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A novel theoretical model for bubble dynamics is established that simultaneously accounts
for the liquid compressibility, phase transition, oscillation, migration, ambient flow field,
etc. The bubble dynamics equations are presented in a unified and concise mathematical
form, with clear physical meanings and extensibility. The bubble oscillation equation can
be simplified to the Keller–Miksis equation by neglecting the effects of phase transition
and bubble migration. The present theoretical model effectively captures the experimental
results for bubbles generated in free fields, near free surfaces, adjacent to rigid walls,
and in the vicinity of other bubbles. Based on the present theory, we explore the effect
of the bubble content by changing the vapour proportion inside the cavitation bubble for
an initial high-pressure bubble. It is found that the energy loss of the bubble shows a
consistent increase with increasing Mach number and initial vapour proportion. However,
the radiated pressure peak by the bubble at the collapse stage increases with decreasing
Mach number and increasing vapour proportion. The energy analyses of the bubble reveal
that the presence of vapour inside the bubble not only directly contributes to the energy
loss of the bubble through phase transition but also intensifies the bubble collapse, which
leads to greater radiation of energy into the surrounding flow field due to the fluid
compressibility.
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A.-M. Zhang and others

1. Introduction

From the eruption of submarine volcanoes and underwater explosions (Klaseboer et al.
2005; Lyons et al. 2019; Wang et al. 2021) to the snapping of pistol shrimps (Versluis
et al. 2000; Lohse, Schmitz & Versluis 2001), from targeted drug delivery and ultrasonic
lithotripsy (Lokhandwalla et al. 2001; Ferrara, Pollard & Borden 2007; Maeda & Colonius
2019) to ultrasonic cleaning (Verhaagen & Rivas 2016; Oh et al. 2018; Landel & Wilson
2021), bubble dynamics holds significant importance across various academic areas and
practical applications. The behaviour of oscillating bubbles involves a complex interplay
of factors such as fluid compressibility, bubble migration, and mass and heat transfer
(Fujikawa & Akamatsu 1980; Wang & Blake 2011; Brujan et al. 2022; Preso et al.
2024). Understanding these complex physical mechanisms not only advances fundamental
knowledge but also drives innovations in technologies reliant on bubble phenomena.

The Rayleigh–Plesset equation (Rayleigh 1917; Plesset 1949) stands as a classical
framework that is widely utilized to predict the oscillation behaviour of spherical cavitation
bubbles. While rooted in the assumption of incompressible fluids, it has provided
foundational insights into various aspects of bubble dynamics, including nonlinear bubble
oscillations (Hicks 1970; Best 1991; Storey & Szeri 2001; Oratis et al. 2024), and linear
interactions between multiple bubbles (Best 1991; Harkin, Kaper & Nadim 2001; Bremond
et al. 2006). Over the years, researchers have developed numerous compressible models
to address the limitations of the Rayleigh–Plesset equation (Herring 1941; Gilmore 1952;
Keller & Kolodner 1956; Prosperetti & Lezzi 1986). Examples include the Keller–Miksis
equation (Keller & Kolodner 1956; Keller & Miksis 1980), known for its robust theoretical
foundation, and Ma, Hsiao & Chahine (2018) incorporated the influence of bubble
migration by integrating an incompressible migration term. Geers & Hunter (2002)
employed the doubly asymptotic approximation approach to develop equations that capture
bubble oscillation and migration within a compressible flow environment for underwater
explosion bubbles, and Zhang et al. (2023) derived the oscillation and migration equations
in a compressible flow field under various environmental conditions based on the wave
equation. However, it is difficult for their models to calculate the bubble dynamics in
which the bubble contents are composed of both condensable and non-condensable gases.

Recent research by Zhong et al. (2020) and Han, Chen & Guo (2023) has revealed
that in addition to fluid compressibility and viscosity, the condensation and evaporation
processes of vapour inside laser-induced and spark bubbles also significantly affect the
dynamic characteristics of bubbles, particularly concerning the issue of energy loss
after the second cycle of bubble oscillation. Furthermore, previous compressible bubble
models using the adiabatic gas equation of state have struggled to accurately reproduce
the energy loss during the multi-cycle oscillation of bubbles, regardless of how the
initial conditions are configured (Zeng et al. 2018; Cerbus et al. 2022; Fan et al. 2024).
This suggests indirectly that these compressible bubble models lack certain crucial
physical mechanisms. In fact, the phase transition model of bubbles has been studied
extensively in previous works, including the state equation of gases (Abbondanza, Gallo
& Casciola 2023; Gallo et al. 2023), the rate of phase transition (Fuster, Hauke &
Dopazo 2010; Yasui 2018), and the temperature boundary layer near the bubble surface
(Fujikawa & Akamatsu 1980; Hauke, Fuster & Dopazo 2007; Tian et al. 2022). Moreover,
previous studies predominantly analysed the bubble migration under the assumption of
incompressible fluids (Hicks 1970; Best 1991; Seo, Lele & Tryggvason 2010), overlooking
the impact of fluid compressibility. In this study, we will specifically examine the roles of
phase transition and bubble migration in formulating a comprehensive bubble oscillation
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A theoretical model for compressible bubble dynamics

equation within the compressible fluid domain, and a new migration equation that accounts
for the effects of fluid compressibility and condensation/evaporation will be deduced.

Furthermore, quantitative analyses of bubble content remain challenging due to the
complex mixture of water vapour and non-condensable gases within bubbles. To address
this challenge, we manipulate the composition of bubble content by changing the initial
vapour proportion inside the bubble at a constant initial internal bubble pressure, allowing
for a systematic analysis of its influence on bubble dynamics. This study seeks to
provide comprehensive insights into bubble dynamics, fostering advancements in both
fundamental understanding and practical applications.

The structure of this paper is as follows. We first derive the theoretical model in detail
in § 2, including the bubble oscillation equation, state equation of mixed gases, bubble
migration equation, multiple bubble equation, and bubble equation of boundary effect.
In § 3, the theoretical model is fully validated by several bubble experiments in the free
field, near boundaries, and near multiple bubbles. In § 4, parametric studies on the effects
of initial vapour proportion inside a bubble are conducted for an initially high-pressure
bubble. Finally, this study is summarized and conclusions are made in § 5.

2. Theory

2.1. Bubble oscillation equation
The physical model of this study is characterized by a spherical bubble with radius R
oscillating in the compressible liquid. The bubble oscillation is coupled with phenomena
such as bubble migration and phase transition. The fluid domain is treated as weakly
compressible and satisfies the linear wave equation (Zhang et al. 2023). With the centre of
the bubble as the coordinate origin o, the wave equation in the spherical coordinate system
o–rθφ is expressed as

1
C2

∂2ϕ

∂t2
= 1

r2
∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+ 1

r2sin2θ

∂2ϕ

∂φ2 , (2.1)

where ϕ is the velocity potential of liquids, and C is the sound speed.
Assuming that the bubble keeps spherical oscillation, we define here that the bubble

migrates along the direction θ = 0. Thus ∂ϕ/∂φ = 0, and the third term on the right-hand
side of (2.1) vanishes because of the axisymmetry. The velocity potential ϕfs induced by a
source at the origin with strength fs(t) is

ϕfs(r, t) = − 1
|r| fs

(
t − |r|

C

)
. (2.2)

According to the linearity characteristics of the wave equation, the superposition of a set
of φfs can produce the solution of the wave equation ϕf considering the source movement:

ϕf (r, t) = − C
(C − v · rt/|rt|) |rt| f

(
t − |rt|

C

)
, (2.3)

where rt is the vector pointing from the source at t − |rt|/C to r, and f is a function
whose second-order derivative exists. The relative velocity vector v represents the velocity
difference between the bubble migration velocity vm and the ambient flow velocity ua.
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A.-M. Zhang and others

Once (2.3) is obtained, the velocity potential of the moving dipole ϕq can be calculated as

ϕq = lim
D→0

1
2D

(ϕf (r + eD, t) − ϕf (r − eD, t)), (2.4)

where the unit vector e indicates the direction along which the bubble migrates, and D
denotes the distance that is halfway between the point source and the sink.

Considering that the migration velocity is small relative to sound speed, the location
variation of singularities could be ignored during the short time when the influences
propagate from the singularities to the bubble surface. Thus (2.3) could be simplified,
and the linear superposition of the velocity potential of the point source and dipole can be
expressed as

ϕ(r, θ, t) = −1
r

f
(

t − r
C

)
− cos θ

r2 q
(

t − r
C

)
− 1

C
cos θ

r
q′
(

t − r
C

)
, (2.5)

where q is a function whose second-order derivative exists, and q′ represents the derivative
of q with respect to its argument.

The time derivative of ϕ and the velocity of the bubble surface in the r direction are
∂ϕ

∂t
= −1

r
f ′
(

t − r
C

)
− cos θ

r2 q′
(

t − r
C

)
− 1

C
cos θ

r
q′′
(

t − r
C

)
(2.6)

and

ur = ∂ϕ

∂r

∣∣∣∣
r=R

= f
R2 + f ′

CR
+ 2 cos θ

R3 q + 2 cos θ

CR2 q′, (2.7)

respectively, where f ′ represents the derivative of f with respect to its argument, and q′′
denotes the second derivative of q with respect to its argument. The terms of magnitude
1/C2 are ignored in (2.7) and subsequent derivations.

According to the continuity condition at the bubble surface considering the phase
transition (Fujikawa & Akamatsu 1980), the normal velocity of fluids at the bubble surface
is Ṙ − ṁ/ρ, where Ṙ denotes the time derivative of R, ṁ is the net evaporation rate of mass
per unit area of the bubble surface, and ρ is the liquid density. Then the averaged kinetic
boundary condition for the bubble oscillation can be expressed by∫

Sb

ur dS = 4πR2
(

Ṙ − ṁ
ρ

)
, (2.8)

where Sb denotes the area of the bubble surface.
Substituting (2.7) into (2.8), q and q′ vanish, so

f
R2 + f ′

CR
= Ṙ − ṁ

ρ
. (2.9)

Let F(t) = f (t − R/C). Then we have

dF
dt

=
(

1 − Ṙ
C

)
f ′|r=R. (2.10)

Taking the derivative of (2.9) with respect to time and combining it with (2.10) yields(
C − Ṙ

R
+ d

dt

)(
R

C − Ṙ
dF
dt

)
+ d

dt

(
R2ṁ
ρ

)
= 2RṘ2 + R2R̈, (2.11)

where dF/dt depends on different physical problems and environmental conditions.
Once dF/dt and ṁ are determined, (2.11) can be solved to obtain the bubble
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A theoretical model for compressible bubble dynamics

oscillation dynamics. As the effect of phase transition is neglected, the above equation
is simplified to (

C − Ṙ
R

+ d
dt

)(
R

C − Ṙ
dF
dt

)
= 2RṘ2 + R2R̈. (2.12)

To obtain dF/dt, we apply the Bernoulli equation to the bubble surface in the moving
coordinate system:

∂ϕ

∂t

∣∣∣∣
r=R

− v · u + 1
2

|u|2 + H = 0, (2.13)

where v · u can be expressed as the inner product of the vectors (v cos θ, −v sin θ) and
(ur, uθ ), with v = |v|. Here, H = ∫ Pb

Pa
ρ−1 dp is the enthalpy difference at the bubble

surface, and its leading order term can be expressed as (Pb − Pa)/ρ, where Pa represents
the ambient pressure at the bubble centre (Pa includes the hydrostatic pressure at infinity
P∞, the acoustic pressure, and the pressures induced by boundaries and other bubbles),
and Pb denotes the liquid pressure at the bubble surface.

According to (2.5), (2.7) and (2.9), the normal and tangential velocities of the bubble
surface can be expressed as

ur = Ṙ − ṁ
ρ

+ 2 cos θ

R3 q + 2 cos θ

CR2 q′ (2.14)

and

uθ = 1
R

∂ϕ

∂θ

∣∣∣∣
r=R

= sin θ

R3 q + sin θ

CR2 q′, (2.15)

respectively.
Integrating the Bernoulli equation over the bubble surface, all the terms containing

θ could be eliminated. Consequently, both q and q′ are eliminated, and an equation
containing only the unknown quantity f ′ can be obtained such that

∫
S

(
∂ϕ

∂t

∣∣∣∣
r=R

− v · u + 1
2

|u|2 + H
)

dS

=
∫ π

0

⎡
⎢⎢⎣

− 1
r

f ′ − cos θ

r2 q′ − 1
C

cos θ

r
q′′ − (v cos θ, −v sin θ)

· (ur, uθ ) + 1
2

(
u2

r + u2
θ

)
+ H

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
r=R

2πR2 sin θ dθ

= 4πR2

(
− f ′

R
+ 1

2

(
Ṙ − ṁ

ρ

)2

+ 1
4

v2 + H

)
= 0. (2.16)

Combining (2.10) and (2.16), the expression for dF/dt in (2.11) can be obtained:

dF
dt

= R
(

1 − Ṙ
C

)(
1
2

(
Ṙ − ṁ

ρ

)2

+ 1
4

v2 + H

)
. (2.17)
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Substituting the above expression into (2.11), the bubble oscillation equation considering
bubble migration and phase transition can be provided as

(
C − Ṙ

R
+ d

dt

)[
R2

C

(
1
2

(
Ṙ − ṁ

ρ

)2

+ 1
4

v2 + H

)]
+ d

dt

(
R2ṁ
ρ

)
= 2RṘ2 + R2R̈.

(2.18)

Equation (2.18) is the bubble oscillation equation with a unified mathematical form,
which takes into account the multiple physical factors. The first term on the left-hand
side represents the coupling force of the bubble oscillation, migration and ambient flow
field; the second term is the source term due to the phase transition. The right-hand side
represents the volume acceleration of the bubble. The enthalpy difference H exhibits good
extensibility, determined by the specific physical problems. Once H, ṁ and v are obtained,
(2.18) can be solved. As ṁ = 0, the above equation is simplified to

(
C − Ṙ

R
+ d

dt

)[
R2

C

(
1
2

Ṙ2 + 1
4

v2 + H
)]

= 2RṘ2 + R2R̈. (2.19)

The above equation simplifies to the Keller–Miksis equation when the bubble
migration velocity is removed, and transforms to the Gilmore equation by making simple
substitutions in the expansion. It can be simplified to the Rayleigh–Plesset equation if fluid
compressibility is further neglected.

2.2. Phase transition modelling
The key to solving the enthalpy difference H at the bubble surface is to obtain the liquid
pressure at the bubble surface, which is closely related to the phase transition. According
to Fujikawa & Akamatsu (1980), the pressure balance on the surface of the bubble can be
expressed as

Pb = Pg − 2σ

R
− 4μ

R

(
Ṙ − ṁ

ρ

)
− ṁ2

(
1
ρ

− 1
ρg

)
, (2.20)

in which Pg is the inner gas pressure, σ is the surface tension coefficient, μ is the viscosity
coefficient, and ρg is the average gas density.

The bubble contents consist mainly of non-condensable gases and vapour (Brenner,
Hilgenfeldt & Lohse 2002), which are considered to be uniformly distributed inside the
bubble. Considering that the gases inside the bubble are violently compressed at the end
of the collapse, the van der Waals equation (Yasui 1997; Kyuichi 2021) is employed to
model the uniform inner pressure of the bubble:

(
Pg + a

υm2

)
(υm − b) = RgT, (2.21)

where υm = NAV/nt is the molar volume (NA is the Avogadro number, V is the volume of
the bubble, nt denotes the number of molecules inside the bubble), T is the temperature at
the bubble centre, Rg is the gas constant, and a and b are van der Waals constants with the
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A theoretical model for compressible bubble dynamics

expressions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a =
(√

aa
na

nt
+ √

av

nv

nt

)2

,

b =
(√

ba
na

nt
+ √

bv

nv

nt

)2

.

(2.22)

Here, na and nv are the numbers of air and vapour molecules, respectively, with nt = na +
nv , aa and av are the van der Waals forces of air and vapour molecules, respectively, and
ba and bv are the volumes occupied by air molecules and vapour molecules, respectively.
As the van der Waals constants (a and b) equal zero, (2.21) simplifies to the ideal gas
equation. The change rate in the number of vapour molecules can be calculated as

ṅv = 4πR2ṁNA

Mmv

, (2.23)

where Mmv is the molar mass of vapour.
A modified Hertz–Knudsen–Langmuir relationship (Schrage 1953; Akhatov et al. 2001)

could be used to compute the net evaporation rate of mass:

ṁ = αm√
2πRv

(
Ps√
Tl(R)

− Γ Pv√
TB

)
, (2.24)

where αm is the adaptation factor, and its value is characterized by the evaporation and
condensation. (The value of αm is taken to be approximately 0.04 according to previous
works on acoustic bubbles (Yasui 1998), but it is not a fixed value for bubbles generated
by different methods; it is determined depending on the specific properties of the bubble
contents.) Also, Rv is the gas constant for vapour, Tl(R) denotes the liquid temperature
at the bubble surface, TB is the gas temperature at the bubble surface, Ps is the saturated
vapour pressure at the temperature Tl(R), and Pv is the actual saturated vapour pressure.
Following Han et al. (2023), Γ is a correction factor taken as 1.0. Additionally, for bubbles
where phase transition effects are minimal but there is a flow of gases into and out of the
bubble, such as in the case of air-gun bubbles (de Graaf, Penesis & Brandner 2014; Li et al.
2020), the value of ṁ in (2.24) can be computed in alternative forms according to different
physical problems.

To describe the temperature change at the gas–liquid interface, two thermodynamic
boundary layers are introduced according to previous works (Fujikawa & Akamatsu 1980;
Yasui 1999). Inside the bubble, the gas temperature varies from the temperature T inside
the bubble to TB at the bubble surface. Outside the bubble, the liquid temperature Tl(r)
changes from the temperature Tl(R) at the bubble surface to T∞ at infinity. Here, following
the linear model proposed by Yasui, Tuziuti & Kanematsu (2016), the gas temperature
distribution near the inner bubble surface could be described as

∂T
∂r

∣∣∣∣
r=R

= TB − T
nλ

, (2.25)

where λ is the mean molecular free range of the gas, and n is a constant that determines
the thickness of the thermodynamic boundary layer.
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Assuming that there is a temperature jump at the gas–liquid interface from TB to Tl(R)

(Kogan 1969; Yasui 1995), the gas temperature TB at the bubble surface is calculated by

TB = Tl(R) − κ

2kn′

√
πm̄

2kTB

2 − a′αe

αe

∂T
∂r

∣∣∣∣
r=R

, (2.26)

where k denotes the Boltzmann constant, n′ denotes the number density of molecules
inside the bubble, αe is the thermodynamic coefficient of adaptation, a′ = 0.827, κ is
the thermal conductivity coefficient of water vapour, and m̄ is the average mass of the
molecules inside the bubble, m̄ = (nvMv + naMa)/(ntNA) (with Ma and Mv the masses of
air and vapour inside the bubble, respectively).

The temperature distributions within the thermodynamic boundary layer outside the
bubble surface are examined extensively (Fujikawa & Akamatsu 1980; Tian et al. 2022;
Dai et al. 2024), as they need to satisfy the thermodynamic boundary conditions both at
the bubble surface and at infinity. Here, the exponential distribution model proposed by
Yasui (1996) is employed to describe the temperature gradient outside the bubble at the
collapse stage:

Tl(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T∞ + [Tl(R) − T∞] exp
(

− r − R
T∞ − Tl(R)

∂Tl

∂r

∣∣∣∣
r=R

)
when [Tl(R) − T∞]

∂Tl

∂r

∣∣∣∣
r=R

< 0,

T∞ + A exp(−B(r − Y)2) when [Tl(R) − T∞]
∂Tl

∂r

∣∣∣∣
r=R

> 0,

(2.27)
where A, B and Y are computed as

A = [Tl(R) − T∞] eBe2
1, B =

∂Tl

∂r

∣∣∣∣
r=R

2e1[Tl(R) − T∞]
, Y = R + e1, e1 = e′

∣∣∣∣∣∣∣∣
Tl(R) − T∞

∂Tl

∂r

∣∣∣∣
r=R

∣∣∣∣∣∣∣∣
,

(2.28a–d)

with e′ = 0.001.
Then, according to the energy conservation within the thermodynamic boundary layer

outside the bubble, the variation of Tl(R) with time could be updated as

4
3

πρcp[(R + δe)
3 − R3]

∂Tl(R)

∂t
= 4πR2

(
−κl

∂Tl

∂r

∣∣∣∣
r=R

)
− 4π(R + δe)

2

(
−κl

∂Tl

∂r

∣∣∣∣
r=R+δe

)
,

(2.29)

where cp denotes the specific heat of liquids at constant pressure, and κl is the thermal
conductivity of liquids. The thickness δe of the thermodynamic boundary layer outside the
bubble (Yasui 1996, 1997) is estimated by

δe =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Tl(R) − T∞]
/

∂Tl

∂r

∣∣∣∣
r=R

when [Tl(R) − T∞]
∂Tl

∂r

∣∣∣∣
r=R

< 0,

e1 + 1/
√

B when [Tl(R) − T∞]
∂Tl

∂r

∣∣∣∣
r=R

> 0,

(2.30)

where (∂Tl/∂r)|r=R+δe is calculated using (2.27) and (2.28a–d); the temperature gradient
of liquid at the bubble surface (∂Tl/∂r)|r=R is determined by the continuity condition
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(Fujikawa & Akamatsu 1980) of the heat flux:

κl
∂Tl

∂r

∣∣∣∣
r=R

= κ
∂T
∂r

∣∣∣∣
r=R

+ ṁL, (2.31)

where L is latent heat.
The temperature change inside the bubble with respective to time can be updated

according to the change of internal energy

McvṪ = Ė, (2.32)

where M is the gas mass inside the bubble, and cv is the average specific heat capacity of
the gas inside the bubble. Following Zhong et al. (2020) and Yasui (2001), the change rate
of energy is computed as

Ė = −SbṘPg + Sb[ṁe ev(Tl) − ṁc ev(TB)]NA

Mmv

+ Sbκ
∂T
∂r

∣∣∣∣
r=R

+ Sbσr(T4
B − T4), (2.33)

in which ev is the energy carried by a vapour molecule, and σr is the Stefan–Boltzmann
constant. The first term on the right-hand side is the work done by the bubble on the
surrounding fluids; the second term represents the energy carried by the evaporation and
condensation of the fluids; the third term is the energy produced by heat conduction; and
the fourth term is the energy produced by heat radiation. In some studies (de Graaf et al.
2014; Nagalingam et al. 2023; Chen et al. 2024), the two thermodynamic boundary layers
at the gas–liquid interface are often ignored for simplicity. The gas temperature at the inner
surface of the bubble is replaced with the temperature at the bubble centre, while the liquid
temperature at the outer surface of the bubble is substituted with the ambient temperature.
Then the change rate of energy can be expressed simply as

Ė = −SbṘPg + Sb(cp − cv)Tṁ − Sbκs(T − T∞), (2.34)

where κs is a heat transfer coefficient.
Here, some values of the parameters at room temperature (Zhong et al. 2020) involved

in the above model are provided as shown in table 1.

2.3. Bubble migration equation
In this subsection, the bubble migration equation is derived to solve the migration velocity
in (2.18). As the bubble migrates along the axis θ = 0, the kinetic boundary condition for
the bubble migration can be expressed as

d
dt

∫
V

r cos θ dV = 4
3

πR3v. (2.35)

According to Reynolds’ transport theorem, the above equation can be expanded as∫
V

∂(r cos θ)

∂t
dV +

∫
S

urR cos θ dS = 4
3

πR3v. (2.36)

The first term on the left-hand side in (2.36) disappears because the integrand does not
change over time. Combining the above equation with (2.7) yields

q + R
C

q′ = 1
2

vR3. (2.37)
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Name Variant Value

Surface tension coefficient σ 0.075 N m−1

Viscosity coefficient μ 0.001 Pa s
Avogadro constant NA 6.02 × 1023 mol−1

Gas constant Rg 8.314 J mol−1 K-1
Gas constant of vapour Rv 461 J Kg−1 K−1

van der Waals force of air molecules aa 0.1402 J m3 mol-2
van der Waals force of vapour molecules av 0.5536 J m3 mol-2
Volume occupied by air molecules ba 3.753 × 10−5 m3 mol−1

Volume occupied by vapour molecules bv 3.049 × 10−5 m3 mol−1

Thermal accommodation coefficient αe 1
Thermal conductivity of vapour κ 0.02 W m−1 K−1

Thermal conductivity of water κl 0.55 W m−1 K−1

Boltzmann constant k 1.38 × 10−23 J K−1

Stefan–Boltzmann constant σr 5.67 × 10−8 W m−2 K−4

Latent heat of water L 2.4 × 106 J Kg−1

Table 1. Values of partial thermodynamic parameters at room temperature (293 K).

Let Q(t) = q(t − R/C). Then we have

dQ
dt

=
(

1 − Ṙ
C

)
q′|r=R. (2.38)

Combining the above two equations and differentiating (2.37) with respect to time gives(
C − Ṙ

R
+ d

dt

)(
R

C − Ṙ
dQ
dt

)
= 1

2
v̇R3 + 3

2
R2Ṙv. (2.39)

Equation (2.39) is the bubble migration equation in a unified mathematical form. The
left-hand side of (2.39) represents the migration force exerted on the bubble by the flow
field, while the right-hand side is the change rate of the bubble’s momentum with respect
to time. Similar to the bubble oscillation equation (2.11), once we have determined dQ/dt,
we can obtain the migration equation for the bubble. To determine dQ/dt, we first set out
the momentum equation for the bubble:

d(Mvm)

dt
= Mg −

∫
S

Pbn dS − 1
2

πR2ρCd C(v), (2.40)

where the three terms on the right-hand side denote the gravity, the inertial force, and the
drag force of the bubble, respectively, with Cd the drag coefficient, and C(x) = x |x|.

Multiplying the Bernoulli equation (2.13) by n and integrating it on the bubble
surface with H retaining the zero-order term (Pb − Pa)/ρ, the terms containing θ vanish.
Consequently, the inertial force can be obtained as∫

S
Pbn dS =

∫
S

[
Pa − ρ

(
∂ϕ

∂t
+ (v cos θ, −v sin θ) · (ur, uθ ) + 1

2
(u2

r + u2
θ )

)∣∣∣∣
r=R

]
n dS

=
∫

V
∇Pa dV − ρ

∫ π

0

(
∂ϕ

∂t

∣∣∣∣
r=R

+ (v cos θ, −v sin θ) · (ur, uθ ) + 1
2

(u2
r + u2

θ )

)

× e · 2πR2 cos θ sin θ dθ = 4
3

πρ

(
q′ + R

C
q′′
)

e + 4
3

πR3 ∇Pa, (2.41)

where ∇Pa = ρg in the free field with gravity.
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Substituting (2.41) into (2.40) and organizing gives

(
q′ + R

C
q′′
)

e = −R3 ∇Pa

ρ
− 3

8
R2Cd C(v) + ρg

ρ
R3g − ρg

ρ
R3v̇m − 3R2ṁ

ρ
vm. (2.42)

Multiply both sides of (2.37) by e and differentiate it with respect to time. Then,
associating it with (2.42), we can eliminate q′′ to have

Ṙ
C − Ṙ

q′e = C
C − Ṙ

(
1
2

v̇R3 + 3
2

vR2Ṙ
)

−
(

−R3 ∇Pa

ρ
− 3

8
R2Cd C(v) + ρg

ρ
R3g − ρg

ρ
R3v̇m − 3R2ṁ

ρ
vm

)
.

(2.43)

By associating (2.38) with the above equation, the expression for dQ/dt is obtained:

dQ
dt

e = C − Ṙ
Ṙ

(
1
2

v̇R3 + 3
2

vR2Ṙ
)

+ (C − Ṙ)
2

CṘ

(
R3 ∇Pa

ρ
+ 3

8
R2Cd C(v) − ρg

ρ
R3g + ρg

ρ
R3v̇m + 3R2ṁ

ρ
vm

)
.

(2.44)

Similarly, multiplying both sides of (2.39) by e and associating it with (2.44), we can
arrive at the bubble migration equation:[

1 − RR̈
(C − Ṙ)Ṙ

+ R
C − Ṙ

d
dt

](
1
2

R3v̇ + 3
2

R2Ṙv

)

=
[
1 − RR̈

(C − Ṙ)Ṙ
+ R

C
d
dt

] [
ρg

ρ
R3(g − v̇m) − 3R2 ṁ

ρ
vm − R3 ∇Pa

ρ
− 3

8
CdR2

C(v)

]
.

(2.45)

In the free field, ua = 0, thus vm = v. When we consider the non-spherical bubble
oscillation in many cases, the added mass coefficient of the bubble Ca needs to be
introduced in (2.45). In fact, in the above equations, the added mass coefficient of
the bubble is implicitly fixed to 0.5 due to the assumption of spherical bubbles. By
analogy with the derivation of the added mass force of the bubble in an incompressible
flow, the expression in parentheses on the left-hand side of (2.45) can be rewritten as
(CaR3v̇ + 3CaR2Ṙv) if Ca is not equal to 0.5.

When the high-order terms related to fluid compressibility are neglected, the above
equation simplifies to

CaRv̇ + 3CaṘv + R ∇Pa

ρ
+ 3

8
Cd C(v) + 3ṁ

ρ
vm − ρg

ρ
R(g − v̇m) = 0. (2.46)

Equation (2.46) could be simplified to the form in our previous works (Zhang et al.
2023) if the last two terms on the left-hand side, representing the phase transition and
inertia effect of the internal gas, are ignored.
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2.4. Multiple-bubble interaction and boundary effects
In this subsection, we incorporate the effects of multiple bubbles and boundaries into the
present theoretical model. The principle involves modifying the ambient pressure Pa and
velocity ua of the background flow field of the bubble when the effect of multiple bubbles
is considered. Also, accounting for boundary effects is achieved by introducing image
bubbles, thereby transforming it into a multiple-bubble problem. First, we provide the
pressure and velocity in the flow field induced by a single bubble. Differentiating (2.5) with
respect to r and t with the velocity potential of bubble migration ignored, and combining
it with (2.17), we can establish the correlation between the physical information at |r| and
the bubble surface:

u(r, t) = − o − r
|o − r|3

[
R2
(

Ṙ − ṁ
ρ

)
− R

C
(|o − r| − R)

(
H + 1

2

(
Ṙ − ṁ

ρ

)2

+ 1
4

v2

)]∣∣∣∣∣
(R,tc)
(2.47)

and

∂ϕ(r, t)
∂t

= − R
|o − r|

(
H + 1

2

(
Ṙ − ṁ

ρ

)2

+ 1
4

v2

)∣∣∣∣∣
(R,tc)

, (2.48)

where tc = t − (|r| − R)/C, denoting the initiation moment of a disturbance induced by
the bubble surface that later arrives at r at t. The flow pressure induced by the bubble can
be solved by substituting the above two equations into the Bernoulli equation:

p = −ρ
∂ϕ(r, t)

∂t
− 1

2
ρ |u(r, t)|2 + P∞. (2.49)

Assuming that there are U bubbles in the flow field, the velocity and pressure of the
background field for bubble N can be expressed as

ua(oN, t) =
∑

G=1,U
G /=N

uG(oN, t) (2.50)

and

Pa(oN, t) = −ρ
∑

G=1,U
G /=N

∂ϕG(oN, t)
∂t

− 1
2

ρ |ua(oN, t)|2 + P∞, (2.51)

respectively. The dynamics of multiple bubbles can be addressed by incorporating the
above two equations into the oscillation equation and migration equation.

Further, assuming that a infinite flat boundary exists near the bubble, defined by
r · eb + s = 0 (where eb is the outward unit normal vector of the boundary plane, and
s is a constant), the position of the image bubble Ni of bubble N about the boundary could
satisfy oNi = oN − 2(oN · eb + s)eb. The size and oscillation velocity of bubbles N and
Ni always remain exactly the same, while the position and migration velocity of the two
bubbles are always symmetric about the boundary plane. A reflection coefficient ξ is used
to determine the property of the boundary. Specifically, ξ = 1.0 for a rigid boundary, and
ξ = −1 for an ideal free surface. Therefore, when the bubble N is affected by other bubbles
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and the boundary, the velocity and pressure of the flow field at oN can be expressed as

ua(oN, t) =
∑

G=1,U
G /=N

uG(oN, t) + ξ
∑

G=1,U

uGi(oN, t), (2.52)

and

Pa(oN, t) = −ρ
∑

G=1,U
G /=N

∂ϕG(oN, t)
∂t

− ρξ
∑

G=1,U

∂ϕGi(oN, t)
∂t

− 1
2
ρ|ua(oN, t)|2 + P∞,

(2.53)

respectively.
The dynamics of bubble N near the boundary and other bubbles can be addressed by

incorporating (2.52) and (2.53) into the oscillation equation and migration equation of
bubble N.

3. Validation of the present theoretical model

In this section, we conduct experiments on bubbles with different sources and
environmental conditions, capturing the bubble oscillation and migration processes. The
experimental results are compared with the theoretical values to validate the present
theoretical model.

3.1. Bubble dynamics in the free field
First, we validate the present theoretical model through two cavitation bubble experiments
in a free field. In the first experiment, the bubble is generated by laser focusing with
maximum bubble radius 1.01 mm, and the experimental set-up can be referred to in the
previous work (Li et al. 2024). Figure 1(a) shows high-speed photography images in
the first two oscillation cycles of the bubble, where the bubble remains nearly spherical
during the first cycle, and undergoes slight deformation in the second cycle. Figure 1(b)
presents a comparison between the computed bubble radius and the experimental data. The
theoretical calculations start from the moment the bubble reaches its maximum radius,
at which point the oscillation velocity of the bubble is zero. Since the initial conditions
of bubbles in the experiments are difficult to determine, we discuss the effects of initial
parameters here. The temperature of the fluid domain T∞ is fixed at 293 K in all the cases
unless stated otherwise. The initial vapour proportion Mv/M and the internal pressure
Pg0 of the bubble are two important parameters that significantly affect the maximum
radius of the bubble during the second cycle. Figure 1(c) shows the effect of the initial
vapour proportion on the bubble radius at a fixed Pg0, and figure 1(d) shows the effect of
the initial internal pressure at a fixed initial Mv/M. A higher initial vapour proportion
and a lower initial internal pressure significantly reduce the maximum radius of the
bubble during the second cycle. Considering the small content of non-condensable gases
inside the laser bubble (Liang et al. 2022), the initial vapour proportion is set at 1.0
in this case. The initial internal pressure of the bubble is set at 1.0 kPa to match the
experimental bubble radius in the second cycle, and αm in the Hertz–Knudsen–Langmuir
relationship is chosen as 0.064. The number of air and vapour molecules at the initial
moment is estimated by the ideal gas equation. The present theoretical model effectively
captures the experimental bubble radius in the first two cycles. In addition, figure 1(b)
also shows the calculation results without the phase transition and without the fluid
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Figure 1. Laser bubble experiment in the free field and its comparison with theoretical results. (a) High-speed
photography images of the bubble oscillation over time, with frame width 3.45 mm. (b) Comparison of the
bubble radius between theory and experiment (R0 = 1.01 mm, Pg0 = 1.0 kPa, Mv/M = 1.0, αm = 0.064).
(c) Effect of initial proportion of vapour inside the bubble. (d) Effect of initial internal bubble pressure.
(e) Temporal variations of the temperature at the bubble centre T and the liquid temperature at the bubble
surface Tl.

compressibility, respectively. The results indicate that both phase transition and fluid
compressibility are important factors affecting the energy loss of bubbles, with phase
transition having a more significant impact on laser-induced bubbles. Figure 1(e) illustrates
the temporal variation of the temperature of the bubble centre and the liquid temperature
at the bubble surface. During the majority of the bubble cycle, the temperatures inside
the bubble and at the bubble surface remain in close proximity. At the final stages of
the bubble collapse, the temperature at the bubble centre rises more rapidly over time
compared to that at the bubble surface. The discrepancy between the two temperatures
manifests primarily during the intense phase of bubble collapse, where there is a stark
rise from the ambient water temperature as the bubble collapses, followed by a precipitous
drop towards equilibrium.

In the second experiment, the bubble is generated by underwater electrical discharge,
reaching maximum bubble radius 18.1 mm. For details of the experiment method, refer
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Figure 2. Spark-generated bubble experiment in the free field and its comparison with theoretical results.
(a) High-speed photography images of the bubble oscillation over time, frame width 4.43 cm. (b) Comparison
of the bubble radius between theory and experiment (R0 = 18.1 mm, Pg0 = 12 kPa, Mv/M = 1.0, αm =
0.043). (c) Comparison of the flow-field pressure induced by bubble oscillation between theory and experiment.
(d) Temporal variations of the temperature at the bubble centre T and the liquid temperature at the bubble
surface Tl.

to the work of Han et al. (2022). Figure 2(a) shows the temporal evolution of the
bubble shape. The bubble is accompanied by a large amount of flocculent impurities at the
end of the second cycle, making it difficult to clearly observe the bubble profile. However,
in general, the profile of the bubble at the moment of maximum volume is clear enough to
accurately obtain the maximum radius of the bubble during the first two cycles, allowing
for calculations using the present theoretical model. Figures 2(b) and 2(c) compare the
bubble radius and the flow-field pressure induced by the bubble oscillation, respectively.
The flow-field pressure is measured by a PCB free-field sensor placed 8.5 cm away from
the bubble centre. Similar to figure 1, the initial vapour proportion of the bubble is set
at 1.0. The initial internal pressure of the bubble is 12 kPa, and αm = 0.043. The smaller
peak of the flow-field pressure in the experiment may be attributed to the limited sampling
frequency of the sensor or slight changes in the sensor’s position under the influence of
bubble oscillation. Overall, the theoretical calculations well reproduce the bubble radius
and the oscillation pressure in the experiment. Neglecting the effect of phase transition
and fluid compressibility significantly overestimates the radius of the bubble during the
second cycle. Figure 2(d) shows the temporal variation of the gas temperature at the
centre of the bubble and the liquid temperature at the surface of the bubble. Compared to

999 A58-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.954


A.-M. Zhang and others

5.537 ms 12.536 ms 24.611 ms 27.303 ms 29.303 ms 35.763 ms 45.070 ms

0.16 0.06

0.04

0.02

–0.02

–0.04

–0.06

–0.08

–0.10

0

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0 0 0.01 0.02 0.03 0.04 0.050.01 0.02 0.03 0.04 0.05

t (s)

R
(m

)

V
er

ti
ca

l 
m

ig
ra

ti
o
n
 (

m
)

t (s)

Present theory

Experiment

Without phase transition

Without fluid compressibility

Without boundary effect

(a)

(b) (c)

Figure 3. Experiment of an underwater explosion bubble near the free surface and its comparison with
theoretical results. (a) High-speed photography images of the bubble oscillation over time, frame width
0.510 m. (b) Comparison of the bubble radius between the theoretical and experimental results (R0 = 0.026 m,
Ṙ0 = 109 m s−1, Pg0 = 2.74 MPa, Mv/M = 0.01, αm = 0.041). (c) Comparisons of the bubble migration
between the theoretical and experimental results.

the laser-induced bubble, the internal gas of the spark-generated bubble reaches a lower
temperature at the moment of minimum volume, which to some extent indicates that the
collapse intensity of the bubble is weaker, resulting in less energy loss of the bubble at the
end of the first cycle. Note that the maximum bubble displacement of the bubble centre
in the first two cycles of the cases in this section is small enough to ignore the bubble
migration. Thus the migration features of the bubbles are not discussed here.

3.2. Bubble dynamics under different boundary conditions
In this subsection, we validate the effects of boundaries and multiple bubbles in the
bubble equation through two bubble experiments. The first case is an underwater explosion
bubble generated by 1.05 g TNT explosives near the free surface, as shown in figure 3.
The experiment is conducted in a cubic water tank, which can be referred to in the
work of Zhang et al. (2023). The underwater explosion bubble is initially 30 cm from
the free surface, with maximum radius 15.8 cm. The initial condition of the bubble
is calculated according to the shock wave theory in the previous works (Zhang et al.
2023): R0 = 0.026 m, Ṙ0 = 109 m s−1, Pg0 = 2.74 MPa. The value of αm is 0.041. In
this case, we set the initial vapour proportion in the bubble content as 1 % in theory.
This can be explained by the presence of a large amount of non-condensable contents
inside the underwater explosion bubble. Meanwhile, we provide the calculated results
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Figure 4. Spark-generated bubble experiment near a rigid wall, and its comparison with theoretical results.
(a) High-speed photography images of the bubble oscillation over time, frame width 40 mm. (b) Comparison
of the bubble radius between the theoretical and the experimental results (R0 = 3.69 mm, Ṙ0 = 60 m s−1,
Pg0 = 5.0 MPa, Mv/M = 1.0, αm = 0.043). (c) Comparison of the bubble migration between the theoretical
and experimental results.

without the effect of phase transition, showing that the phase transition plays a relatively
minimal role for underwater explosion bubbles. The effects of the boundary and liquid
compressibility play an important role in bubble dynamics. Removing the boundary effect
in theory leads to a significantly larger bubble oscillation period and the wrong migration
direction because the free surface could accelerate the bubble oscillation and induce the
bubble to migrate downwards. As the boundary effect is neglected, the bubble migration
is controlled by the buoyancy of the bubble. Removing the liquid compressibility results
in a great deviation from the experimental values for both the maximum bubble radius and
the energy loss of the bubble.

The second case is a spark-generated bubble below the wall. Figure 4 provides the
temporal progression of the bubble shape, accompanied by a comparison between the
theoretical and experimental results of the bubble radius and vertical displacements. The
bubble is 44 mm from the wall at inception, and the maximum bubble radius is 16.6 mm.
The bubble does not have a tendency to migrate in most of the first cycle, but migrates
upwards obviously at the end of collapse and the second cycle due to the effect of the
wall. To compute the dynamics of a spark-generated bubble from its inception, the initial
conditions of the bubble are obtained by integrating backwards from the moment of
maximum bubble volume (Wang 2013; Zhang et al. 2023). The detailed procedure is as
follows. The computation begins at the moment of maximum bubble volume, when the
bubble radius is known and its oscillation velocity is zero. Next, the internal pressure at
the moment of maximum bubble volume depends on the experimental bubble radius in
the second cycle. The calculation then proceeds in reverse along the time axis from the

999 A58-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.954


A.-M. Zhang and others

1.207 ms 1.998 ms 2.355 ms 3.041 ms 3.489 ms

Bubble 1

Bubble 2

10

8

6

4

2

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5

8

6

4

2

0

–2

–4

–6

–8

t (ms) t (ms)

R
(m

m
)

V
er

ti
ca

l 
m

ig
ra

ti
o
n
 (

m
m

)
Present theory (bubble 1)
Present theory (bubble 2)
Experiment (bubble 1)
Experiment (bubble 2)

(a)

(b) (c)

Figure 5. Comparison of the interaction of four spark-generated bubbles with the theoretical results.
(a) High-speed photography images of the bubble oscillation over time, frame width 162 mm. (b) Comparison
of the bubble radius between the theoretical and the experimental results (R01 = 1.04 mm, R02 = 1.06 mm,
Ṙ01 = Ṙ02 = 10 m s−1, Pg01 = Pg02 = 40 MPa, Mv/M = 0.99, αm = 0.041). (c) Comparison of the vertical
bubble migration between the theoretical and experimental results.

moment of maximum bubble volume until the computed time approaches zero. According
to the method, the initial conditions of the bubble are R0 = 3.69 mm, Ṙ0 = 60 m s−1,
Pg0 = 5.0 MPa. The initial vapour proportion in theory and the value of αm are the same
as in the case of the spark-generated bubble in figure 2. The impact of various physical
factors is also analysed in this case. Removing the boundary effect causes the bubble
period to decrease due to the presence of the wall. The amplitude of the bubble migration
is significantly weaker when the wall is neglected. The energy loss of the bubble is much
weaker when the phase transition is not considered compared to the computational results
without the fluid compressibility. As indicated by the previous underwater explosion
experiments and this case, the relative impact of phase transition and fluid compressibility
on the energy loss of bubbles is closely related to the composition of gases.

3.3. Multiple bubble dynamics
Finally, we carry out an experiment with multiple spark-generated bubbles and compare
it with the theoretical results, as shown in figure 5. Four bubbles are generated
simultaneously at the four vertices of a square plane with side length 60 mm, as shown in
figure 5(a). The maximum radius of the upper left and lower right bubbles is 10.0 mm, and
that of the remaining two bubbles is 10.3 mm. We denote the upper left bubble as bubble
1, and the lower left bubble as bubble 2. The initial oscillation conditions for the two
bubbles are R01 = 1.04 mm, R02 = 1.06 mm, Ṙ01 = Ṙ02 = 10 m s−1 and Pg01 = Pg02 =
999 A58-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.954


A theoretical model for compressible bubble dynamics

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25
0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.8

160
P∗

140

120

100

80

60

40

20

0

0.7

0.6

0.5

0.4

0.3

Ma

M
v/

M

Ma

Rmax2

Rmax1

(a) (b)

Figure 6. Distribution of (a) radius ratio during the first two cycles of the bubble, and (b) scaled internal
bubble pressure at the moment of minimum bubble volume for varying Mach numbers and vapour proportions
(R∗

0 = 0.19, Ṙ∗
0 = 0, P∗

g0 = 50).

40 MPa. Bubble 1 shares the same initial conditions as the lower right bubble, while
the two other bubbles also have identical initial conditions. This is considering that the
corresponding two bubbles remain symmetrical for the majority of the bubble oscillation
cycle. The proportion of vapour in the bubble contents is 0.99, and αm = 0.041. During
the bubble oscillation, the four bubbles migrate towards the centre of the square plane
due to the mutual attraction among bubbles. Figures 5(b) and 5(c) compare the radius and
vertical displacement of the two bubbles, respectively. Overall, our theoretical model well
reproduces the bubble radius and displacement in the experiment. It is observed that the
experimental bubble radius at the end of the second cycle is larger than the computed
values. This discrepancy may be attributed to the measurement errors caused by the frame
rate of the high-speed camera and the perturbation of frothy impurities on the bubble.

4. Discussion on the energy loss of bubbles

In this section, we examine the influence of phase transition on the energy loss of
bubbles. First, we present the distribution of feature parameters of bubbles across different
Mach numbers Ma = √

Pg0/ρ/C and initial vapour proportions Mv/M, as depicted in
figure 6. The Mach number serves to quantify the impact of fluid compressibility, and
the vapour proportion represents the influence of phase transition. In this section, all
physical quantities, with the exception of the temperature, are rendered dimensionless
by using the maximum radius of the bubble Rmax, the density of the liquid ρ, and
the hydrostatic pressure at the bubble’s initial location P∞. The dimensionless physical
quantities are indicated by the superscript * in the latter descriptions. The studied
characteristic parameters are the radius ratio during the first two cycles Rmax2/Rmax1, and
the scaled internal bubble pressure P∗ = P∗

maxr∗ (where P∗
max and r∗ are the peak pressure

inside the bubble and the minimum bubble radius at the first collapse stage, respectively).
Here, Rmax2/Rmax1 is used to measure the energy loss of the bubble in the first two
cycles. Also, P∗ is utilized to characterize the energy at the moment of minimum bubble
volume, and it equals the pressure peak induced by the bubble at the unit distance. The
initial conditions of bubbles are R∗

0 = 0.19, Ṙ∗
0 = 0, P∗

g0 = 50. The value of αm is 0.041.
The initial vapour proportion inside the bubble is altered under the condition of a constant
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initial internal pressure. In the calculations, the effect of bubble migration is removed
in order to analyse the effect of vapour proportion and Mach number more accurately.
Figure 6(a) illustrates the distribution of Rmax2/Rmax1 for varying Ma and proportions of
vapour Mv/M. The energy loss of bubbles shows a steady increase as the Mach number
and vapour proportion increase. Note that when the vapour proportion approaches 1, the
energy loss of bubbles is substantially greater compared to other cases. By examining the
relationship between bubble energy and radius E1/E2 = (Rmax1/Rmax2)

3 (where E1 and
E2 denote the bubble energies in the first and second cycles, respectively), it is observed
that the energy loss in vapour bubbles is typically over 80 %, which is at least twice the
energy loss observed in the bubbles formed by non-condensable gases at the same Mach
number. Figure 6(b) shows the distribution of P∗ for varying Ma and proportions of vapour
Mv/M. Here, P∗ decreases as the Mach number increases because the fluid compressibility
damps the pressure induced by the bubble oscillation. However, the increase in the vapour
proportion results in a progressive increase in P∗, indicating that the vapour bubble can
generate higher pressure peaks in the flow field compared to those composed purely of
non-condensable gases.

To elucidate the underlying mechanism behind the variation of P∗ with Mv/M in
figure 6, we conduct an energy analysis for a special case where the bubble contents
consist purely of vapour (Mv/M = 1). The formulas for calculating the internal energy
Ei, potential energy Ep, kinetic energy Ek and radiated acoustic energy Ea of a bubble
(Wang 2016; Li et al. 2020) are given below:

Ei = 3
nt

NA
RgT, (4.1)

Ep = P∞V, (4.2)

Ek = −1
2

ρ

∫
S
ϕf

∂ϕf

∂n
dS = 1

2
ρ4πR2 f (t − R/C)

R

(
Ṙ − ṁ

ρ

)

= 2ρπR2
(

Ṙ − ṁ
ρ

)[
R
(

Ṙ − ṁ
ρ

)
− 1

C

(
R̈ − m̈

ρ

)
R2 − 2R

C

(
Ṙ − ṁ

ρ

)2
]

, (4.3)

Ea = ρ

4πC

[∫ t

0
V̈2

(t) dt + V̇(0) V̈(0) − V̇(t) V̈(t)
]

, (4.4)

where V̇ and V̈ are the first- and second-order derivatives of bubble volume with respect
to time, respectively, m̈ is the second-order derivative of m with respect to time, and f (t −
R/C) in (4.3) is solved by conducting the perturbation method on (2.9).

The time evolutions for the mass and radius of the bubble are presented in figure 7(a),
along with the radius of the bubble in the absence of phase transition or fluid
compressibility. The initial conditions of the bubble are R∗

0 = 0.19, Ṙ∗
0 = 0, P∗

0 = 50,
Mv/M = 1, αm = 0.041. The condensation of vapour dominates the phase transition,
leading to a consistent decreasing trend in the bubble mass. By comparing the results
without considering the phase transition and without considering the compressibility of
the fluid, it can be observed that the effect of the phase transition on the energy loss of
the bubble is more pronounced. According to the relationship between bubble energy and
radius, the energy loss of the bubble caused by the fluid compressibility (E2/E1 = 0.87)
is less than 1/5 that due to phase transition (E2/E1 = 0.21). Figure 7(b) shows the time
histories of the internal energy of the bubble, the kinetic energy and potential energy of
fluids induced by bubble oscillation, and the acoustic wave energy that propagates away.
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Figure 7. Time evolutions of mass and energy of a vapour bubble (R∗
0 = 0.19, Ṙ∗

0 = 0, P∗
0 = 50, Mv/M = 1,

αm = 0.041). (a) Mass and radius of the bubble. (b) Various energies of the system.

The internal energy of the bubble decreases with time in most of the cycles, except for
a small increase near the moment of minimum bubble volume due to the increase in
temperature inside the bubble. The changes in the potential and kinetic energies of fluids
are closely related to the volume and oscillation velocity of the bubble, but their amplitudes
decrease significantly in the second bubble cycle compared to the first bubble cycle. The
sum of the internal energy, the potential and the kinetic energy characterizes the total
energy of the bubble system, as shown by the purple line in figure 7(b). The total energy
of the bubble system in the second cycle is reduced by approximately 4.7 near the moment
of minimum bubble volume, while the acoustic wave energy radiated into the flow field
during this period is approximately 2.4 (approximately half of the bubble energy loss).
This contrasts with the trend suggested by the radius curves depicted in figure 7(a). This
feature implies that the impact of vapour condensation on bubble energy loss is manifested
not only through the decrease in bubble mass but also through the intensification of the
bubble collapse. The intensification results in a greater propagation of energy into the flow
field in the form of acoustic radiation, which explains the observed increase of the scaled
internal pressure with higher vapour proportions.

5. Conclusion

In this study, the theoretical model for bubble dynamics that accounts for the oscillation,
migration, phase transition, fluid compressibility, boundary effect, multiple bubbles,
viscosity and surface tension is derived. The oscillation and migration equations are
characterized by a unified mathematical form, and the terms in the equations have clear
physical meanings. The oscillation equation exhibits good extensibility and could be
simplified to the classical Keller–Miksis equation after ignoring the effects of phase
transition and bubble migration.

The present theoretical model is validated through comparisons of the theoretical
results with experimental values of a laser bubble and a spark-generated bubble in
the free field. The effects of the initial vapour proportion and internal pressure on
the bubble dynamics are discussed as important parameters for comparing theoretical
results with experimental values. Subsequently, the theoretical model is further validated
by an underwater explosion bubble experiment and several spark-generated bubble
experiments under different boundary conditions. For underwater explosion bubbles, the
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non-condensable gases are the principal constituents of the bubble contents, and the
phase transition does not significantly affect the bubble dynamics; for laser bubbles and
spark-generated bubbles, on the other hand, the phase transition is an important cause of
bubble energy loss.

Based on the present theoretical model, the effects of the Mach number and the initial
vapour proportion inside the bubble on the energy loss of the bubble are investigated for
an initially high-pressure bubble. The energy loss of the bubble increases with increasing
Mach number and initial vapour proportion. Specifically, the energy loss of a vapour
bubble is more than twice that of a bubble composed purely of non-condensable gases.
Also, the radiated pressure peak by the bubble increases with the increasing vapour
proportion. The vapour not only causes a loss of bubble contents through condensation,
but also leads to a more intense collapse. This intensified collapse, in turn, releases more
acoustic energy into the surrounding fluid through pressure waves.
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