') = GL(#n, F), Ga = G(F4) = GL(n, Ey)
and, when v is place of F/, let G, = G(F)). (Hereafter, for any F’-group, we use
a similar pattern of notations.) Fix an automorphism ¢ of G of order two which is
defined over F’ and let H be the F’-subgroup of G consisting of the fixed points of ¢.
Let Z be the center of Gand let Zy = ZN H.

Now fix a character w = ®,w, of Zy/Z. We will consider irreducible, automor-
phic, cuspidal representations 7 of Gp with central character w. As in the introduc-
tion, if  is an automorphic character of Hy such that xw ™! is trivial on Zy », we say
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that 7 is (H, x)-distinguished if there exists ¢ in the space of 7 such that
Py () = / o(h)x(h)~'dh # 0.
ZyaH\Hp

We will prove:

Theorem 1 (The Globalization Theorem) If 7 is an (H,,, Xy, )-distinguished, irre-
ducible, supercuspidal representation of G,, = GL(n, F,,)) then there exists an (H, x)-
distinguished, irreducible, automorphic, cuspidal representation 1 = ®@,m, of Ga =
GL(n, Fy) such that w,, ~ T.

The proof will involve an analogue of Selberg’s trace formula for the symmetric
space H \ G. The traces which occur in Selberg’s formula are defined by averaging
a kernel function k(x, y) over the diagonal (where x = y), whereas the basic objects
in our formula are the averages of the values k(x, y) with x € Hy and y = 1. Our
formula may be regarded as a very simple example of the “relative trace formulas”
pioneered by Jacquet. The strategy of our proof is to give a relative trace analogue
of an argument (on pp. 60-61 of [6]) used to demonstrate how to embed discrete
series representations of GL(n) over nonarchimedean fields as local components of
automorphic cuspidal representations of GL(n). The argument in [6] draws on [1],
[2] and [3].

3 The Proof

Fix an (H,,, Xy, )-distinguished, irreducible, supercuspidal representation 7 of G,, =
GL(n, F,,,) and a character w = ®,w, of Zy/Zy pZ such that w,, is the central char-
acter of 7. Given a test function f = ®, f, € CZ°(Gp), we let

(@ = [ flzgw(z)dez,

Zn

forallg € Ga. The analogous local integrals define functions £ such that f' = ®, f,/.
There is an associated automorphic kernel

Kixy) = Y '),

vyEZ\G

where x,y € ZoG \ Ga. Let L*(G,w) be the space of L*-classes of functions ¢ on
G \ Ga which transform according to ¢(zg) = w(z)@(g), where z € Zy, g € Ga and
the L>-inner product is given by:

o= [ oG dx
ZpnG\Ga
Then f defines an operator R(f) on L*(G, w) with kernel K:

R(f)d(x) = / K(x, y)é(y) dy.

ZyG\Ga
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Equivalently, if Ki(y) = K(x, y), then R(f)p(x) = (¢,K).
If P is a parabolic subgroup of G then we let Np denote the unipotent radical of
P. A continuous function ¢ € L*(G,w) is cuspidal if, for every proper parabolic

subgroup P of G, the integral pr\Nm ¢(nx)dn = 0, for almost all x € Ga. The
L*-completion of the space of such functions is denoted LEUSP(G7 w). The kernel K
2

projects to a kernel Keysp 0n L,

(G, w). The cuspidal kernel may be expressed as:
Kcusp (x7 J’) = Z K?T(x7 )/)7

where we are summing over the irreducible, automorphic, cuspidal representations
7 of G with central character w and K is given by

Ko(x, ) = > R(FS)G()

¢EB,

with B being an orthonormal basis of the space of 7.
We will always assume that f, is a matrix coefficient of 7, the contragredient of 7.
Thus, if P is a proper parabolic subgroup of G then

/ £ (@ by iy, = 0,
Ny,

for all a,,, b,, € G,,. Consequently, K is cuspidal for all x since

K.(ny)dn = / (%, Yynyyy) dny, = 0.
/NP\NM Y Z H Npy f Y

YEG/ZNp v

Hence, K = Kysp-
We now define a distribution A, on Gy by:

A(f) = / K(h, 1)x(h)~" dh.
ZyaH\Ha

This is the “relative trace” distribution referred to above.
Since K = Kygp, the spectral decomposition of A (f) only has a cuspidal contri-
bution. In other words, we have a decomposition:

() AN =YY" P(R(NS) b1,

T ¢EB,

where the latter sum is over the irreducible, automorphic cuspidal representations
7w of Gy with central character w. In fact, due to the appearance of the factor
P, (R( f )qb) , it is evident that only those 7 which are (H, x)-distinguished can make
a nonzero contribution to the sum. According to the Schur orthogonality relations,
Ty, (fr,) = 0 unless m,, ~ 7. Therefore the outer sum in (*) may be regarded as a
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sum over the irreducible, automorphic, cuspidal representations m of Gy which are
(H, x)-distinguished, have central character w and have 7 as their local component
at vp. Thus if A, (f) # 0, then there must exist at least one representation 7 with the
properties just described. Therefore it suffices to show that f can be chosen so that
A(f) # 0.

To obtain f so that A, (f) # 0, we now develop the “geometric” side of our relative
trace formula. We have:

an= [ D SRR

YEZ\G

/H.\/HZH_A Z Z f'(hBy)x(h) dh

YEZH\G BeZy\H

"(hyy)x (hy) dh,.
Z H/HV/ZH.VfV( Y)xyv(hy)

YEZH\G Vv

Letting
B,(f,n) = / /) () iy,
H,/Zy.,

we may summarize the above discussion as:

Theorem 2 (The Relative Trace Formula for A, (f)) Assume f = ®f, € CZ°(Gp) is
such that f, is a matrix coefficient of 7. Then

S S p Ry e = S [,

T ¢EB, ~YEZH\G v

where T ranges over the irreducible, (H, x)-distinguished automorphic cuspidal repre-
sentations of Ga with central character w such that m,, ~ T.

To prove the Globalization Theorem, it suffices merely to show that there exists
some f such the right hand side of the above relative trace formula is nonzero. In-
deed, if this is the case, then there must exist at least one 7 which makes a nonzero
contribution to the left hand side and such a 7 must satisfy the requirements of the
Globalization Theorem.

Let us refer to the integrals ®,(f,,~) as “local orbital integrals” and the product
O(f,v) = I1, ®.(f,7) as a “global orbital integral.” The first step in our proof is
to show that f may be chosen so that ®(f,~y) is nonzero for some v € G. Once this
is done, we show that, by altering one of the archimedean components of f, we can
arrange things so that ®(f, ) is nonzero for exactly one vy € ZH \ G.

Step 1 (Choosing f so that ®(f,~) # 0, for some y € G.)

We must choose v € Gand f = ®,f, € CX(Gy) so that ®,(f,,v) # 0. The
desired function f is constrained so that f,’ is a matrix coefficient of 7 and, for almost
all finite places v, the function f, must be the characteristic function of the standard
maximal compact subgroup K, of G,.
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Appealing to the corollary to the Generalized Schur Orthogonality Relations in the
Appendix below, we see that y and f,, may be chosen so that f;/ is a matrix coefficient
of 7 and ®,,(f,,,7y) # 0. In fact, we may take v = 1, since left and right translates of
matrix coefficients are again matrix coefficients.

Lemma 1 For almost all finite places v, we have Z,K, " H, = (Z, N H,)(K, N H,).

Proof Suppose z € Z,, k € K, and zk € H,. Then «(zk) = zk implies z.(z) ™! =
1(k)k~! € Z,NK,. If one considers the various possibilities for ¢|Z,, it is easy to check
that there exists w € Z, N K, such that ze(z) ™! = we(w) L. Since zk = (zw™!)(wk),
with zw™! € Z, N H, and wk € K, N H,, our claim follows. [ |

Now suppose v is a finite place other than v, which satisfies the condition of
Lemma 1. Assume also that w, is unramified and Y, is trivial on K, N H,. For such
a place, we take f, to be the characteristic function of K,. We choose Haar mea-
sures on Z, and Zy, \ H, normalized so that Z, N K, and Zy , \ (H, N Z,K,) have
measure one. Then, using the assumption that w, is unramified, we see that f, van-
ishes outside Z,K, and f,(zk) = w,(z)~!, whenever z € Z, and k € K,. Consider
now the orbital integral @,(f,, g). Clearly, this vanishes outside Z,H, K, and satisfies
®,(f,,zhk) = w,(z2) "' x,(h) "' ®, (£, k), when z € Z,, h € H, and k € K,. In fact,
®,(f,, k) = 1, under assumptions. (Indeed, ®,(f,, k,) is an integral whose integrand
1,/ (hk)x,(h) vanishes unless h € Z,K, N H,. It follows from Lemma 1 and the as-
sumption that x,|(K, N H,) = 1 that the integrand is just the characteristic function
of Z,K, N H,.)

At this point, we have chosen f, such that ®,(f,,1) # 0 for almost all places
v of F’. Consider now a place v for which f, has not yet been chosen. It is ele-
mentary to describe the space of functions ¢,(g) = ®,(f,,¢) on G,, as f, varies
over C°(G,). Indeed, the functions ¢, are precisely the smooth functions on G,
whose support has compact image in Z,H, \ G, and which transform according to
©0,(zhg) = w,(2) " 'x, (W) "1, (g), forallz € Z,, h € H,and g € G,. Thus, we can
choose f, so that ,(f,,1) # 0.

Step 2 (Choosing f so that ®(f,~) # 0, for exactly oney € ZH \ G.)
Fix an infinite place w; of F lying above a place v; of F’. Consider the set

S§={uly)"'y:vy € Gand ®(f,) # 0}.

We will show that this set has discrete image in PGL(#, F,,, ) and from this deduce that
we may shrink the support of f,, so that ®(f,~) # 0 for exactly one vy € ZH \ G.
This is nearly identical to the strategy employed in [6] (pp. 60-61), however, there
are some additional obstacles. These extra technicalities obscure the fundamental
simplicity of the argument and we therefore advise the reader to consult [6] before
reading our argument.

When trying to establish the discreteness of a subset of PGL(n, F,,, ), it is perhaps
advisable to keep in mind the following false argument that PGL(n, Z) is discrete in
PGL(n,R): clearly, GL(#n,Z) is discrete in GL(n, R) and thus, since modding out by
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the center preserves discreteness, PGL(n,7Z) must be discrete in PGL(#n, R). Unfor-
tunately, the natural map GL(n, R) — PGL(n, R) does not preserve discreteness. In
fact, the set 8 of matrices in GL(n, R) with integer entries does not have discrete im-
age in PGL(#n, R) since Q%8 = GL(n,Q) is dense in GL(n,R). The problem in the
above argument disappears for SL,, since SL, has finite center. In other words, we
obtain a valid proof that PSL(#n, Z) is discrete in PSL(#n, R). Then, using the fact that
PGL(n,R)/ PSL(n, R) is finite, one can deduce that PGL(n,Z) is indeed discrete in
PGL(n, R).
In light of the previous paragraph, we will work with the sets

S, ={fe€8:detg =r},

with 7 lying in the ring of integers OF of F. Suppose R is any (finite) set of rep-
resentatives for F* /(F*)" such that R C O and let R’ be the image of R under
k() = t(y)"'y. Then the image of § in PGL(n, F,,) is the same as the image of
U,cr 8 Since this is a finite union, it suffices to show that each §, has discrete
image in PGL(n, F,,,) or, equivalently, we must show that §, is discrete in

S ={g € GL(n,F,,) : detg = r}.

To do this, it suffices to show for each r that:

(i) For almost all finite places w of F, the matrix entries of each 3 € 8, lie in the ring
of integers O,, of F,,.

(i) For all finite places w of F the matrix entries of each 3 € 8§, lie in a fixed compact
subset of F,,,.

Indeed, once this is done, we will have shown that the matrix entries of each 8 € §,
have the form 7, with a, b € Op and b in some bounded set in F,,.

To prove (i), we first note that the function on G, defined by ¢,(g) = @,(f,,g)
has support Z,H,K,, for almost all finite places v of F’. Moreover, for almost all v,
we have +(K,) = K, and thus x(K,) C K,, where & is defined on G, by the formula
k(g) = t(g)"'g. Therefore, for almost all finite v, the image of the support of ¢,
under & is contained in Z,K,. If w is a place of F lying above such a place v of F’, then
the matrix entries of each g € Z,K, N G, lie in O,,. Condition (i) follows. On the
other hand, if w is any finite place of F and w lies above the place v of F’, then we have
observed above that the support of ¢, has compact image in Z,H, \ G,. Therefore,
m(support(@)) N G, is compact. This proves (ii).

We have now shown that the set § has discrete image in PGL(n, F,,, ). Our function
f,, may be taken to be a product of functions f,, on the groups GL(n, F,,) as w ranges
over the places of F lying over v. We can shrink the support of f,, so that ®, (f,,, 1) #
0, but ®,,(f,,,v) = 0, for all other v € ZH \ G. The simple relative trace formula

reduces to: o
) P(R(9) $(1) = (F, 1),

T p€Bx

and, since the right hand side is nonzero, the proof of the Globalization Theorem is
complete. [ ]
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4 Applications

All of the applications considered in this section involve the special case in which the
character y is trivial. In this situation, instead of saying a representation is “(H, x)-
distinguished,” we simply say it is “H-distinguished” or, when the context is clear,
“distinguished.”

In the introduction, we have mentioned a simple application of the Globalization
Theorem to representations associated to Sp(2n) \ GL(2n). In that case, there do not
exist any distinguished automorphic, cuspidal representations or, in the language of
[5], the symmetric space Sp(2n) \ GL(2n) is not “cuspidal.” Another non-cuspidal
symmetric space is given as follows. Suppose n; and #n, are distinct positive integers
and n = n; + ny. Let ¢ be the automorphism of G = GL,, defined by conjugat-
1, O
0 —1,
Let H be the group of fixed points of ¢. It is shown in [5] that there do not exist
any H-distinguished automorphic, cuspidal representations 7 of Ga. Applying the
Globalization Theorem, we obtain:

ing by the block matrix < > , where 1; denotes the k-by-k identity matrix.

Proposition 1 Let n = n; + n,, where n; and n, are distinct positive integers, and as-
sume F is a local, nonarchimedean local field of characteristic zero. If m is a supercuspidal
representation of GL(n, F) then there do not exist any nonzero linear forms on the space
), witha € GL(ny, F)

of ™ which are invariant under the group of block matrices (g (lj

and b € GL(n,, F).

In the case in which n; = n;, it is shown in [16] that the space of invariant linear
forms has dimension at most one.

In order to describe another application, we recall a result which first appears in
[13], but is also mentioned in [17] and [4]. We include an elementary proof con-
veyed to us by Hervé Jacquet. Assume F/F' is a quadratic extension of number fields
whose nontrivial Galois automorphism is x +— %. Applying the nontrivial Galois
automorphism to the entries of a matrix in G, gives an automorphism of G which
we also denote by ¢ — ¢. Fix a matrix n € G which is hermitian in the sense that
'7) = 1 and take ¢ to be the automorphism of G given by ¢(g) = n'g~'n~!. Thus H
is a unitary group in G. If 7 is an irreducible, automorphic, cuspidal representation
of Ga = GL(n, Fa), then we say that 7 is Galois invariant if 7 is equivalent to the
representation g — m(g) which acts on the space of 7.

Proposition 2 If  is an irreducible, automorphic, cuspidal representation of Gy which
is H-distinguished then m must be Galois invariant.

Proof At almost all places v of F’ which are inert in F, the local representation is
unramified and Galois invariant in the sense that 7, is equivalent to the represen-
tation ¢ — m,(g) on the space of m,. (Here, we have not used the fact that 7 is
H-distinguished.) Suppose v is a place of F’ which splits into two places w; and w,
in F. Let F, = F, @ F,, where Gal(F/F') acts on the direct sum by permuting co-
ordinates. Fix an embedding of F in F, and use it to embed F in F, via x — (x, X).
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Then G, = GL(n,F,) = GL(n,F}) x GL(n,F,). The unitary group H, then con-
sists of those ¢ = (g1,4) € G, such that g, = 7'g; '7~". The local component T,
is a product 7 x 7, of representations (7, V) and (7, V,) on GL(n, F)). Since 7
is H-distinguished, we have a nonzero linear form A on the space of V; ® V; such
that A(m1(9)6 @ m(@'g~'77)6) = M& ® &), forall § € Vyand & € Vs
Therefore, the representation g — m(7'¢~!H~!) on V, must be equivalent to the
contragredient of ;. On the other hand, it follows from Theorem A in [7] that this
representation is equivalent to the contragredient of 7,. Thus, m ~ 7, and again 7,
is Galois invariant. Since 7 is equivalent to g — m(g) at almost all places, the Strong
Multiplicity One Theorem for GL(n) now implies that 7 is Galois invariant. ]

Corollary Assume F/F' is a quadratic extension of nonarchimedean local fields of char-
acteristic zero, and ) € GL(n, F) is hermitian with respect to F/F'. If w is an irreducible,
supercuspidal representation of GL(n, F) which is distinguished with respect to the uni-
tary group consisting of g € GL(n, F) such that g = 1n'g~'n~" then m must be Galois
invariant.

Proof Fix a hermitian matrix 7 in GL(n, F) and let U(n) be the associated unitary
subgroup of GL(n, F). There exists a quadratic extension k/k" of number fields such
that k,,, /k; = F/F’ for some place v, of k" which is inert in k and lifts to the place w,
of k. If n happens to lie in GL(, k) then our assertion follows immediately from the
Globalization Theorem. Otherwise, we may choose h € GL(#n, F) and a hermitian
matrix 7’ € GL(n, k) such that 7 = hn’*h. Indeed, the orbit of 77 under the action of
GL(n, F) by g-n = gn'g is determined by the class of det » modulo N/ (F*). Since
U(n) = hU(n’)h~! and since the corollary holds for the subgroup U(n’), it must
also hold for the conjugate subgroup U (). ]

The statement of the previous corollary may be framed more generally as follows.
Let (g) = n'g~!'n~! be the involution of G = GL(n, F) whose fixed point set is the
unitary group H = U(7). Then the corollary is equivalent to the statement that if 7
is H-distinguished then 7 o ¢ ~ 7, since according to Gelfand/Kazhdan’s Theorem A
in [7], the contragredient 7 of 7 is equivalent to the representation g — m('g™").

One could consider the analogous statement when ¢ is an involution of G =
GL(n, F) whose fixed point group is an orthogonal group. Though it is again true
that distinguishedness implies 7 o ¢ ~ , this statement is vacuous since the condi-
tion 7 o ¢ ~ 7 reduces to m ~ 7 using the result of Gelfand-Kazhdan. For more
details and references to the literature in this case, we refer the reader to [10].

One could also consider the case in which G = GL(n, F) and H = GL(n, F’). In
this case, the analogue of Proposition 2 is not known (to our knowledge), however,
the analogue of the corollary of Proposition 2 may be obtained by local methods. In-
deed, this is precisely Proposition 12 of [4]. The proof in [4] is a variant of the proof
of Theorem 2.1 of [9]. Though the latter result is stated in the context of GL(2),
the ideas in the proof apply generally. Both strategies of proof use the “relative char-
acter” distribution ©, attached to the distinguished supercuspidal representation 7.
Among the most basic properties of the relative character, are the facts that distinct
representations always have distinct relative characters (Proposition 3 of [19]) and
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that relative character distributions are locally integrable [8]. Whereas the proof in
[4] is self-contained, the alternate proof is perhaps conceptually simpler, at the ex-
pense of invoking the local integrability property.

5 Appendix: Generalized Schur Orthogonality

Fix a supercuspidal representation (7, V) of a totally disconnected group G with cen-
ter Z and let (7,V) be the contragredient. The Schur orthogonality relations state
thatif &, \ € Vand &, \ € V, then:

/G TR dg = dn (e N (1D,

where dg is a suitably normalized Haar measure on G/Z and d(7) is the formal degree
of 7. We now prove the following generalization:

Lemma 2 (Generalized Schur Orthogonality Relations) Suppose ¢ € V, £ € V,
A\ € Hom¢(V,C) and A\ € Hom¢(V, C). Let f be the matrix coefficient of 7 defined by
f(g) = (£,7(g)E). Let 7(f)\ be the element of V' defined by (r(f)\, i) = (X, 7(f) /i),
forall i € V, where f(g) = f(g™"). Then (T(f)\, A) = d(T)(€, A\)(\, &).

Proof Let K; D K; D - - - be a basis of neighborhoods of the identity in G consisting
of open, compact subgroups. Choose i large enough so that ¢ and £ are K;-fixed and
thus f is bi-K;-invariant. Choose \; € V and \; € V such that (\, 1) = (\;, 1), for
all K;-fixed vectors 1 € V, and (i, \) = (, \;), for all K;-fixed vectors y € V. Then
we have:

(TONX) = (T(HAA) = A FHN) = (AL F(HN).

We apply the Schur orthogonality relations to obtain:
(T(HAX) = d(7)(EXi) (A}, §) = d(T) (€ A) (N, €).

Hence, our claim has been proven. ]

Assume now that H is a closed subgroup of G and x is a character of H such that
7(z) = x(2), for all z € Z N H. We apply the Generalized Schur Orthogonality
Relations in the case in which A € V' C Hom(V,C) and X satisfies (7(h)u, \) =
x(h){p, N), forallh € H and i € V or, in other words, A € Hompy(7, x).

Corollary Suppose ¢ € V, £ € V are nonzero and f' is the matrix coefficient of 7

defined by f'(g) = (€,7(g)€). Suppose X € Homp(7, ) is such that (€,\) # 0.
Then g +— f(an)\H f'(hg)x(h) dh is a nonzero smooth function on G whose support

has compact image in ZH \ G.
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Proof Choose A € V so that (), &) # 0. Then we have:

ADENOE = AN = [ (e r0Rrer N ds
Z\G
[ (] st dn) e de
ZH\G NJ (ZnH)\H
Since the left hand side is nonzero, our claim follows. ]
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