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Globalization of Distinguished
Supercuspidal Representations
of GL(n)

Jeffrey Hakim and Fiona Murnaghan

Abstract. An irreducible supercuspidal representation π of G = GL(n, F), where F is a nonarchimed-
ean local field of characteristic zero, is said to be “distinguished” by a subgroup H of G and a qua-
sicharacter χ of H if HomH (π, χ) 6= 0. There is a suitable global analogue of this notion for an irre-
ducible, automorphic, cuspidal representation associated to GL(n). Under certain general hypotheses,
it is shown in this paper that every distinguished, irreducible, supercuspidal representation may be
realized as a local component of a distinguished, irreducible automorphic, cuspidal representation.
Applications to the theory of distinguished supercuspidal representations are provided.

1 Introduction

This paper is devoted to providing evidence which supports the heuristic which,
loosely stated, says that whatever is true for distinguished automorphic, cuspidal rep-
resentations of GL(n) should also be true for distinguished supercuspidal represen-
tations of GL(n). Before defining “distinguishedness” and stating our results more
precisely, let us provide a simple example which involves the pair

(
GL(2n), Sp(2n)

)
.

Given a number field F, it is shown in [15] that there cannot exist any automorphic,
cuspidal representations π of GL(2n, FA) which are distinguished by Sp(2n, FA) in
the sense that the period integral

∫
Sp(2n,F)\Sp(2n,FA )

ϕ(h) dh

is nonzero for some ϕ in the space of π. The corresponding result for supercusp-
idal representations, proved in [14], says that if F is a nonarchimedean local field
of characteristic zero then there cannot exist any supercuspidal representations π of
GL(2n, F) which are distinguished with respect to Sp(2n, F) in the sense that there
exists a nonzero Sp(2n, F)-invariant linear functional on the space of π. Our main
theorem, Theorem 1, allows us to immediately deduce a local result, such as the one
just cited, from the corresponding global result. In examples such as the case of(

GL(n),U (n)
)

(considered in [12] and discussed below), this is useful since the
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global result is considerably simpler to prove than the local result.
Given a group G, a quasicharacter χ of a subgroup H and a representation π of

G, one can consider the space HomH(π, χ) of linear forms λ on the representation
space W of π such that λ

(
π(h)w

)
= χ(h)λ(w), for all h ∈ H and w ∈ W . For

example, taking χ = 1 and assuming that Frobenius reciprocity applies, then the
nonvanishing of HomH(π, 1) is equivalent to the existence of a suitable model for π
as a space of functions on H\G. It is therefore not surprising that the representations
π with HomH(π, 1) 6= 0 turn out to be basic building blocks in the harmonic analysis
on H \ G in many examples. The central focus of this paper is the case in which
G = GL(n, F), for some nonarchimedean local field F of characteristic zero, and π is
an irreducible supercuspidal representation of G. In this setting, we will say that π is
(H, χ)-distinguished if HomH(π, χ) 6= 0.

Now suppose that we are dealing with a nonarchimedean local field Fv0 which is
a completion of some number field F at some finite place v0. Consider the adele
group GA = GL(n, FA) and suppose that HA is an adelic subgroup associated to a
reductive F-subgroup of GL(n). Assume that χ = ⊗vχv is an automorphic character
of HA, that is, a 1-dimensional automorphic representation of HA. An irreducible,
automorphic, cuspidal representation π of GA is said to be (H, χ)-distinguished if
the restriction of χ to F×A ∩ HA agrees the corresponding restriction of the central
character of π and if the space of π contains a function ϕ such that the period integral

Pχ(ϕ) =
∫

(F×A ∩HA )H\HA

ϕ(h)χ(h)−1 dh

is nonzero, where H denotes the group of F-rational points in HA. This definition is
stated in a slightly broader context in the next section. Given an irreducible supercus-
pidal representation τ of Gv0 = GL(n, Fv0 ), we say that an irreducible, automorphic,
cuspidal representation π of GA is a globalization of τ if τ is equivalent to the local
component of π at v0. The existence of a globalization for τ is discussed in [1], [2],
[3] and [6]. Our main result in the present paper states that every distinguished,
irreducible, supercuspidal representation τ admits a distinguished globalization π.

2 Statement of the Main Result

Let F/F ′ be an extension of number fields of degree one or two. Our attention will be
focused on a particular finite place v0 of F ′ which is inert in F. Let w0 be the place of F
which lies above v0. We consider the F ′-group G which is obtained from the F-group
GLn by restriction of scalars. Let G = G(F ′) = GL(n, F), GA = G(F ′A) = GL(n, FA)
and, when v is place of F ′, let Gv = G(F ′v). (Hereafter, for any F ′-group, we use
a similar pattern of notations.) Fix an automorphism ι of G of order two which is
defined over F ′ and let H be the F ′-subgroup of G consisting of the fixed points of ι.
Let Z be the center of G and let ZH = Z ∩H.

Now fix a character ω = ⊗vωv of ZA/Z. We will consider irreducible, automor-
phic, cuspidal representations π of GA with central character ω. As in the introduc-
tion, if χ is an automorphic character of HA such that χω−1 is trivial on ZH,A, we say
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that π is (H, χ)-distinguished if there exists ϕ in the space of π such that

Pχ(ϕ) =
∫

ZH,A H\HA

ϕ(h)χ(h)−1 dh 6= 0.

We will prove:

Theorem 1 (The Globalization Theorem) If τ is an (Hv0 , χv0 )-distinguished, irre-
ducible, supercuspidal representation of Gv0 = GL(n, Fw0 ) then there exists an (H, χ)-
distinguished, irreducible, automorphic, cuspidal representation π = ⊗vπv of GA =
GL(n, FA) such that πv0 ' τ .

The proof will involve an analogue of Selberg’s trace formula for the symmetric
space H \ G. The traces which occur in Selberg’s formula are defined by averaging
a kernel function k(x, y) over the diagonal (where x = y), whereas the basic objects
in our formula are the averages of the values k(x, y) with x ∈ HA and y = 1. Our
formula may be regarded as a very simple example of the “relative trace formulas”
pioneered by Jacquet. The strategy of our proof is to give a relative trace analogue
of an argument (on pp. 60–61 of [6]) used to demonstrate how to embed discrete
series representations of GL(n) over nonarchimedean fields as local components of
automorphic cuspidal representations of GL(n). The argument in [6] draws on [1],
[2] and [3].

3 The Proof

Fix an (Hv0 , χv0 )-distinguished, irreducible, supercuspidal representation τ of Gv0 =
GL(n, Fw0 ) and a character ω = ⊗vωv of ZA/ZH,AZ such that ωv0 is the central char-
acter of τ . Given a test function f = ⊗v fv ∈ C∞c (GA), we let

f ′(g) =
∫

ZA

f (zg)ω(z) dz,

for all g ∈ GA. The analogous local integrals define functions f ′v such that f ′ = ⊗v f ′v .
There is an associated automorphic kernel

K(x, y) =
∑
γ∈Z\G

f ′(x−1γy),

where x, y ∈ ZAG \ GA. Let L2(G, ω) be the space of L2-classes of functions φ on
G \ GA which transform according to φ(zg) = ω(z)φ(g), where z ∈ ZA, g ∈ GA and
the L2-inner product is given by:

(φ1, φ2) =
∫

ZA G\GA

φ1(x)φ2(x) dx.

Then f defines an operator R( f ) on L2(G, ω) with kernel K:

R( f )φ(x) =
∫

ZA G\GA

K(x, y)φ(y) dy.
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Equivalently, if Kx(y) = K(x, y), then R( f )φ(x) = (φ,Kx).
If P is a parabolic subgroup of G then we let NP denote the unipotent radical of

P. A continuous function φ ∈ L2(G, ω) is cuspidal if, for every proper parabolic
subgroup P of G, the integral

∫
NP\NPA

φ(nx) dn = 0, for almost all x ∈ GA. The

L2-completion of the space of such functions is denoted L2
cusp (G, ω). The kernel K

projects to a kernel Kcusp on L2
cusp (G, ω). The cuspidal kernel may be expressed as:

Kcusp (x, y) =
∑
π

Kπ(x, y),

where we are summing over the irreducible, automorphic, cuspidal representations
π of GA with central character ω and Kπ is given by

Kπ(x, y) =
∑
φ∈Bπ

R( f )φ(x)φ(y)

with Bπ being an orthonormal basis of the space of π.
We will always assume that f ′v0

is a matrix coefficient of τ̃ , the contragredient of τ .
Thus, if P is a proper parabolic subgroup of G then∫

NP,v0

f ′v0
(av0 nv0 bv0 ) dnv0 = 0,

for all av0 , bv0 ∈ Gv0 . Consequently, Kx is cuspidal for all x since∫
NP\NP,A

Kx(ny) dn =
∑

γ∈G/ZNP

∏
v

∫
NP,v

f ′v (x−1
v γnv yv) dnv = 0.

Hence, K = Kcusp .
We now define a distribution Λχ on GA by:

Λχ( f ) =
∫

ZH,A H\HA

K(h, 1)χ(h)−1 dh.

This is the “relative trace” distribution referred to above.
Since K = Kcusp , the spectral decomposition of Λχ( f ) only has a cuspidal contri-

bution. In other words, we have a decomposition:

(∗) Λχ( f ) =
∑
π

∑
φ∈Bπ

Pχ
(

R( f )φ
)
φ(1),

where the latter sum is over the irreducible, automorphic cuspidal representations
π of GA with central character ω. In fact, due to the appearance of the factor
Pχ
(

R( f )φ
)

, it is evident that only those π which are (H, χ)-distinguished can make
a nonzero contribution to the sum. According to the Schur orthogonality relations,
πv0 ( fv0 ) = 0 unless πv0 ' τ . Therefore the outer sum in (∗) may be regarded as a
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sum over the irreducible, automorphic, cuspidal representations π of GA which are
(H, χ)-distinguished, have central character ω and have τ as their local component
at v0. Thus if Λχ( f ) 6= 0, then there must exist at least one representation π with the
properties just described. Therefore it suffices to show that f can be chosen so that
Λχ( f ) 6= 0.

To obtain f so that Λχ( f ) 6= 0, we now develop the “geometric” side of our relative
trace formula. We have:

Λχ( f ) =
∫

ZH,A H\HA

∑
γ∈Z\G

f ′(h−1γ)χ(h)−1 dh

=
∫

HA/HZH,A

∑
γ∈ZH\G

∑
β∈ZH\H

f ′(hβγ)χ(h) dh

=
∑

γ∈ZH\G

∏
v

∫
Hv/ZH,v

f ′v (hvγ)χv(hv) dhv.

Letting

Φv( fv, γ) =
∫

Hv/ZH,v

f ′v (hvγ)χv(hv) dhv,

we may summarize the above discussion as:

Theorem 2 (The Relative Trace Formula for Λχ( f )) Assume f = ⊗ fv ∈ C∞c (GA) is
such that f ′v0

is a matrix coefficient of τ̃ . Then∑
π

∑
φ∈Bπ

Pχ
(

R( f )φ
)
φ(1) =

∑
γ∈ZH\G

∏
v

Φv( fv, γ),

where π ranges over the irreducible, (H, χ)-distinguished automorphic cuspidal repre-
sentations of GA with central character ω such that πv0 ' τ .

To prove the Globalization Theorem, it suffices merely to show that there exists
some f such the right hand side of the above relative trace formula is nonzero. In-
deed, if this is the case, then there must exist at least one π which makes a nonzero
contribution to the left hand side and such a π must satisfy the requirements of the
Globalization Theorem.

Let us refer to the integrals Φv( fv, γ) as “local orbital integrals” and the product
Φ( f , γ) =

∏
v Φv( fv, γ) as a “global orbital integral.” The first step in our proof is

to show that f may be chosen so that Φ( f , γ) is nonzero for some γ ∈ G. Once this
is done, we show that, by altering one of the archimedean components of f , we can
arrange things so that Φ( f , γ) is nonzero for exactly one γ ∈ ZH \ G.

Step 1 (Choosing f so that Φ( f , γ) 6= 0, for some γ ∈ G.)
We must choose γ ∈ G and f = ⊗v fv ∈ C∞c (GA) so that Φv( fv, γ) 6= 0. The

desired function f is constrained so that f ′v0
is a matrix coefficient of τ̃ and, for almost

all finite places v, the function fv must be the characteristic function of the standard
maximal compact subgroup Kv of Gv.
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Appealing to the corollary to the Generalized Schur Orthogonality Relations in the
Appendix below, we see that γ and fv0 may be chosen so that f ′v0

is a matrix coefficient
of τ̃ and Φv0 ( fv0 , γ) 6= 0. In fact, we may take γ = 1, since left and right translates of
matrix coefficients are again matrix coefficients.

Lemma 1 For almost all finite places v, we have ZvKv ∩Hv = (Zv ∩Hv)(Kv ∩Hv).

Proof Suppose z ∈ Zv, k ∈ Kv and zk ∈ Hv. Then ι(zk) = zk implies zι(z)−1 =
ι(k)k−1 ∈ Zv∩Kv. If one considers the various possibilities for ι|Zv, it is easy to check
that there exists w ∈ Zv ∩ Kv such that zι(z)−1 = wι(w)−1. Since zk = (zw−1)(wk),
with zw−1 ∈ Zv ∩Hv and wk ∈ Kv ∩Hv, our claim follows.

Now suppose v is a finite place other than v0 which satisfies the condition of
Lemma 1. Assume also that ωv is unramified and χv is trivial on Kv ∩ Hv. For such
a place, we take fv to be the characteristic function of Kv. We choose Haar mea-
sures on Zv and ZH,v \ Hv normalized so that Zv ∩ Kv and ZH,v \ (Hv ∩ ZvKv) have
measure one. Then, using the assumption that ωv is unramified, we see that f ′v van-
ishes outside ZvKv and f ′v (zk) = ωv(z)−1, whenever z ∈ Zv and k ∈ Kv. Consider
now the orbital integral Φv( fv, g). Clearly, this vanishes outside ZvHvKv and satisfies
Φv( fv, zhk) = ωv(z)−1χv(h)−1Φv( fv, k), when z ∈ Zv, h ∈ Hv and k ∈ Kv. In fact,
Φv( fv, k) = 1, under assumptions. (Indeed, Φv( fv, kv) is an integral whose integrand
f ′v (hk)χv(h) vanishes unless h ∈ ZvKv ∩ Hv. It follows from Lemma 1 and the as-
sumption that χv|(Kv ∩Hv) = 1 that the integrand is just the characteristic function
of ZvKv ∩Hv.)

At this point, we have chosen fv such that Φv( fv, 1) 6= 0 for almost all places
v of F ′. Consider now a place v for which fv has not yet been chosen. It is ele-
mentary to describe the space of functions ϕv(g) = Φv( fv, g) on Gv, as fv varies
over C∞c (Gv). Indeed, the functions ϕv are precisely the smooth functions on Gv

whose support has compact image in ZvHv \ Gv and which transform according to
ϕv(zhg) = ωv(z)−1χv(h)−1ϕv(g), for all z ∈ Zv, h ∈ Hv and g ∈ Gv. Thus, we can
choose fv so that Φv( fv, 1) 6= 0.

Step 2 (Choosing f so that Φ( f , γ) 6= 0, for exactly one γ ∈ ZH \ G.)
Fix an infinite place w1 of F lying above a place v1 of F ′. Consider the set

S = {ι(γ)−1γ : γ ∈ G and Φ( f , γ) 6= 0}.

We will show that this set has discrete image in PGL(n, Fw1 ) and from this deduce that
we may shrink the support of fv1 so that Φ( f , γ) 6= 0 for exactly one γ ∈ ZH \ G.
This is nearly identical to the strategy employed in [6] (pp. 60–61), however, there
are some additional obstacles. These extra technicalities obscure the fundamental
simplicity of the argument and we therefore advise the reader to consult [6] before
reading our argument.

When trying to establish the discreteness of a subset of PGL(n, Fw1 ), it is perhaps
advisable to keep in mind the following false argument that PGL(n,Z) is discrete in
PGL(n,R): clearly, GL(n,Z) is discrete in GL(n,R) and thus, since modding out by
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the center preserves discreteness, PGL(n,Z) must be discrete in PGL(n,R). Unfor-
tunately, the natural map GL(n,R) → PGL(n,R) does not preserve discreteness. In
fact, the set S of matrices in GL(n,R) with integer entries does not have discrete im-
age in PGL(n,R) since Q×S = GL(n,Q) is dense in GL(n,R). The problem in the
above argument disappears for SLn, since SLn has finite center. In other words, we
obtain a valid proof that PSL(n,Z) is discrete in PSL(n,R). Then, using the fact that
PGL(n,R)/PSL(n,R) is finite, one can deduce that PGL(n,Z) is indeed discrete in
PGL(n,R).

In light of the previous paragraph, we will work with the sets

Sr = {β ∈ S : detβ = r},

with r lying in the ring of integers OF of F. Suppose R is any (finite) set of rep-
resentatives for F×/(F×)n such that R ⊂ OF and let R ′ be the image of R under
κ(γ) = ι(γ)−1γ. Then the image of S in PGL(n, Fw1 ) is the same as the image of⋃

r∈R ′ Sr. Since this is a finite union, it suffices to show that each Sr has discrete
image in PGL(n, Fw1 ) or, equivalently, we must show that Sr is discrete in

Gr = {g ∈ GL(n, Fw1 ) : det g = r}.

To do this, it suffices to show for each r that:

(i) For almost all finite places w of F, the matrix entries of each β ∈ Sr lie in the ring
of integers Ow of Fw.

(ii) For all finite places w of F the matrix entries of each β ∈ Sr lie in a fixed compact
subset of Fw.

Indeed, once this is done, we will have shown that the matrix entries of each β ∈ Sr

have the form a
b , with a, b ∈ OF and b in some bounded set in Fw1 .

To prove (i), we first note that the function on Gv defined by φv(g) = Φv( fv, g)
has support ZvHvKv, for almost all finite places v of F ′. Moreover, for almost all v,
we have ι(Kv) = Kv and thus κ(Kv) ⊂ Kv, where κ is defined on Gv by the formula
κ(g) = ι(g)−1g. Therefore, for almost all finite v, the image of the support of φv

under κ is contained in ZvKv. If w is a place of F lying above such a place v of F ′, then
the matrix entries of each β ∈ ZvKv ∩ Gr lie in Ow. Condition (i) follows. On the
other hand, if w is any finite place of F and w lies above the place v of F ′, then we have
observed above that the support of φv has compact image in ZvHv \ Gv. Therefore,
κ
(

support(φv)
)
∩ Gr is compact. This proves (ii).

We have now shown that the set S has discrete image in PGL(n, Fw1 ). Our function
fv1 may be taken to be a product of functions fw on the groups GL(n, Fw) as w ranges
over the places of F lying over v. We can shrink the support of fw1 so that Φv1 ( fv1 , 1) 6=
0, but Φv1 ( fv1 , γ) = 0, for all other γ ∈ ZH \ G. The simple relative trace formula
reduces to: ∑

π

∑
φ∈Bπ

Pχ
(

R( f )φ
)
φ(1) = Φ( f , 1),

and, since the right hand side is nonzero, the proof of the Globalization Theorem is
complete.
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4 Applications

All of the applications considered in this section involve the special case in which the
character χ is trivial. In this situation, instead of saying a representation is “(H, χ)-
distinguished,” we simply say it is “H-distinguished” or, when the context is clear,
“distinguished.”

In the introduction, we have mentioned a simple application of the Globalization
Theorem to representations associated to Sp(2n) \GL(2n). In that case, there do not
exist any distinguished automorphic, cuspidal representations or, in the language of
[5], the symmetric space Sp(2n) \ GL(2n) is not “cuspidal.” Another non-cuspidal
symmetric space is given as follows. Suppose n1 and n2 are distinct positive integers
and n = n1 + n2. Let ι be the automorphism of G = GLn defined by conjugat-

ing by the block matrix

(
1n1 0
0 −1n2

)
, where 1k denotes the k-by-k identity matrix.

Let H be the group of fixed points of ι. It is shown in [5] that there do not exist
any H-distinguished automorphic, cuspidal representations π of GA. Applying the
Globalization Theorem, we obtain:

Proposition 1 Let n = n1 + n2, where n1 and n2 are distinct positive integers, and as-
sume F is a local, nonarchimedean local field of characteristic zero. If π is a supercuspidal
representation of GL(n, F) then there do not exist any nonzero linear forms on the space

of π which are invariant under the group of block matrices

(
a 0
0 b

)
, with a ∈ GL(n1, F)

and b ∈ GL(n2, F).

In the case in which n1 = n2, it is shown in [16] that the space of invariant linear
forms has dimension at most one.

In order to describe another application, we recall a result which first appears in
[13], but is also mentioned in [17] and [4]. We include an elementary proof con-
veyed to us by Hervé Jacquet. Assume F/F ′ is a quadratic extension of number fields
whose nontrivial Galois automorphism is x 7→ x̄. Applying the nontrivial Galois
automorphism to the entries of a matrix in G, gives an automorphism of G which
we also denote by g 7→ ḡ. Fix a matrix η ∈ G which is hermitian in the sense that
t η̄ = η and take ι to be the automorphism of G given by ι(g) = ηt ḡ−1η−1. Thus H
is a unitary group in G. If π is an irreducible, automorphic, cuspidal representation
of GA = GL(n, FA), then we say that π is Galois invariant if π is equivalent to the
representation g 7→ π(ḡ) which acts on the space of π.

Proposition 2 If π is an irreducible, automorphic, cuspidal representation of GA which
is H-distinguished then π must be Galois invariant.

Proof At almost all places v of F ′ which are inert in F, the local representation is
unramified and Galois invariant in the sense that πv is equivalent to the represen-
tation g 7→ πv(ḡ) on the space of πv. (Here, we have not used the fact that π is
H-distinguished.) Suppose v is a place of F ′ which splits into two places w1 and w2

in F. Let Fv = F ′v ⊕ F ′v , where Gal(F/F ′) acts on the direct sum by permuting co-
ordinates. Fix an embedding of F in F ′v and use it to embed F in Fv via x 7→ (x, x̄).
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Then Gv = GL(n, Fv) = GL(n, F ′v) × GL(n, F ′v). The unitary group Hv then con-
sists of those g = (g1, g2) ∈ Gv such that g2 = η̄t g−1

1 η̄−1. The local component πv

is a product π1 × π2 of representations (π1,V1) and (π2,V2) on GL(n, F ′v). Since π
is H-distinguished, we have a nonzero linear form λ on the space of V1 ⊗ V2 such
that λ

(
π1(g)ξ1 ⊗ π2(η̄t g−1η̄−1)ξ2

)
= λ(ξ1 ⊗ ξ2), for all ξ1 ∈ V1 and ξ2 ∈ V2.

Therefore, the representation g 7→ π2(η̄t g−1η̄−1) on V2 must be equivalent to the
contragredient of π1. On the other hand, it follows from Theorem A in [7] that this
representation is equivalent to the contragredient of π2. Thus, π1 ' π2 and again πv

is Galois invariant. Since π is equivalent to g 7→ π(ḡ) at almost all places, the Strong
Multiplicity One Theorem for GL(n) now implies that π is Galois invariant.

Corollary Assume F/F ′ is a quadratic extension of nonarchimedean local fields of char-
acteristic zero, and η ∈ GL(n, F) is hermitian with respect to F/F ′. If π is an irreducible,
supercuspidal representation of GL(n, F) which is distinguished with respect to the uni-
tary group consisting of g ∈ GL(n, F) such that g = ηt ḡ−1η−1 then π must be Galois
invariant.

Proof Fix a hermitian matrix η in GL(n, F) and let U (η) be the associated unitary
subgroup of GL(n, F). There exists a quadratic extension k/k ′ of number fields such
that kw0/k ′v0

= F/F ′ for some place v0 of k ′ which is inert in k and lifts to the place w0

of k. If η happens to lie in GL(n, k) then our assertion follows immediately from the
Globalization Theorem. Otherwise, we may choose h ∈ GL(n, F) and a hermitian
matrix η ′ ∈ GL(n, k) such that η = hη ′t h̄. Indeed, the orbit of η under the action of
GL(n, F) by g · η = gηt ḡ is determined by the class of det η modulo NF/F ′(F×). Since
U (η) = hU (η ′)h−1 and since the corollary holds for the subgroup U (η ′), it must
also hold for the conjugate subgroup U (η).

The statement of the previous corollary may be framed more generally as follows.
Let ι(g) = ηt ḡ−1η−1 be the involution of G = GL(n, F) whose fixed point set is the
unitary group H = U (η). Then the corollary is equivalent to the statement that if π
is H-distinguished then π̃ ◦ ι ' π, since according to Gelfand/Kazhdan’s Theorem A
in [7], the contragredient π̃ of π is equivalent to the representation g 7→ π(t g−1).

One could consider the analogous statement when ι is an involution of G =
GL(n, F) whose fixed point group is an orthogonal group. Though it is again true
that distinguishedness implies π̃ ◦ ι ' π, this statement is vacuous since the condi-
tion π̃ ◦ ι ' π reduces to π ' π using the result of Gelfand-Kazhdan. For more
details and references to the literature in this case, we refer the reader to [10].

One could also consider the case in which G = GL(n, F) and H = GL(n, F ′). In
this case, the analogue of Proposition 2 is not known (to our knowledge), however,
the analogue of the corollary of Proposition 2 may be obtained by local methods. In-
deed, this is precisely Proposition 12 of [4]. The proof in [4] is a variant of the proof
of Theorem 2.1 of [9]. Though the latter result is stated in the context of GL(2),
the ideas in the proof apply generally. Both strategies of proof use the “relative char-
acter” distribution Θπ attached to the distinguished supercuspidal representation π.
Among the most basic properties of the relative character, are the facts that distinct
representations always have distinct relative characters (Proposition 3 of [19]) and
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that relative character distributions are locally integrable [8]. Whereas the proof in
[4] is self-contained, the alternate proof is perhaps conceptually simpler, at the ex-
pense of invoking the local integrability property.

5 Appendix: Generalized Schur Orthogonality

Fix a supercuspidal representation (τ ,V ) of a totally disconnected group G with cen-
ter Z and let (τ̃ , Ṽ ) be the contragredient. The Schur orthogonality relations state
that if ξ, λ ∈ V and ξ̃, λ̃ ∈ Ṽ , then:∫

G/Z
〈ξ, τ̃ (g)ξ̃〉〈τ (g)λ, λ̃〉 dg = d(τ )〈ξ, λ̃〉〈λ, ξ̃〉,

where dg is a suitably normalized Haar measure on G/Z and d(τ ) is the formal degree
of τ . We now prove the following generalization:

Lemma 2 (Generalized Schur Orthogonality Relations) Suppose ξ ∈ V , ξ̃ ∈ Ṽ ,
λ ∈ HomC(Ṽ ,C) and λ̃ ∈ HomC(V,C). Let f be the matrix coefficient of τ̃ defined by
f (g) = 〈ξ, τ̃ (g)ξ̃〉. Let τ ( f )λ be the element of V defined by 〈τ ( f )λ, µ̃〉 = 〈λ, τ̃ ( f̌ )µ̃〉,
for all µ̃ ∈ Ṽ , where f̌ (g) = f (g−1). Then 〈τ ( f )λ, λ̃〉 = d(τ )〈ξ, λ̃〉〈λ, ξ̃〉.

Proof Let K1 ⊃ K2 ⊃ · · · be a basis of neighborhoods of the identity in G consisting
of open, compact subgroups. Choose i large enough so that ξ and ξ̃ are Ki-fixed and
thus f is bi-Ki-invariant. Choose λi ∈ V and λ̃i ∈ Ṽ such that 〈λ, µ̃〉 = 〈λi , µ̃〉, for
all Ki-fixed vectors µ̃ ∈ Ṽ , and 〈µ, λ̃〉 = 〈µ, λ̃i〉, for all Ki-fixed vectors µ ∈ V . Then
we have:

〈τ ( f )λ, λ̃〉 = 〈τ ( f )λ, λ̃i〉 = 〈λ, τ̃ ( f̌ )λ̃i〉 = 〈λ j , τ̃ ( f̌ )λ̃i〉.

We apply the Schur orthogonality relations to obtain:

〈τ ( f )λ, λ̃〉 = d(τ )〈ξ, λ̃i〉〈λ j , ξ̃〉 = d(τ )〈ξ, λ̃〉〈λ, ξ̃〉.

Hence, our claim has been proven.

Assume now that H is a closed subgroup of G and χ is a character of H such that
τ (z) = χ(z), for all z ∈ Z ∩ H. We apply the Generalized Schur Orthogonality
Relations in the case in which λ ∈ V ⊂ HomC(Ṽ ,C) and λ̃ satisfies 〈τ (h)µ, λ̃〉 =
χ(h)〈µ, λ̃〉, for all h ∈ H and µ ∈ V or, in other words, λ̃ ∈ HomH(τ , χ).

Corollary Suppose ξ ∈ V , ξ̃ ∈ Ṽ are nonzero and f ′ is the matrix coefficient of τ̃
defined by f ′(g) = 〈ξ, τ̃ (g)ξ̃〉. Suppose λ̃ ∈ HomH(τ , χ) is such that 〈ξ, λ̃〉 6= 0.
Then g 7→

∫
(Z∩H)\H f ′(hg)χ(h) dh is a nonzero smooth function on G whose support

has compact image in ZH \ G.
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Proof Choose λ ∈ V so that 〈λ, ξ̃〉 6= 0. Then we have:

d(τ )〈ξ, λ̃〉〈λ, ξ̃〉 = 〈τ ( f )λ, λ̃〉 =
∫

Z\G
〈ξ, τ̃ (g)ξ̃〉〈τ (g)λ, λ̃〉 dg

=
∫

ZH\G

(∫
(Z∩H)\H

f ′(hg)χ(h) dh
)
〈τ (g)λ, λ̃〉 dg.

Since the left hand side is nonzero, our claim follows.
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