
Canad. J. Math. Vol. 64 (6), 2012 pp. 1378–1394
http://dx.doi.org/10.4153/CJM-2012-017-8
c©Canadian Mathematical Society 2012

On Weakly Tight Families

Dilip Raghavan and Juris Steprāns

Abstract. Using ideas from Shelah’s recent proof that a completely separable maximal almost disjoint

family exists when c < ℵω , we construct a weakly tight family under the hypothesis s ≤ b < ℵω .

The case when s < b is handled in ZFC and does not require b < ℵω , while an additional PCF type

hypothesis, which holds when b < ℵω , is used to treat the case s = b. The notion of a weakly tight

family is a natural weakening of the well-studied notion of a Cohen indestructible maximal almost

disjoint family. It was introduced by Hrušák and Garcı́a Ferreira [8], who applied it to the Katétov

order on almost disjoint families.

1 Introduction

Recall that two infinite subsets a and b of ω are said to be almost disjoint or a.d. if

a ∩ b is finite. We say that a family A ⊂ [ω]ω is almost disjoint or a.d. if its elements

are pairwise a.d. A Maximal Almost Disjoint or MAD family is an infinite a.d. family

A ⊂ [ω]ω such that ∀b ∈ [ω]ω ∃a ∈ A [|a ∩ b| = ω].

MAD families have been intensively studied in set theory. They have several ap-

plications in set theory as well as general topology. For instance, the technique of

almost disjoint coding has been used in forcing theory (see [10]) and MAD fami-

lies are used in the construction of the Isbell–Mrówka space in topology (see [13]

and [14]). Almost disjoint families also have applications to geometric Banach space

theory, operator algebras, and group theory. See [16] for a general survey of some

recent results and open problems regarding MAD families.

Particular attention has been focused on the existence and size of MAD families

with strong combinatorial properties. These combinatorial properties typically re-

quire the family to be “maximal” with respect to some additional criteria. The most

well known is that of a completely separable MAD family. Recall that a MAD family

A ⊂ [ω]ω is said to be completely separable if for any b ∈ I+(A), there is a ∈ A with

a ⊂ b. Here I(A) denotes the ideal on ω generated by A, and for any ideal I on ω,

I+
= P(ω) \ I.

In most cases, it is unknown whether MAD families with these strong combina-

torial properties can be constructed in ZFC. In fact, almost all known constructions

of such families use an assumption of the form x = c, where x is some appropriately

chosen cardinal invariant. Here, the assumption p = c serves as a limiting case, suf-

ficing for virtually all known constructions of this sort. A small number of examples
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are known that do not use a hypothesis of the form x = c, among them the construc-

tion of completely separable families first considered in [5], and that of van Douwen

families posed in [12].

The work of Balcar, Dočkálková, and Simon proved that a completely separable

MAD family can be constructed from any of the assumptions b = d, s = ω1, or

d ≤ a. See [1], [2], and [20] for this work. Then Shelah [18] recently achieved a

breakthrough by constructing such a family from c < ℵω .

Recall that an a.d. family of total functions A ⊂ ωω is said to be van Douwen if for

each p, an infinite partial function from ω to ω, there is f ∈ A such that |p∩ f | = ω.

Raghavan [17] showed how to get such an object just in ZFC alone.

Another prominent example of a strong combinatorial property which has been

considered for a.d. families is that of indestructibility.

Definition 1 Let P be a notion of forcing and let A ⊂ [ω]ω be a MAD family. We

will say that A is P-indestructible if 
PA is MAD.

There is no forcing notion P adding a new real for which a ZFC construction of a

P-indestructible MAD family is known. A Sacks indestructible MAD family is prov-

ably the weakest such object in the sense that if A ⊂ [ω]ω is a MAD family that is

P-indestructible for some P which adds a new real, then A is also Sacks indestruc-

tible. It is not too hard to see that if a < c, then any MAD family of size a is Sacks in-

destructible. However, the only known constructions of a Sacks indestructible MAD

family of size c use either b = c or cov (M) = c. It remains an open problem whether

such families (of any size) can be built in ZFC. Another basic example of a P that

adds a real is Cohen forcing. Cohen indestructibility is closely related to another

combinatorial property of MAD families first considered by Malykhin [11].

Definition 2 An a.d. family A ⊂ [ω]ω is called ℵ0-MAD or tight or strongly MAD

if for every countable collection {bn : n ∈ ω} ⊂ I+(A) there is a ∈ A such that

∀n ∈ ω[|bn ∩ a| = ω].

It is not too difficult to see that there is a Cohen indestructible MAD family iff

an ℵ0-MAD family exists. The only known construction of an ℵ0-MAD family (of

size c) uses b = c, and it is a long-standing open problem whether their existence

can be proved in ZFC. It is shown in [15] that the weak Freese–Nation property

of P(ω) (wFN(P(ω))), which is shown to hold in [6] in any model gotten by adding

fewer than ℵω Cohen reals to a ground model satisfying CH, implies that all ℵ0-MAD

families have size at most ℵ1. ℵ0-MAD families have been studied in [9] and [7].

Also, Brendle and Yatabe [4] have provided combinatorial characterizations of P-

indestructibility for many other standard posets P.

Hrušák and Garcı́a Ferreira [8] introduced the following natural weakening of an

ℵ0-MAD family.

Definition 3 An a.d. family A ⊂ [ω]ω is called weakly tight if for every countable

collection {bn : n ∈ ω} ⊂ I+(A), there is a ∈ A such that ∃∞n ∈ ω[|bn ∩ a| = ω].

They proved that such families are almost maximal in the Katétov order on a.d.
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families. Given a.d. families A and B, we say that A is Katétov below B and write

A ≤K B if there is a function f ∈ ωω such that ∀a ∈ I(A)[ f −1(a) ∈ I(B)]. They

showed that if A is weakly tight, then for any other MAD family B, if A ≤K B, then

there is a c ∈ I+(A) such that B ≤K {a ∩ c : a ∈ A}. It is unknown whether it is

consistent to have a MAD family that is Katétov maximal.

One more application of weakly tight families is stated here. Let Sym(ω) be the

symmetric group on ω and let Sym<ω(ω) denote the subgroup of permutations with

finite support. If there is a weakly tight family, then it is possible to build a subgroup

Sym<ω(ω) ≤ G ≤ Sym(ω) such that G/Sym<ω(ω) is a maximal Abelian subgroup

of Sym(ω)/Sym<ω(ω) with the property that for any {gn : n ∈ ω} ⊂ Sym(ω), if

∀n ∈ ω∃∞g ∈ G
[

[g, gn] 6= id mod Sym<ω(ω)
]

, then there is a g ∈ G such that

∃∞n ∈ ω
[

[g, gn] 6= id mod Sym<ω(ω)
]

.

Till now, it was only known how to get weakly tight families of size c from b = c.

It was also known how to construct ones of size possibly less than c from either a <
cov(M) or ♦(d). These methods fail to distinguish weakly tight families in any way

from ℵ0 MAD families.

In this paper, we prove that weakly tight families exist when s < b, and that

they also exist when s = b provided that a certain PCF type hypothesis holds. By

a PCF type hypothesis, we mean a hypothesis about cf (〈[κ]ω,⊂〉) for some cardi-

nal κ. Such hypotheses typically hold below ℵω . Our construction is a modification

of Shelah [18], which in turn is a modification of the classic constructions of Balcar,

Dočkálková, and Simon. Shelah [18] shows that there is a completely separable MAD

family in any of the following three situations:

Case 1: s < a;

Case 2: s = a and a certain PCF type hypothesis holds;

Case 3: a < s plus a stronger PCF type assumption.

Therefore, we prove the exact analogues of Shelah’s cases 1 and 2 for weakly tight

families, except that we compare s to b instead of a. However, we cannot prove the

analogue of case 2, and we conjecture that it cannot be done (see Conjecture 23).

However, our approach is somewhat different from [18]. We first introduce a new

cardinal invariant sω,ω , and prove outright in ZFC that a weakly tight family exists if

sω,ω ≤ b.

Definition 4 sω,ω is the least κ such that there is a family {eα : α < κ} ⊂ [ω]ω

such that for any collection {bn : n ∈ ω} ⊂ [ω]ω , there exists α < κ such that

∃∞n ∈ ω[|bn ∩ e0
α| = ω] and ∃∞n ∈ ω[|bn ∩ e1

α| = ω].

An advantage of our approach is that it shows that the PCF hypothesis can be

eliminated from case 2 so long as one is willing to replace s with sω,ω .1 Indeed, our

proof shows that this will also work for completely separable MAD families—i.e., we

can prove (in ZFC) that they exist under sω,ω ≤ a. Also, it is easy to show, by the

same argument as for s, that sω,ω ≤ d. So, as a corollary, we get in ZFC that weakly

1In work with Mildenberger, we have recently shown that s = sω,ω . So the use of PCF hypotheses can
be entirely eliminated from case 2, both in Shelah’s construction and in ours. This work will appear in a
future publication.
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tight families exist under b = d. We don’t know if b = d yields the PCF assumption

P(b) (see Definition 14) used in the proof of the s = b case. In Section 3 we first show

in ZFC that s = sω,ω when s < b, thus getting case 1 as a corollary. Then we show

that if κ = s = b and P(κ) holds, then a weakly tight family can be constructed. Here

P(κ) is our PCF type hypothesis, and it appears to be slightly stronger than the one

used by Shelah for his case 2. P(κ) is always true for κ < ℵω , so we get weakly tight

families when s = ω1.

It is also worth pointing out here that one cannot construct an ℵ0-MAD family of

size c from s ≤ b < ℵω , because in the Cohen model there is a weakly tight MAD

family of size c, but no ℵ0-MAD families of that size.

We now make some general remarks on the basic method. Suppose κ = s. First

each node η of 2<κ is labelled with a subset of ω, say eη . Each member of the a.d.

family under construction is “associated” with a node, and the idea is that whenever

two sets are associated with incomparable nodes, they are automatically a.d. This

is ensured by specifying at each node of 2<κ a collection of subsets of ω that are

“allowed” to be associated with that node. Then most of the argument goes into

showing that at any stageα < c there is a perfect set of nodes with which aα is allowed

to be associated. Here aα is the member of the a.d. family constructed at stage α. This

means that aα can be associated with a node that is incomparable with “most” (all

but fewer than s) of the nodes with which some aβ has already been associated. So aα
will be automatically a.d. from most of the previous aβ .

For constructing a completely separable MAD family, we can simply require that

a set a is allowed to be associated with a node η iff for each node τ ( η, a is either

almost included in eτ or almost disjoint from eτ , depending on which way η went at

dom (τ ). However, this requirement is too strong for building a weakly tight family.

Recall that a partitioner of an a.d. family A is a set b ∈ I+(A) with the property that

∀a ∈ A[a⊂∗b ∨ |a ∩ b| < ω]. It is clear that any A that is subject to the above

mentioned constraint will have an infinite pairwise disjoint family of partitioners.

However, such an A must necessarily fail to be weakly tight. We deal with this us-

ing two innovations. First, each member of the a.d. family will be associated with a

countable collection of nodes instead of one single node, and will be the union of a

countable sequence of infinite subsets of ω. Second, each such countable sequence

will be associated with its own node, and the collection Iη of countable sequences

allowable at a node η will be defined so as to ensure almost disjointness (see Defini-

tion 6).

We believe that these adaptations we have introduced for building a weakly tight

family will be of use in getting other kinds of MAD families with few partitioners (see

Conjecture 24) by helping us to replace assumptions of the form x = c with weaker

hypotheses of the form x ≤ y. Eventually they should either show us how to do a

ZFC construction or tell us where to look for a consistency proof.

2 The Main Construction

In this section we give the PCF free construction of a weakly tight family.

Theorem 5 If sω,ω ≤ b, then there is a weakly tight family of size c. In particular, such
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families exist if b = d or if sω,ω = ω1.

The construction given here and the one in Section 3 are very similar; we could

have presented a single, unified construction, and then derived the two results as

corollaries. However, we have chosen to separate them because we feel that the con-

struction presented in this section is the easiest one to follow, and a reader who has

understood it should have no difficulty in assimilating the modifications made to it

in Section 3. We first establish some notation.

For any e ⊂ ω, we use e0 to denote e and e1 to denote ω \ e. Next, we give the

definition of Iη , which should be thought of as the collection of sequences of sets that

are allowable at η.

Definition 6 We say that a sequence ~C = 〈cn : n ∈ ω〉 ⊂ [ω]ω is a p.w.d. if for any

n 6= m, cn ∩ cm = 0. Define

C = {~C : ~C is a p.w.d.}.

Let κ be an infinite cardinal, and let 〈eα : α < κ〉 ⊂ [ω]ω . For an η ∈ 2≤κ, we define

Iη(〈eα : α < κ〉) = {~C ∈ C : ∀β < dom (η)∀∞n ∈ ω[~C(n) ⊂ e
η(β)
β ]}.

We will often omit the 〈eα : α < κ〉 because it will be clear from the context.

Lemma 7 Let 〈eα : α < κ〉 witness κ = sω,ω . Let A ⊂ [ω]ω be any a.d. family. Then

for each b ∈ I+(A), there is an α < κ such that b ∩ e0
α ∈ I+(A) and b ∩ e1

α ∈ I+(A).

Proof There are two cases to consider. Suppose first that there are only finitely many

a ∈ A with |b ∩ a| = ω. Then since b ∈ I+(A), there is a c ∈ [b]ω that is a.d. from

every member of A. Now choose α < κ such that |c ∩ e0
α| = |c ∩ e1

α| = ω. It is clear

that this α is as required.

Next, suppose that there is an infinite collection {an : n ∈ ω} ⊂ A with |b∩an| =
ω for each n ∈ ω. Put cn = b∩an and chooseα < κ such that ∃∞n ∈ ω[|cn∩e0

α| = ω]

and ∃∞n ∈ ω[|cn ∩ e1
α| = ω]. Now both b ∩ e0

α and b ∩ e1
α are in I+(A) because they

both have infinite intersection with infinitely many members of A.

Fix a sequence 〈eα : α < κ〉 witnessing κ = sω,ω . We will construct an increasing

sequence of subtrees of 2<κ by induction on c. The weakly tight family A ⊂ [ω]ω

will be constructed along with these subtrees. At a stage α < c, we are given an

increasing sequence 〈Tβ : β < α〉 of subtrees of 2<κ, as well as an almost disjoint

family {aβ : β < α}. Thus Tα =

⋃

β<α Tβ is a subtree of 2<κ. Now we ensure that

for each β < α, aβ =

⋃

n∈ωdβn , where ~Dβ
= 〈dβn : n ∈ ω〉 is a p.w.d. Moreover, to

each aβ and each dβn , we associate nodes η(aβ) ∈ Tβ and η(dβn ) ∈ Tβ in such a way

that the following conditions are satisfied:

~Dβ ∈ Iη(aβ),(†aβ
)

∀γ < dom
(

η(dβn )
)

[dβn ⊂∗ e
η(dβn )(γ)
γ ].(†

d
β
n
)
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It will also be important that η(aβ) 6= η(aγ) for all γ < β < α, that η(dβn ) 6= η(dγm)

for all 〈β, n〉 6= 〈γ,m〉 where β, γ < α and n,m ∈ ω, and also that η(aβ) 6= η(dγm)

for all β, γ < α and m ∈ ω. Moreoever, for each β < α, Tβ is simply equal to

Tβ ∪ {σ ∈ 2<κ : σ ⊂ η(aβ)} ∪ {σ ∈ 2<κ : ∃n ∈ ω[σ ⊂ η(dβn )]},

whence

Tα =

{

σ ∈ 2<κ : ∃ξ < α
[

σ ⊂ η(aξ) ∨ ∃n ∈ ω[σ ⊂ η(dξn)]
]}

.

Thus, Tα is always a union of fewer than c chains.

The next lemma says that at each stageα < c, it is not the case that {aβ : β < α} is

already a MAD family “somewhere”, i.e., there is no positive set on which this family is

already MAD. Having this be the case is, of course, essential if we are to meet all our c

many requirements. This lemma is already sufficient for constructing a completely

separable MAD family from sω,ω ≤ a. For a weakly tight family, we need an analogue

of this for p.w.d.s (Lemma 10).

Lemma 8 Let b ∈ I+({aβ : β < α}). Let Tα ⊂ T be a subtree of 2<κ that is a union

of fewer than c chains. There is a c ∈ [b]ω that is a.d. from aβ for every β < α, and a

τ ∈ (2<κ) \ T such that ∀δ < dom (τ )[c⊂∗eτ (δ)
δ ].

Proof Put Aα = {aβ : β < α}. Build a perfect subtree P = {σs : s ∈ 2<ω} of

2<κ as follows. To obtain σ0 apply Lemma 7 to find the least γ0 < κ such that both

b ∩ e0
γ0

and b ∩ e1
γ0

are in I+(Aα). It follows that it is possible to define σ0 : γ0 → 2 by

σ0(δ) = i iff b ∩ ei
δ ∈ I+(Aα) for each δ < γ0. Now suppose {σs : s ∈ 2≤n} ⊂ 2<κ

and {γs : s ∈ 2≤n} ⊂ κ have been constructed. For s ∈ 2≤n+1, define e(s) as follows.

Let e(0) denote ω. Given e(s) for s ∈ 2≤n, let e(s⌢〈i〉) = e(s) ∩ ei
γs

. Note that

e(s⌢〈i〉) ⊂ e(s). Now assume that the following properties hold:

(1) ∀s ∈ 2≤n[dom (σs) = γs] and ∀s ∈ 2<n[σs⌢〈i〉 ⊃ σs
⌢〈i〉].

(2) ∀s ∈ 2≤n[b ∩ e(s⌢〈0〉) ∈ I+(Aα) and b ∩ e(s⌢〈1〉) ∈ I+(Aα)]

(3) ∀s ∈ 2≤n ∀δ < γs [σs(δ) = i iff b ∩ e(s) ∩ ei
δ ∈ I+(Aα)].

Note that condition (3) entails that for each s ∈ 2≤n and δ < γs, b ∩ e(s) ∩ e1−σs(δ)
δ /∈

I+(Aα). Now, given s ∈ 2≤n and i ∈ 2, apply Lemma 7 to find the least γ < κ such

that both b∩ e(s⌢〈i〉)∩ e0
γ and b∩ e(s⌢〈i〉)∩ e1

γ are in I+(Aα). Again, for each δ < γ,

there is a unique j ∈ 2 such that b ∩ e(s⌢〈i〉) ∩ e
j
δ ∈ I+(Aα). Moreover, by (3), for

each δ < γs, b ∩ e(s⌢〈i〉) ∩ e1−σs(δ)
δ /∈ I+(Aα). Also, b ∩ e(s⌢〈i〉) ∩ e1−i

γs
= 0. There-

fore, γ > γs. Thus if we define γs⌢〈i〉 = γ and σs⌢〈i〉 : γs⌢〈i〉 → 2 by σs⌢〈i〉(δ) = j

iff b ∩ e(s⌢〈i〉) ∩ e
j
δ ∈ I+(Aα) for each δ < γs⌢〈i〉, then σs⌢〈i〉 ⊃ σ⌢s 〈i〉 and condi-

tions (1)–(3) hold.

Now, since T is a union of fewer than c chains, there is f ∈ 2ω such that τ =
⋃

n∈ωσ f ↾n /∈ T. Notice that b ∩ e( f ↾0) ⊃ b ∩ e( f ↾1) ⊃ · · · is a decreasing sequence

of sets in I+(Aα). Therefore, we may choose b0 ∈ [b]ω such that b0 ∈ I+(Aα), and

b0⊂
∗b ∩ e( f ↾n) for each n ∈ ω. We claim that for all δ < γ = sup{γ f ↾n : n ∈ ω},

b0 ∩ e1−τ (δ)
δ /∈ I+(Aα). Indeed, if δ < γ, then δ < γ f ↾n for some n ∈ ω, and so
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by (3), b ∩ e( f ↾n) ∩ e1−τ (δ)
δ /∈ I+(Aα). And since b0⊂

∗b ∩ e( f ↾n), the claim follows.

Therefore, for each δ < γ, there is a finite set Fδ ⊂ Aα such that b0∩e1−τ (δ)
δ ⊂∗

⋃

Fδ .

Put F =

⋃

δ<γFδ , and observe that |F| ≤ |γ|. Observe also that since γ f ↾n < γ f ↾(n+1),

γ is a limit ordinal and that cf(γ) = ω. Next, put

G =

{

aβ : [β < α] ∧
[

η(aβ) ⊂ τ ∨ ∃n ∈ ω[η(dβn ) ⊂ τ ]
]}

,

and note that |G| ≤ |γ| and |F ∪ G| ≤ |γ|. Now, if there exists a set c ∈ [b0]ω which

is a.d. from every a ∈ F ∪ G, then for each δ < γ, c ∩ e1−τ (δ)
δ is finite, and hence

c⊂∗eτ (δ)
δ . We claim that such a c must be a.d. from every aβ ∈ Aα. Fix aβ ∈ Aα,

and recall that aβ =

⋃

n∈ω dβn , where ~Dβ
= 〈dβn : n ∈ ω〉 is a p.w.d. Since τ /∈ T,

η(aβ) 6⊃ τ , and there is no n ∈ ω such that η(dβn ) ⊃ τ . If either η(aβ) ⊂ τ , or there

exists an n ∈ ω such that η(dβn ) ⊂ τ , then aβ ∈ G, and c ∩ aβ is finite. So suppose

that there is a δ < min
{

γ, dom
(

η(aβ)
)}

such that τ (δ) 6= η(aβ)(δ), and also that

for each n ∈ ω, there is a δn < min
{

γ, dom
(

η(dβn )
)}

such that τ (δn) 6= η(dβn )(δn).

Since ~Dβ ∈ Iη(aβ) by (†aβ
), there is a k ∈ ω so that ∀n ≥ k[dβn ⊂ e

η(aβ)(δ)

δ ], and

c⊂∗e
1−η(aβ)(δ)

δ . Therefore,
⋃

n≥kdβn ⊂ e
η(aβ)(δ)

δ , and so c ∩ (
⋃

n≥k dβn ) ⊂ c ∩ e
η(aβ)(δ)

δ ,

which is finite. Thus,

c ∩ aβ=
∗c ∩

(
⋃

n<k

dβn
)

,

and so it suffices to show that c ∩ dβn is finite for each n < k. But for each such n,

c⊂∗eτ (δn)
δn

, while dβn⊂
∗e1−τ (δn)
δn

because of (†
d
β
n
), giving us the desired conclusion.

We next argue that there must be a c ∈ [b0]ω which is a.d. from every a ∈ F ∪ G.

There are two cases to consider here. First, suppose that cf(sω,ω) 6= ω. In this case,

γ < sω,ω ≤ b ≤ a, and so |F ∪ G| < a. Since b0 ∈ I+(Aα), there is a c as required.

Also, since dom(τ ) = γ, we have that τ ∈ (2<κ) \ T, which is as required.

Next, suppose that cf(sω,ω) = ω. Then γ could equal sω,ω a priori. However, we

claim that this cannot happen. To see this, note that since b is regular, in this case, we

have that sω,ω < b, and so |F ∪ G| ≤ sω,ω < b ≤ a. So again, since b0 ∈ I+(Aα),

there is c ∈ [b0]ω which is a.d. from every a ∈ F∪G. Now we have argued above that

for any such c, ∀δ < γ[c⊂∗eτ (δ)
δ ]. So if γ = sω,ω , then there would be no δ < sω,ω

such that eδ split c, contradicting the definition of sω,ω . Therefore, γ < sω,ω = κ, and

again τ ∈
(

2<κ
)

\ T, as needed.

Definition 9 We say that a p.w.d. ~D refines another such p.w.d. ~C , and write ~D ≺
~C , if there is a sequence 〈kn : n ∈ ω〉 ⊂ ω such that ∀n ∈ ω[kn+1 > kn] and

∀n ∈ ω[~D(n) ⊂ ~C(kn)]. Given e ∈ [ω]ω and i ∈ ω, e(i) denotes the i-th element of e.

Given a p.w.d. ~C , and e ∈ [ω]ω , ~C↾e is the p.w.d. defined by (~C↾e)(n) =
~C
(

e(n)
)

for each n ∈ ω. It is clear that ≺ is a transitive relation, and that ∀~C ∈ C∀e ∈
[ω]ω[~C↾e ≺ ~C].

The next lemma is the analogue of Lemma 8 for p.w.d.s. It is here that comparing

s to b rather than to a becomes important.
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Lemma 10 Let Aα = {aβ : β < α}. Suppose that ~C is a p.w.d. such that for each

n ∈ ω, ~C(n) is a.d. from every member of Aα. There is an η ∈ 2<κ and a ~D ∈ Iη such

that

(i) ~D ≺ ~C,

(ii) ∃∞n ∈ ω[|~D(n) ∩ e0
dom(η)| = ω],

(iii) ∃∞n ∈ ω[|~D(n) ∩ e1
dom(η)| = ω].

Proof By definition of sω,ω , there is a γ < κ such that ∃∞n ∈ ω[|~C(n) ∩ e0
γ | = ω]

and ∃∞n ∈ ω[|~C(n) ∩ e1
γ | = ω]. Choose the least such γ. So for each δ < γ, there is

a unique j ∈ 2 such that ∃∞n ∈ ω[|~C(n) ∩ e
j
δ| = ω]. Define η : γ → 2 by η(δ) = j

iff ∃∞n ∈ ω[|~C(n) ∩ e
j
δ| = ω] for all δ < γ. To get ~D, note that for each δ < γ, there

is a kδ ∈ ω such that ∀n ≥ kδ[|~C(n) ∩ e
1−η(δ)
δ | < ω]. So we can define a function

fδ : ω → ω by fδ(n) = max
(

~C(n) ∩ e
1−η(δ)
δ

)

for each n ≥ kδ , and fδ(n) = 0, for

each n < kδ . Since γ < sω,ω ≤ b, find a function f ∈ ωω such that for each δ < γ,

∀∞n ∈ ω[ f (n) > fδ(n)]. Put ~D(n) = ~C(n) \ f (n). It is clear that ~D ≺ ~C . Also, since
~D(n)=∗~C(n), (2) and (3) are satisfied by the choice of γ. Finally to see that ~D ∈ Iη ,

fix δ < γ. There is an m ∈ ω such that ∀n ≥ m[ f (n) > fδ(n)]. Now suppose that

n ≥ max{kδ,m}. Then if l ∈ ~D(n), then l ∈ ~C(n) and l > max
(

~C(n) ∩ e
1−η(δ)
δ

)

,

whence l ∈ e
η(δ)
δ . Thus we have shown that ∀∞n ∈ ω[~D(n) ⊂ e

η(δ)
δ ].

The next lemma is easy, but plays a crucial role in the construction, and depends

a lot on having the right definition of Iη . It is a sticking point in further applications

of this technique that needs to be resolved each time by finding a definition of Iη that

is appropriate for the specific type of a.d. family being sought.

Lemma 11 Suppose that 〈σn : n ∈ ω〉 ⊂ 2<κ, 〈γn : n ∈ ω〉 ⊂ κ, and 〈~Cn : n ∈ ω〉 ⊂
C are sequences such

(i) ∀n ∈ ω[dom(σn) = γn and γn+1 > γn and σn+1 ⊃ σn],

(ii) ∀n ∈ ω[~Cn ∈ Iσn
and ~Cn+1 ≺ ~Cn].

Then there is a p.w.d. ~D ∈ Iσ , where σ =

⋃

n∈ωσn, with the property that ∀n ∈ ω
[(

~D↾[n, ω)
)

≺ ~Cn

]

.

Proof Simply define a p.w.d. ~D by ~D(n) =
~Cn(n). Note that ~D is indeed a p.w.d.

because if n < l, then since ~Cl ≺ ~Cn, ~D(l) =
~Cl(l) ⊂ ~Cn(kl) for some kl ≥ l > n.

Therefore, ~Cn(n) ∩ ~Cn(kl) = 0, and so ~D(n) ∩ ~D(l) = 0. Put γ = sup{γn : n ∈ ω},

and note that γ ≤ κ is a limit ordinal with cf(γ) = ω. Now we claim that for each

δ < γ, ∀∞n ∈ ω[~D(n) ⊂ eσ(δ)
δ ]. Indeed, given δ < γ, fix i ∈ ω such that δ < γi .

Now there is an m ∈ ω such that ∀n ≥ m[~Ci(n) ⊂ eσ(δ)
δ ]. Suppose n ≥ max{m, i}.

Then since ~Cn ≺ ~Ci , there is a kn ≥ n such that ~D(n) = ~Cn(n) ⊂ ~Ci(kn) ⊂ eσ(δ)
δ . It is

also clear that ~D↾[n, ω) ≺ ~Cn holds for each n ∈ ω.

Proof of Theorem 5 The argument will be similar in structure to the proof of

Lemma 8. Suppose that at stage α < c, we are given a collection {bn : n ∈ ω} ⊂ [ω]ω

such that for each n ∈ ω, bn ∈ I+(Aα), where Aα = {aβ : β < α}. We want to

find an aα that is a.d. from Aα with the property that |aα ∩ bn| = ω for infinitely
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many n ∈ ω. Moreover, we want to enlarge Tα to a bigger subtree, Tα, of 2<κ, as

well as find a p.w.d. ~Dα, and nodes η(aα) and η
(

~Dα(n)
)

in Tα, in such a way that

aα =

⋃

n∈ω
~Dα(n), (†aα

), and (†~Dα(n)) hold.

First find cn ∈ [bn]ω and nodes τn ∈ 2<κ as follows. Given {ci : i < n} and

{τi : i < n}, apply Lemma 8 with bn as b and Tα ∪ {τi↾δ : i < n ∧ δ ≤ dom (τi)} as

T to find cn ∈ [bn]ω that is a.d. from every a ∈ Aα and a node τn ∈ (2<κ) \ T such

that

(∗1) ∀δ < dom (τn)[cn⊂
∗eτn(δ)
δ ].

We may also assume, by shrinking them further if necessary, that cn ∩ cm = 0 for all

n 6= m. Now construct a perfect subtree P = {σs : s ∈ 2<ω} of 2<κ together with a

collection of ordinals {γs : s ∈ 2<ω} ⊂ κ, and a collection of p.w.d.s {~Cs : s ∈ 2<ω}
so that the following conditions are satisfied.

(1) ∀s ∈ 2<ω∀i ∈ 2[dom (σs) = γs ∧ σs⌢〈i〉 ⊃ σs
⌢〈i〉].

(2) ∀s ∈ 2<ω
[

∃∞n ∈ ω[|~Cs(n) ∩ e0
γs
| = ω] ∧ ∃∞n ∈ ω[|~Cs(n) ∩ e1

γs
| = ω]

]

.

(3) ∀s ∈ 2<ω∀i ∈ 2[~Cs ∈ Iσs
∧ ~Cs⌢〈i〉 ≺ ~Cs].

To start with, define a p.w.d. ~E0 by ~E0(n) = cn. Now suppose that ~Es ≺ ~E0 is given

for some s ∈ 2<ω . To obtain σs, apply Lemma 10 to ~Es to find σs ∈ 2<κ and a
~Cs ≺ ~Es such that ~Cs ∈ Iσs

, and ∃∞n ∈ ω[|~Cs(n) ∩ e0
γs
| = ω] and ∃∞n ∈ ω[|~Cs(n) ∩

e1
γs
| = ω], where γs = dom (σs). Now, for each i ∈ 2, let 〈ni

j : j ∈ ω〉 enumerate

{n ∈ ω : |~Cs(n) ∩ ei
γs
| = ω} in strictly increasing order and define a p.w.d. ~Es⌢〈i〉 by

~Es⌢〈i〉( j) =
~Cs(ni

j) ∩ ei
γs

. It is clear that (2) is satisfied. (3) will be satisfied because

~Es⌢〈i〉 ≺ ~Cs, and therefore, ~Cs⌢〈i〉 ≺ ~Es⌢〈i〉 ≺ ~Cs. To see that (1) holds, note that
~Es⌢〈i〉 ∈ I((σs)

⌢〈i〉). Since γs⌢〈i〉 = dom(σs⌢〈i〉) is chosen in such a way that ∃∞n ∈

ω[|~Cs⌢〈i〉(n) ∩ e0
γ(s⌢〈i〉)

| = ω] and ∃∞n ∈ ω[|~Cs⌢〈i〉(n) ∩ e1
γ(s⌢〈i〉)

| = ω], it follows

that γs⌢〈i〉 > γs. Moreover, since ~Cs⌢〈i〉 ∈ Iσ(s⌢〈i〉)
, if there is a δ ≤ γs such that

(σs)
⌢〈i〉(δ) 6= σs⌢〈i〉(δ), then there would be an n ∈ ω such that ~Cs⌢〈i〉(n) ⊂ e0

δ

and ~Cs⌢〈i〉(n) ⊂ e1
δ , which is impossible. Therefore, σs⌢〈i〉 ⊃ (σs)

⌢〈i〉, and so (1) is

satisfied.

Now put T = Tα ∪ {τn↾δ : n < ω ∧ δ ≤ dom (τn)}, and note that T is the union

of fewer than c chains. Therefore, there is an f ∈ 2ω such that τ =

⋃

n∈ω σ f ↾n /∈ T.

By (1)–(3), we have that dom (σ f ↾n) = γ f ↾n, that γ f ↾n+1 > γ f ↾n, that σ f ↾n+1 ⊃ σ f ↾n,

that ~C f ↾n ∈ I(σ f↾n), and that ~C f ↾n+1 ≺ ~C f ↾n. So the hypotheses of Lemma 11 are

satisfied and we can find a p.w.d. ~E ∈ Iτ with ~E ≺ ~C0 ≺ ~E0. We set η(aα) = τ .

Notice that dom (τ ) = γ = sup{γ f ↾n : n ∈ ω}. Clearly, γ ≤ κ is a limit ordinal, and

cf (γ) = ω. To see that γ 6= κ, we argue as in Lemma 8. If γ = κ, then since ~E ∈ Iτ ,

there is no δ < κ so that ∃∞n ∈ ω[|~E(n) ∩ e0
δ| = ω] and ∃∞n ∈ ω[|~E(n) ∩ e1

δ| = ω],

contradicting the definition of sω,ω . Thus γ < κ, and so η(aα) ∈ 2<κ, as needed.

Next, to define ~Dα, proceed as follows. Since ~E ≺ ~E0, ~E(n) is a.d. from Aα for

each n ∈ ω. For each δ < γ, if either there exists β < α such that η(aβ) = τ↾δ or

there exists a β < α and m ∈ ω with η(dβm) = τ↾δ, we define a function fδ ∈ ωω as

follows. Given n ∈ ω, we set fδ(n) = max
(

~E(n) ∩ aβ
)

, where β, assuming it exists,
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is the unique β < α such that either η(aβ) = τ↾δ or η(dβm) = τ↾δ for some m ∈ ω.

Notice that since γ < sω,ω ≤ b, we can find a function f ∈ ωω such that

∀δ < γ [if fδ is defined, then fδ<
∗ f ].

Now define ~Dα by ~Dα(n) = ~E(n) \ f (n) for each n ∈ ω. It is clear that ~Dα ≺ ~E, and

therefore, ~Dα ∈ Iτ . So (†aα) is satisfied. Next, we put

(∗3) aα =

⋃

n∈ω

~Dα(n).

Suppose that the relation ~Dα ≺ ~E0 is witnessed by the sequence 〈kn : n ∈ ω〉. Notice

that for each n ∈ ω, ~Dα(n) ∈ [bkn
]ω , and hence that |aα ∩ bkn

| = ω. Now, for

each n ∈ ω, set η
(

~Dα(n)
)

= τkn
. By (∗1), we have that for each n ∈ ω, ∀δ <

dom
(

η
(

~Dα(n)
))

[~Dα(n)⊂∗e
η(~Dα(n))(δ)
δ ], hence (†~Dα(n)) is satisfied. Note also, that for

each i ∈ ω, τi /∈ Tα, and therefore, for each β < α and m ∈ ω, η
(

~Dα(n)
)

6=

η(aβ), and η
(

~Dα(n)
)

6= η(dβm). Also, since τi 6= τ j whenever i 6= j, we have that

η
(

~Dα(n)
)

6= η
(

~Dα(m)
)

whenever n 6= m. And similarly, since η(aα) is not in

Tα ∪ {τn↾δ : n < ω ∧ δ ≤ dom(τn)}, we have that η(aα) 6= η
(

~Dα(n)
)

, for any

n ∈ ω, and also that for any β < α and m ∈ ω, η(aα) 6= η(aβ), and η(aα) 6= η(dβm).

Therefore, we may set

(∗4) Tα = Tα ∪ {τkn
↾δ : n < ω ∧ δ ≤ dom (τkn

)} ∪ {τ↾δ : δ ≤ dom (τ )}.

It only remains to be seen that aα ∩ aβ is finite for each β < α. Fix β < α. There are

two cases to consider. Suppose first that either η(aβ) ( τ or that there is an m ∈ ω
so that η(dβm) ( τ . In this case, fδ is defined as above, and ∃k ∈ ω∀n ≥ k[ f (n) >
fδ(n) = max

(

~E(n) ∩ aβ
)

]. It follows that aα ∩ aβ ⊂ aβ ∩
(
⋃

n<k
~Dα(n)

)

, which is

finite.

Now suppose that for every δ < γ, η(aβ) 6= τ↾δ, and also that for every m ∈ ω
and every δ < γ, η(dβm) 6= τ↾δ. Since τ /∈ Tα, it follows that τ 6⊂ η(aβ), and also that

for each m ∈ ω, τ 6⊂ η(dβm). Therefore, there is a δ < min
{

γ, dom
(

η(aβ)
)}

such

that τ (δ) 6= η(aβ)(δ), as well as δm < min
{

γ, dom
(

η(dβm)
)}

such that τ (δm) 6=
η(dβm)(δm), for each m ∈ ω. Hence there are kα ∈ ω and kβ ∈ ω such that ∀n ≥

kβ[dβn ⊂ e1−τ (δ)
δ ] and ∀n ≥ kα[~Dα(n) ⊂ eτ (δ)

δ ]. Put d =

⋃

n≥kβ
dβn . Notice that

aα ∩ d =

(
⋃

n<kα

(

~Dα(n) ∩ d
))

∪
(

⋃

n≥kα

(

~Dα(n) ∩ d
))

,

and this is finite because ~Dα(n) ∩ d = 0 when n ≥ kα, and ~Dα(n) ∩ d is finite for all

n ∈ ω since ~Dα(n) is a.d. from aβ . So it suffices to show that aα ∩ (
⋃

n<kβ
dβn ) is finite,

and for this it is enough to show that aα ∩ dβn is finite for every n ∈ ω. To see this,

fix n ∈ ω. By assumption, there is a k ∈ ω such that ∀m ≥ k[~Dα(m) ⊂ eτ (δn)
δn

], while

dβn⊂
∗e1−τ (δn)
δn

. It follows that dβn ∩ aα ⊂
(
⋃

m<k

(

dβn ∩~D
α(m)

))

∪ (dβn ∩ eτ (δn)
δn

), which

is finite because ~Dα(m) is a.d. from aβ , and hence from dβn .
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3 Using PCF-type Assumptions

In this section, we show that sω,ω can be replaced in Theorem 5 by s in the presence

of a relatively weak PCF type hypothesis. This hypothesis is only needed when s = b;

when s < b we get a ZFC result. In fact, we are able to show that if s < b, then

s = sω,ω , so Theorem 5 can be directly applied. This gives us an exact analogue of

case 1 of Shelah’s construction, where he gets a completely separable MAD family

from s < a without further hypotheses.

When s = b we seem to need a slightly stronger hypothesis than the one used by

Shelah. For his construction Shelah uses the following.

Definition 12 For a cardinal κ > ω, U (κ) is the following principle. There is a

sequence 〈uα : ω ≤ α < κ〉 such that

(i) uα ⊂ α and |uα| = ω ,

(ii) ∀X ∈ [κ]κ∃ω ≤ α < κ[|uα ∩ X| = ω].

It is easily seen that U (κ) holds whenever κ < ℵω , and more generally whenever

cf (〈[κ]ω,⊂〉) = κ. Shelah [18] (see Section 2) showed that if κ = s = a and U (κ)

holds, then there is there is a completely separable MAD family. Our result will use

the principle P(κ) given below. But we first dispose of the easy case when s < b.

Theorem 13 If s < b, then s = sω,ω . So there is a weakly tight family of size c under

s < b.

Proof Let 〈eα : α < κ〉 witness that κ = s. Suppose {bn : n ∈ ω} ⊂ [ω]ω is a

countable collection such that ∀α < κ∃i ∈ 2∀∞n ∈ ω[bn⊂
∗ei
α]. By shrinking them

if necessary we may assume that bn ∩ bm = 0 whenever n 6= m. Now, for each α < κ
define fα ∈ ωω as follows. We know that there is a unique iα ∈ 2 such that there is

a kα ∈ ω such that ∀n ≥ kα[|bn ∩ eiα
α | < ω]. We define fα(n) = max(bn ∩ eiα

α ) if

n ≥ kα, and fα(n) = 0 if n < kα. As κ < b, there is a f ∈ ωω with f ∗> fα for each

α < κ. Now, for each n ∈ ω, choose ln ∈ bn with ln ≥ f (n). Since the bn are pairwise

disjoint, c = {ln : n ∈ ω} ∈ [ω]ω . So by definition of s, there is α < κ such that

|c ∩ e0
α| = |c ∩ e1

α| = ω. In particular, c ∩ eiα
α is infinite. But we know that there is an

mα ∈ ω such that ∀n ≥ mα[ fα(n) < f (n)]. So there exists n ≥ max{mα, kα} with

ln ∈ bn ∩ eiα
α . But this is a contradiction because ln ≤ fα(n) < f (n).

Definition 14 For a cardinal κ > ω, P(k) is the following principle. There is a

sequence 〈uα : ω ≤ α < κ〉 such that

(i) uα ⊂ α and |uα| = ω,

(ii) ∀{Xn : n ∈ ω} ⊂ [κ]κ∃ω ≤ α < κ∃∞n ∈ ω[uα ∩ Xn 6= 0].

Again, it is easy to see that P(κ) holds whenever cf (〈[κ]ω,⊂〉) = κ. Also, it is clear

that P(κ) ⇒ U (κ). We don’t know whether these principles are different. We also

do not know of a model where κ = s = b and P(κ) fails. Similarly, it is not known

whether U (κ) can fail when κ = s = a, which is the hypothesis relevant to case 2 of

Shelah’s construction.

https://doi.org/10.4153/CJM-2012-017-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-017-8


On Weakly Tight Families 1389

The argument for the next lemma is well known and fairly standard. It allows

us to assume that the order type of each uα is ω, and plays an important role in the

construction below. We include a proof for the reader’s convenience.

Lemma 15 Suppose b ≤ κ and P(κ) holds. Then there is a family 〈uα : ω ≤ α < κ〉
as in Definition 14 with otp (uα) = ω, for each ω ≤ α < κ.

Proof It is sufficient to show that for each set y ⊂ κ with |y| = ω there is a family

〈yγ : γ < κ〉 with

(a) yγ ⊂ y and otp (yγ) = ω,

(b) ∀x ∈ [y]ω∃γ < κ[|x ∩ yγ | = ω].

Clearly, we may assume that otp (y) is a limit ordinal. We will prove this claim by

induction on otp (y). If otp (y) = ω, then there is nothing to do. For any ξ < otp (y),

let y(ξ) denote the ξ-th element of y. If otp (y) = δ+ω for some limit δ, then let z =

{y(ξ) : ξ < δ} and let 〈zγ : γ < κ〉 be a family satisfying (a) and (b) with respect to z.

Now simply let 〈yγ : γ < κ〉 be an enumeration of {y(δ+n) : n < ω}∪{zγ : γ < κ}.

Suppose that otp (y) is a limit of limits. Let 〈δn : n ∈ ω〉 be an increasing sequence

of limit ordinals converging to δ = otp (y). Put zn = {y(ξ) : δn−1 ≤ ξ < δn}, where

δ−1 is taken to be 0. Let 〈zn
γ : γ < κ〉 be a family satisfying (a) and (b) with respect

to zn. Now let 〈 fα : α < b〉 be a family in ωω which is unbounded with respect to

infinite partial functions from ω to ω, and let {ζn
i : i ∈ ω} be an enumeration of zn.

For each α < b, define a set y ′
α = {ζn

i : i ≤ fα(n)}. Notice that otp (y ′
α) = ω. Let

〈yγ : γ < κ〉 enumerate (
⋃

n∈ω{zn
γ : γ < κ}) ∪ {y ′

α : α < b}. We check that this

family satisfies (b) with respect to y. Fix x ∈ [y]ω . If x∩ zn is infinite for some n ∈ ω,

then there is a γ < κ so that |x ∩ zn
γ | = ω. On the other hand, if x ∩ zn is finite for

each n ∈ ω, then ∃∞n ∈ ω[x∩zn 6= 0]. So we may pick a strictly increasing sequence

〈kn : n ∈ ω〉 ⊂ ω and {ikn
: n ∈ ω} ⊂ ω such that ζkn

ikn
∈ x for each n ∈ ω. There is

an α < κ so that ∃∞n ∈ ω[ fα(kn) ≥ ikn
]. Now it is clear that |x ∩ y ′

α| = ω.

Theorem 16 Assume κ = s = b and that P(κ) holds. Then there is a weakly tight

family of size c. In particular, such families exist if s ≤ b < ℵω , and in particular, when

s = ω1.

The proof of Theorem 16 is very similar to the proof of Theorem 5. The main

difference will be that instead of using a sequence of sets 〈eα : α < κ〉, we will

construct a tree 〈eη : η ∈ 2<κ〉. So the pair of sets e0, e1 used at a node of the

tree will now depend not just on the height of that node, but on all the pairs of sets

that occur below that node. The idea is that along each cofinal branch ψ of the tree,

each countable collection of κ-sized subsets ψ can be “captured” at some node η
that lies on ψ using P(κ). Then eη is chosen in such a way that for any {bn : n ∈
ω} ⊂ [ω]ω , if {Xn : n ∈ ω} is the countable collection of κ-sized subsets of ψ
“captured” at η, where Xn is the set of nodes on ψ where bn “hits the other side”, then

∃∞n ∈ ω[|bn ∩ e1−ψ(dom (η))
η | = ω]. While the basic idea is the same as in cases 2

and 3 of Shelah’s construction, there is one crucial difference here. An appropriate

eη is chosen in Shelah’s construction using a b family (quite similarly to what is done

in Lemma 15), while we use an s family for this. If we could replace the s family in

our construction by a b family, then we would also be able to prove the analogue of

https://doi.org/10.4153/CJM-2012-017-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-017-8


1390 D. Raghavan and Juris Steprāns

Shelah’s case 3—i.e., we would be able to get a weakly tight family from b < s < ℵω .

But we suspect that there are fundamental reasons for not being able to do this (see

Conjecture 23).

Proof of Theorem 16 First construct 〈eη : η ∈ 2<κ〉 ⊂ P(ω) as follows. Let κ =
⋃

α<κSα be a partition of κ so that |Sα| = κ and Sα ∩ α = 0 for each α < κ. Let

〈uα : ω ≤ α < κ〉 witness that P(κ) holds. By Lemma 15, we may assume that

otp (uα) = ω. Now, for each α < κ, let 〈ẽγ : γ ∈ Sα〉 witness that κ = s. We

define eη by induction on dom (η). Assume dom (η) = γ < κ, and that for each

β < γ, eη↾β ⊂ ω has been defined. Suppose γ ∈ Sα. If α < ω, then let eη = ẽγ .

If α ≥ ω, we proceed as follows. Since uα has order type ω, enumerate it in strictly

increasing order as uα = {ξαi : i < ω}. Since γ ≥ α > ξαi , eη↾ξαi has already been

defined. For each i < ω, we put

c
η
i = e

1−η(ξαi )

η↾ξαi
∩
(

⋂

j<i

e
η(ξαj )

η↾ξαj

)

.

Notice that c
η
i ∩ c

η
j = 0 for all i 6= j. We then define

eη =
⋃

i∈ẽγ

c
η
i .

This completes the definition of 〈eη : η ∈ 2<κ〉. The next lemma establishes the key

property of this family, which will give the analogues of Lemmas 7, 8, and 10.

Lemma 17 Let {bn : n ∈ ω} ⊂ [ω]ω , and let ψ ∈ 2κ. Then there is a γ < κ such

that ∃∞n ∈ ω[|bn ∩ e
1−ψ(γ)
ψ↾γ | = ω].

Proof Suppose not. Fix ψ ∈ 2κ such that for all γ < κ, ∀∞n ∈ ω[bn⊂
∗e
ψ(γ)
ψ↾γ ]. For

each n ∈ ω, define

Xn = {γ < κ : |bn ∩ e
1−ψ(γ)
ψ↾γ | = ω}.

We claim that |Xn| = κ. Indeed, suppose, for a contradiction, that |Xn| < κ. Put

F = {eψ↾γ : γ ∈ Xn}. This is a family of subsets of ω of size less than κ = s. So we

may find a c ∈ [bn]ω such that for each γ ∈ Xn, there is an i ∈ 2 so that c⊂∗ei
ψ↾γ .

However, 〈ẽγ : γ ∈ S0〉 enumerates a splitting family. So there is a γ ∈ S0 satisfying

|c ∩ e0
ψ↾γ | = |c ∩ e1

ψ↾γ | = ω. In particular, |bn ∩ e
1−ψ(γ)
ψ↾γ | = ω, and so γ ∈ Xn. But this

is a contradiction because c⊂∗ei
ψ↾γ .

Now choose ω ≤ α < κ such that ∃∞n ∈ ω[uα∩Xn 6= 0]. We choose two strictly

increasing sequences 〈km : m ∈ ω〉 ⊂ ω and 〈im : m ∈ ω〉 ⊂ ω as follows. Let k0 be

the least n ∈ ω such that uα∩Xn 6= 0, and let i0 be the least i ∈ ω such that ξαi ∈ Xk0
.

Suppose that km and im are given to us with ξαim
∈ Xkm

. Put

s = {n ∈ ω : ∃i ≤ im|bn ∩ e
1−ψ(ξαi )

ψ↾ξαi
| = ω}.

Since for each i ≤ im, ∀∞n ∈ ω[bn⊂
∗e
ψ(ξαi )

ψ↾ξαi
], s is a finite set. So we may choose

km+1 ∈ ω such that uα ∩ Xkm+1
6= 0 and such that km+1 > n for all n ∈ s. Observe
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that km ∈ s, and so km+1 > km. Now im+1 is defined to be the least i ∈ ω such that

ξαi ∈ Xkm+1
. Since km+1 /∈ s, im+1 > im. Notice that each im is defined so that ξαim

∈ Xkm

and ∀i < im[ξαi /∈ Xkm
]. It follows that for each m ∈ ω

(∗)
∣

∣bkm
∩ e

1−ψ(ξαim )

ψ↾ξαim
∩
(
⋂

i<im

e
ψ(ξαi )

ψ↾ξαi

)
∣

∣

= ω.

Next, choose γ ∈ Sα such that ∃∞m ∈ ω[im ∈ ẽ0
γ] and ∃∞m ∈ ω[im ∈ ẽ1

γ]. Note

that γ ≥ α. Put η = ψ↾γ. It follows from (∗) that for each m ∈ ω, |bkm
∩ c

η
im
| = ω.

Therefore, ∃∞m ∈ ω[|bkm
∩ e0

η| = ω]. On the other hand, since c
η
i and c

η
j are disjoint

whenever i 6= j, we also get ∃∞m ∈ ω[|bkm
∩ e1

η| = ω]. But this contradicts our

initial hypothesis about ψ, and we are done.

Observe that Lemma 17 is not saying that 〈eψ↾γ : γ < κ〉 is an sω,ω family for each

ψ ∈ 2κ. That would prove s = sω,ω , given κ = s = b and P(κ). For this, we would

need γ < κ so that ∃∞n ∈ ω[|bn ∩ e
1−ψ(γ)
ψ↾γ | = ω] and ∃∞n ∈ ω[|bn ∩ e

ψ(γ)
ψ↾γ | = ω],

which is not proved. But Lemma 17 is still good enough for proving the following

analogue of Lemma 7.

Lemma 18 Let A ⊂ [ω]ω be an a.d. family. Let b ∈ I+(A), and let η ∈ 2<κ. Assume

that ∀β < dom (η)[b ∩ e
1−η(β)
η↾β /∈ I+(A)]. Then there is a τ ∈ 2<κ with τ ⊃ η such

that

(i) ∀β < dom (τ )[b ∩ e
1−τ (β)
τ↾β /∈ I+(A)],

(ii) b ∩ e0
τ ∈ I+(A) and b ∩ e1

τ ∈ I+(A).

Proof Suppose not. In other words, assume that for any τ ∈ 2<κ, if τ ⊃ η and

if ∀β < dom (τ )[b ∩ e
1−τ (β)
τ↾β /∈ I+(A)], then there is an i ∈ 2 such that b ∩ ei

τ /∈
I+(A). This allows us to build a ψ ∈ 2κ with η ⊂ ψ and with the property that

∀β < κ[b ∩ e
1−ψ(β)
ψ↾β /∈ I+(A)]. Now there exists a collection {bn : n ∈ ω} ⊂ [b]ω

with the property that for any c ∈ [ω]ω , if c has infinite intersection with infinitely

many bn, then c ∈ I+(A). Applying Lemma 17 to ψ and {bn : n ∈ ω}, we get a

γ < κ such that ∃∞n ∈ ω[|bn ∩ e
1−ψ(γ)
ψ↾γ | = ω]. But since bn ⊂ b, we have that

∃∞n ∈ ω[|bn ∩ b ∩ e
1−ψ(γ)
ψ↾γ | = ω]. It follows that b ∩ e

1−ψ(γ)
ψ↾γ ∈ I+(A), contradicting

the way we constructed ψ.

The next definition specifies the analogue of Iη in the present context. It is simply

the obvious modification of Iη .

Definition 19 For any η ∈ 2<κ, we define

Jη = {~C ∈ C : ∀γ < dom (η)∀∞n ∈ ω[~C(n) ⊂ e
η(γ)
η↾γ ]}.

The next lemma proves the analogue of Lemma 10. That κ = b is important here.

Lemma 20 Let ~C be a p.w.d. and let η ∈ 2<κ. Assume ~C ∈ Jη . Then there exists

τ ∈ 2<κ with τ ⊃ η and ~D ≺ ~C such that

(i) ~D ∈ Jτ and
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(ii) ∃∞n ∈ ω[|~D(n) ∩ e0
τ | = ω] and ∃∞n ∈ ω[|~D(n) ∩ e1

τ | = ω].

Proof Suppose not. In other words, for any τ ∈ 2<κ, if τ ⊃ η, and if there exists

a ~D ≺ ~C with ~D ∈ Jτ , then there is an i ∈ 2 such that ∀∞n ∈ ω[|~D(n) ∩ ei
τ | < ω].

Now construct a ψ ∈ 2κ with the property that for each γ < κ,

(∗γ) ∀∞n ∈ ω[|~C(n) ∩ e
1−ψ(γ)
ψ↾γ | < ω],

contradicting Lemma 17. To see that this can be done, put ψ↾ dom (η) = η, and

suppose that for some dom (η) ≤ γ < κ, ψ↾γ has been defined so that (∗β) holds

for each β < γ. Since γ < κ = b, we can find ~D ≺ ~C with ~D ∈ Jψ↾γ and with

the property that ∀n ∈ ω[~D(n)=∗~C(n)]. So by the hypothesis there is i ∈ 2 so

that ∀∞n ∈ ω[|~D(n) ∩ ei
ψ↾γ | < ω]. But since ~D(n)=∗~C(n) for all n ∈ ω, if we set

ψ(γ) = 1 − i, then ψ will be as needed.

Proof of Theorem 16 (continued) Armed with Lemmas 18 and 20, proceed exactly

as in Theorem 5. At a stage α < c, Aα = 〈aβ : β < α〉, 〈Tβ : β < α〉, Tα,

〈~Dβ : β < α〉 are all exactly as before. Now the nodes η(aβ) and η
(

~Dβ(n)
)

satisfy

~Dβ ∈ Jη(aβ),(††aβ
)

∀γ < dom
(

η
(

~Dβ(n)
))[

~Dβ(n)⊂∗e
η(~Dβ(n))(γ)

η(~Dβ(n))↾γ

]

.(††~Dβ(n))

Given any b ∈ I+(Aα), apply Lemma 18 to construct {σs : s ∈ 2<ω} ⊂ 2<κ,

{bs : s ∈ 2<ω} ⊂ I+(A), and {γs : s ∈ 2<ω} ⊂ κ such that

(1) ∀s ∈ 2<ω∀i ∈ 2[dom (σs) = γs ∧ σs⌢〈i〉 ⊃ σs
⌢〈i〉],

(2) ∀s ∈ 2<ω∀i ∈ 2∀γ < dom (σs)[bs ∩ e
1−σs(γ)
σs↾γ

/∈ I+(Aα) ∧ bs⌢〈i〉 = bs ∩ ei
σs

],

(3) b0 = b and ∀s ∈ 2<ω[bs ∩ e0
σs
∈ I+(Aα) ∧ bs ∩ e1

σs
∈ I+(Aα)].

If Tα ⊂ T is any subtree of 2<κ that is the union of fewer than c chains, there is a

f ∈ 2ω such that τ =

⋃

n∈ωσ f ↾n /∈ T. Also, there is c0 ∈ [b]ω ∩ I+(Aα) such that

c0⊂
∗b f ↾n for all n ∈ ω. Note that if δ < γ = sup{γ f ↾n : n ∈ ω}, then δ < γ f ↾n for

some n ∈ ω, and so by (2), b f ↾n∩e1−τ (δ)
τ↾δ /∈ I+(Aα). But since c0⊂

∗b f ↾n, c0∩e1−τ (δ)
τ↾δ /∈

I+(Aα). Now proceed exactly as in the proof of Lemma 8 to find c ∈ [c0]ω which is

a.d. from everything in Aα and with the property that ∀δ < γ[c⊂∗eτ (δ)
τ↾δ ] (in the

present situation cf(κ) 6= ω; so it is obvious that γ < κ).

Therefore, given {bn : n ∈ ω} ⊂ I+(Aα), proceed as in the proof of Theorem 5 to

find cn ∈ [bn]ω and τn ∈ 2<κ so that each cn is a.d. from Aα, τn 6= τm and cn ∩ cm = 0

whenever n 6= m, and ∀δ < dom (τn)[cn⊂
∗eτ (δ)
τn↾δ

]. Put ~E0(n) = cn and use Lemma 20

to define sequences 〈σs : s ∈ 2<ω〉 ⊂ 2<κ, {γs : s ∈ 2<ω} ⊂ κ, 〈~Es : s ∈ 2<ω〉, and

〈~Cs : s ∈ 2<ω〉 satisfying

(1) ∀s ∈ 2<ω∀i ∈ 2[dom (σs) = γs ∧ σs⌢〈i〉 ⊃ σs
⌢〈i〉],

(2) ∀s ∈ 2<ω[~Cs ∈ Jσs
∧ ~Cs ≺ ~Es],

(3) ∀s ∈ ω
[

∃∞n ∈ ω[|~Cs(n) ∩ e0
σs
| = ω] ∧ ∃∞n ∈ ω[|~Cs(n) ∩ e1

σs
| = ω]

]

,

(4) ∀s ∈ 2<ω∀i ∈ 2∀n ∈ ω[~Es⌢〈i〉(n) = ~Cs(kn) ∩ ei
σs

], where 〈kn : n ∈ ω〉 is a strictly

increasing enumeration of {n ∈ ω : |~Cs(n) ∩ ei
σs
| = ω}.
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There exists f ∈ 2ω so that τ =

⋃

n∈ωσ f ↾n /∈ T, where

T = Tα ∪ {τn↾δ : n < ω ∧ δ ≤ dom (τn)}.

Applying Lemma 11 (which is still true in the present context) to 〈σ f ↾n : n ∈ ω〉,

〈γ f ↾n : n ∈ ω〉, and 〈~C f ↾n : n ∈ ω〉, find ~E ∈ Jτ with ~E ≺ ~C0 ≺ ~E0. The rest of the

verification is exactly as in the proof of Theorem 5.

4 Some Open Questions

Question 21 Does sω,ω = s?

If sω,ω 6= s, then, by Theorem 13, b ≤ s. When s = b and P(s) holds, note that

the proof of Theorem 16 is producing a tree of height s with the property that the sets

along each cofinal branch behave like an sω,ω family, though they may not constitute

such a family. We conjecture that when s ≤ b < ℵω , s = sω,ω .2

Shelah’s construction works by comparing s with a, while we have compared s

with b. We don’t know if a can replace b in our construction, but we suspect not.

Question 22 Is there a weakly tight family if s ≤ a < ℵω?

Though we have established the analogues of Shelah’s cases 1 and 2 for weakly

tight families, we have not been able to do this for his case 3. This would require

showing that weakly tight families exist when b < s provided that some suitable PCF

type hypothesis holds, and would imply the existence of such families under c < ℵω .

But we doubt whether this can be done even when c = ℵ2.

Conjecture 23 There is a model of ℵ1 = b < s = ℵ2 = c in which there are no

weakly tight families.

Shelah [19] first established the consistency of b < s. The method is flexible

enough to prove the consistency of both a = b < s and b < a = s. The method

for proving the consistency of a = b < s can be modified to produce a model of

b < s where a weakly tight family exists. Assuming CH in the ground model, it is

possible to construct a weakly tight family whose weak tightness is not destroyed by

the relevant iteration. However, this weakly tight family will not have size c, and we

don’t know if there are any of size s in this model. Later, Brendle [3] found a way to

prove the consistency of b < a = s via a c.c.c. iteration. We do not know whether

weakly tight families exist in either Shelah’s or Brendle’s model for b < a = s.

Conjecture 24 If s ≤ b < ℵω , then there is a Sacks indestructible MAD family.

As mentioned in Section 1, we may assume that a = c for proving Conjecture 24.

The difficulty seems to be in finding the right definition of Iη . We need a definition

of Iη which will allow us to do a fusion argument along a branch of cofinality ω, and

hence get the analogue of Lemma 11.

2It has since been shown that s = sω,ω .
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