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A linear stability analysis is employed to investigate thermal effects in shear flows.
The cases analysed consist of unstably stratified horizontal boundary layers under
a mixed convection regime, where forced and free convection mechanisms compete.
Governing equations are given by the incompressible Navier–Stokes equations with the
Oberbeck–Boussinesq approximation, where the base flow comes from their boundary
layer approximation. Modal and non-modal analyses are used to investigate the behaviour
of small-amplitude disturbances superposed to this base flow. An evaluation of the inertial,
shearing and buoyancy mechanisms in the mixed convection boundary layer stability is
performed through variations in the Reynolds, Prandtl and Richardson numbers. On the
one hand, the spectra lead to the parametric conditions for the time-asymptotic onset of
instability, which is still caused by Tollmien–Schlichting (TS) waves as in the traditional
Blasius case. However, thermal effects have a destabilizing effect on them, more so
for liquids than gases. On the other hand, the pseudospectra obtained from a resolvent
analysis indicate the existence of transient growth at this same onset. However, contrary
to the traditional Blasius case, thermal effects cause it to be dominated by the continuous
frequency spectrum instead of the discrete TS modes. In order to elucidate this qualitative
change, a componentwise input–output analysis is employed to quantify the receptivity to
specific external disturbances. It shows that thermal effects directly impact the conversion
of thermal to kinetic linear disturbance energy, causing a strong amplification of the
flow response due to the non-normality of the linear operator. Results reveal that heating
from below causes the forcing and response modes of the input–output analysis to have a
free-stream spatial support due to non-modal excitation of the continuous spectrum. Such a
behaviour suggests that the unstably stratified boundary layer is susceptible to free-stream
thermal disturbances, which can potentially impact bypass transition.
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1. Introduction

Thermal convection impacts natural processes in the atmosphere and oceans. It also finds
industrial applications in solar panels, electronics cooling and chemical vapour deposition
to name a few. When forced and natural convection act simultaneously, a regime of
mixed convection occurs and the mechanisms of inertia, shear and buoyancy compete.
For example, a typical chemical vapour deposition reactor can be modelled by a mixed
convection boundary layer where a shear flow develops over a surface heated from below.
To ensure that the film is uniform throughout the reactor, it is necessary to delay flow
transition so that purity, thickness and adhesion of the deposited films are controlled
(Jensen, Einset & Fotiadis 1991; Mahajan 1996).

Flows involving mixed convection have been investigated both numerically as well as
experimentally (Wu & Moin 2010; Dennis & Siddiqui 2021a,b, 2022). However, most
studies analyse turbulence properties, while fewer address stability and transition effects.
The majority of the flow stability studies involving mixed convection were performed for
Poiseuille–Rayleigh–Bénard (PRB) flows. Nicolas, Luijkx & Platten (2000) investigated
the influence of temperature gradients in PRB flows using bi-global modal stability
analysis. They found that the critical Rayleigh number for the onset of longitudinal rolls
decreases as the aspect ratio of the channel is increased.

Sameen & Govindarajan (2007) employed a transient growth analysis of PRB flow
using a temperature-dependent viscosity formulation and John Soundar Jerome, Chomaz
& Huerre (2012) presented a similar study for a buoyancy-driven formulation using the
Oberbeck–Boussinesq (OB) approximation. Sameen & Govindarajan (2007) found that
a smaller viscosity near the wall has a larger stabilizing effect for water. They also
found that the Prandtl number has an important impact on transient growth, but not on
the time-asymptotic decay. On the other hand, viscosity stratification was found to have
an important impact on exponential growth, but not on algebraic growth. John Soundar
Jerome et al. (2012) observed that PRB flow has a more energetic transient growth when
compared with the plane Poiseuille case. Such transient growth was also found to occur
for a longer period due to thermal effects. More recently, Vo, Potherat & Sheard (2017)
investigated the linear and modal stability of PRB flows of liquid metals subjected to
transverse magnetic fields due to their use in fusion reactors. Those authors considered
the OB approximation, deriving a reduced set of disturbance equations composed of
the energy equation coupled with the Orr–Sommerfeld equation modified to account for
thermal and magnetic effects. By doing so, they were able to investigate instabilities arising
from the interactions among shear, thermal stratification and magnetic damping effects.

Differently from PRB flow, a mixed convection boundary layer does not occur in a
confined domain. Therefore, the base flow has velocity and thermal gradients near the
wall, while the far-field profiles are uniform. Early investigations focused on how the
base flow obtained from steady boundary layer equations was influenced by the surface
temperature and the distance from the plate leading edge in forced, free and mixed
convection (Sparrow, Eichhorn & Gregg 1959; Sparrow, Quack & Boerner 1970; Sparrow
& Yu 1971; Chen, Sparrow & Mucoglu 1977; Schneider 1979). Those studies showed
that base flow variations are only significant at extreme thermal conditions, i.e. high
Richardson numbers. Wu & Cheng (1976) and Cheng & Wu (1976) were among the first
to perform a linear, local and modal stability analysis of this problem. Their analyses of an
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OB approximated base flow over a horizontal plate provided critical Grashof and Reynolds
numbers, showing that increasing the Prandtl number has a destabilizing effect. Those
studies were extended by Chen & Mucoglu (1979), who considered non-parallel base flow
effects when performing their stability analysis to investigate the impact of these effects
on the neutral curves for different Prandtl and Richardson numbers. It was found that, for
moderate values of the Richardson number, the non-parallel and parallel approximations
provided almost identical results.

Research on this topic remained dormant for three decades until it was picked up again
in the context of atmospheric sciences. Such boundary layers are supposed to be stable
to inviscid disturbances (Chimonas 2002), but compressibility and non-OB effects can
change this when the surface is inclined (Candelier, Le Dizès & Millet 2012). Viscous
instabilities were first investigated using the Navier–Stokes equations by Wu & Zhang
(2008) for horizontal plates. They performed a linear, local and modal stability analysis
based on triple-deck theory for large Reynolds numbers. In such supercritical parametric
conditions, stratification has a stabilizing effect on the spatial growth rates. However,
stabilization is not uniform across all modes, shifting the dominant unstable modes towards
higher frequencies. It is also worth pointing out that the linear, local and modal stability
of a horizontal flow over a vertical plate has been considered as well (Chen, Bai & Le
Dizès 2016). However, a couple of issues are worth noting. The first one is base flow
accuracy (Teixeira & Alves 2017), since an ad hoc hyperbolic function was used instead
of a similarity solution. The second one is the unstable nature of the flow (Huerre &
Monkewitz 1990), since a temporal instead of spatial stability analysis was performed
under supercritical parametric conditions. Finally, both modal and non-modal (Schmid
2007) linear stability analyses of mixed convection boundary layers appeared recently
when Parente et al. (2020) studied a stably stratified horizontal boundary layer. The modal
analysis was performed under the scope of spatial stability and the non-modal analysis
was evaluated using a direct-adjoint looping procedure. It was found that the Richardson
number has an impact on the optimal gain and the optimal streamwise wavenumber, which
considerably departs from zero. They also showed that the latter was due to the competition
between two distinct effects, the lift-up and the Orr mechanisms.

Although modal (Reed, Saric & Arnal 1996) and non-modal (Andersson, Berggreen
& Henningson 1999; Corbett & Bottaro 2000; Monokrousos et al. 2010) linear stability
theories have been extensively applied to Blasius boundary layers, the aforementioned
examples illustrate that the same is not true for their mixed convection counterparts. In
fact, the study by Parente et al. (2020) is the first to do so in regards to the latter theory.
The present study extends their linear and local analysis in two meaningful ways, namely
it (i) applies modal as well as non-modal theory, where the latter is done through an
analysis of the pseudospectra (Trefethen & Embree 2005), to unstably stratified horizontal
boundary layers and (ii) uses input–output analysis (Jovanović 2021) to study the optimal
flow response with respect to imposed disturbances, which could in turn provide insights
in terms of control strategies for the present flows.

2. Governing equations of the linearized model

The small-amplitude-disturbance governing equations for mixed convection Blasius
boundary layer flow are obtained by linearizing the OB approximated Navier–Stokes
equations (Chandrasekhar 1961). These equations are linearized with respect to a base
flow obtained by solving the Blasius self-similar solution for both the velocity and
thermal boundary layers. The linearization is followed by non-dimensionalization using
the free-stream velocity U∗∞, the displacement thickness δ∗ and the temperature difference
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U(z) Θ(z)

x, streamwise

y, spanwise

z, wall-normal

U∗
∞, T∗

∞

Ts
∗

δ∗

Figure 1. A schematic of the flows under investigation. It contains the coordinate system
(x, y, z) = (streamwise, spanwise, wall-normal), the variables used to non-dimensionalize the equations
(U∗∞, δ∗, T∗

s , T∗∞) and a representation of the Blasius self-similar solution for both the velocity (U(z)) and
thermal (Θ(z)) laminar boundary layers.

�T∗ = T∗
s − T∗∞, where the superscript ∗ stands for dimensional variables. Here, T∗

s and
T∗∞ are the temperature at the surface and the far field, respectively. A schematic containing
the self-similar solutions, the adopted coordinate system and the parameters used for the
non-dimensionalization of the system of equations is shown in figure 1.

The linearized form of the governing equations is written in non-dimensional form as

∂ui

∂xi
= 0,

∂ui

∂t
+ U

∂ui

∂x
+ uj

∂U
∂xj

δi1 = − ∂p
∂xi

+ Riδ∗ θδi3 + 1
Reδ∗

∂2ui

∂xj∂xj
and

∂θ

∂t
+ U

∂θ

∂x
+ ui

∂Θ

∂xi
= 1

Reδ∗Pr
∂2θ

∂xi∂xi
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where xi = (x1, x2, x3) = (x, y, z) and ui = (u1, u2, u3) = (u, v, w) represent the spatial
coordinates and velocity disturbances in the streamwise, spanwise and wall-normal
directions, respectively. The time is represented by t, the pressure disturbance by p, the
Kronecker delta by δij and the temperature disturbance by θ . The steady laminar profiles
for the streamwise velocity and temperature are given by U and Θ , respectively. Both vary
only along the wall-normal direction.

The dimensionless parameters arising in the equations are the Richardson number
Riδ∗ = Raδ∗/(Re2

δ∗Pr), Reynolds number Reδ∗ = U∗∞δ∗/ν∗, Prandtl number Pr = ν∗/α∗
and Rayleigh number Raδ∗ = g∗β∗�T∗δ∗3/ν∗α∗, where ρ∗ is the density, g∗ is the
gravitational acceleration, β∗ is the volumetric thermal expansion coefficient, α∗ is
the thermal diffusivity and ν∗ is the kinematic viscosity. The present non-dimensional
parameters characterize the ratios of buoyancy to flow shear (Ri), inertial to viscous forces
(Re), momentum to thermal boundary layer thicknesses (Pr) and buoyancy to viscous and
thermal diffusion (Ra).

The flow disturbances are assumed to be periodic in the streamwise (x) and spanwise (y)
directions, allowing the application of a Fourier transform in both cases as

q(x, y, z, t) = q̂(z, t) exp {i(kδ∗x + mδ∗y)}, where q = (u, v, w, θ, p)T, (2.2)

the eigenvalues kδ∗ and mδ∗ represent the streamwise and spanwise wavenumbers,
respectively, q̂ represents their respective eigenfunctions and i stands for the
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imaginary number. By applying (2.2) to the governing equations defined in (2.1) and
discretizing the system in the wall-normal direction (z), the following system is obtained:

0 = ikδ∗ û + imδ∗ v̂ + Dŵ,

∂ û
∂t

+ Uikδ∗ û + ŵDU = −ikδ∗ p̂ + 1
Reδ∗

[−û(k2
δ∗ + m2

δ∗) + D2û],

∂v̂

∂t
+ Uikδ∗ v̂ = −imδ∗ p̂ + 1

Reδ∗
[−v̂(k2

δ∗ + m2
δ∗) + D2v̂],

∂ŵ
∂t

+ Uikδ∗ŵ = −Dp̂ + Riδ∗ θ̂ + 1
Reδ∗

[−ŵ(k2
δ∗ + m2

δ∗) + D2ŵ] and

∂θ̂

∂t
+ Uikδ∗ θ̂ + ŵDΘ = 1

Reδ∗Pr
[−θ̂ (k2

δ∗ + m2
δ∗) + D2θ̂ ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

where the wall-normal derivatives D = ∂/∂z are discretized using a sixth-order finite
difference scheme. Dirichlet boundary conditions are imposed for all variables (q̂ = 0)

at the wall, except for the pressure, which is obtained by evaluating the wall-normal
momentum equation from (2.3). Noting that both temperature and velocity disturbances
are null at the wall leads to Dp̂ = (1/Reδ∗)D2ŵ at z = 0. Dirichlet boundary conditions
are also applied for all variables (q̂ = 0) in the far field (Parente et al. 2020; Schmid &
Henningson 2000) except for pressure, since the mass conservation equation is solved
directly. The robustness of these choices was evaluated by verifying the sensitivity of the
results to other boundary conditions, as discussed in further detail in Appendix A.

3. Linear stability and resolvent analyses

The set of equations in (2.3) can be rewritten in vector form as

R
∂

∂t
q̂ = Lq̂, (3.1)

where R is a singular matrix. The solution of (3.1) is obtained by a generalized eigenvalue
problem for R and L. As shown by Peters & Wilkinson (1970), the solution of the
generalized eigenvalue problem is equivalent to the solution of a conventional eigenvalue
problem. The linear system associated with the latter can be written as

∂

∂t
q̂ = L̃q̂, (3.2)

where L̃ = D−1L(DH )−1, D is obtained by the Cholesky decomposition R = DDH , since
R is singular, and the superscript H refers to the Hermitian. The solution of (3.2) leads to
eigenvalue and eigenvector matrices Λ and V , respectively, which are identical to those
from (3.1). For the modal analysis, a Laplace transform can be applied to model the
temporal dynamics since the time-asymptotic stability of a steady state is considered. This
allows the eigenfunctions to be rewritten as

q̂(z, t) = q̃(z) exp (−iωt), (3.3)

which can be substituted into (3.2) to yield the eigenvalue problem,

− iωq̃ = L̃q̃, (3.4)

for imposed real values of the wavenumbers (kδ∗ , mδ∗). Solving (3.4) yields the complex
eigenspectrum ω. In the present problem, shear effects are represented by the term ŵDU
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in (2.1). They can lead to a loss of orthogonality between eigenvectors of the linear
dynamical system. When strong enough, this allows for a temporary energy growth at finite
times even when this system displays a time-asymptotic (t → ∞) energy decay (Schmid
2007). In order to investigate such non-modal effects, a resolvent analysis is employed to
uncover the flow response with respect to imposed disturbances, an approach popularized
by McKeon & Sharma (2010) and widely used today (Ricciardi, Wolf & Taira 2022).

In order to perform a componentwise input–output analysis, the linear system defined in
the modal approach, i.e. (3.2), is rewritten to include a spatially distributed body force f .
It can have different interpretations, such as nonlinear effects retained in the formulation
(McKeon & Sharma 2010) or an external input or excitation of the flow field (Jovanović
& Bamieh 2005). Following a state-space representation, a supplementary equation is
introduced to evaluate a user-specified output component g of the full state vector q̂ as

∂

∂t
q̂ = L̃q̂ + Bf and g = Cq̂, (3.5a,b)

where B and C determine how the forcing enters the dynamics and which responses are
analysed, respectively. Assuming a harmonic forcing, the system response becomes

ĝ = C(iωI − L̃)−1Bf̂ , (3.6)

where ( f , g) = ( f̂ , ĝ) exp(iωt) and I is the identity matrix.
The maximum energy gain of the system due to forcing is then defined as the

ratio between output and input maximized over all possible forcing profiles f̂ for a
given frequency ω. Doing so leads to the input–output norm R(ω), which returns the
resolvent norm when the forcing and response matrices are given by B = C = I . It can
be represented as

R(ω) = max
f̂

||ĝ||2E
||f̂ ||2E

= ||C(iωI − L̃)−1B||2E = ||C(iωI − L̃E)−1B||22. (3.7)

It is important to note that the term E refers to an energy norm that takes into account
kinetic and thermal energies. The latter can be interpreted as the disturbance thermal
potential energy (John Soundar Jerome et al. 2012). The energy norm can be written as

E(t) =
∫ ∞

0

1
2

[
|û|2 + |v̂|2 + |ŵ|2 + Riδ∗ |θ̂ |2

]
dz. (3.8)

As discussed by the previous authors, the form of a thermal energy norm is arbitrary. Here,
following a reasoning similar to that provided in the previous reference, the thermal energy
norm for the mixed convection boundary layer problem is weighted by Riδ∗ , which returns
the classical kinetic energy norm when Riδ∗ = 0. The energy norm can be applied directly
into L̃ by the following transformation:

L̃E = (HEV )Λ(HEV )−1, (3.9)

where E = diag(I, I, I,
√

Riδ∗, 0)/
√

2 and H accounts for the integration weights due to
grid stretching in the domain discretization.

The pseudospectrum and the componentwise input–output analyses are performed
by applying singular value decomposition to the resolvent and input–output operators,
respectively (Jovanović & Bamieh 2005). The optimal forcing and its respective response
are given by the left and right singular vectors of the dominant singular value, respectively
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(Schmid & Brandt 2014). It is important to mention that the numerical tool has been
validated through a comparison of results for the Blasius boundary layer obtained by
Schmid & Henningson (2000) in terms of the eigenspectrum and eigenvectors, and also
with Monokrousos et al. (2010) and Nogueira et al. (2020) for the resolvent analysis.
The wall-normal domain size selected for the present investigation is zmax = 30δ, with
δ standing for the boundary layer thickness. A result sensitivity analysis with respect to
domain size is provided in Appendix B.

4. Results

In this section, we assess the effects of inertia, shear and buoyancy on the linear and local
instabilities in a mixed convection boundary layer over horizontal plates. First, a temporal
and modal stability analysis is applied to identify the onset of instability for different values
of the Reynolds, Prandtl and Richardson numbers. Then, a resolvent analysis is applied to
investigate the effects of non-normality near the marginal stability parametric conditions.
Finally, this latter analysis is employed once again, but now in terms of a componentwise
input–output approach, to investigate the receptivity to external disturbances.

4.1. Neutral curves, eigenspectra and pseudospectra
Figure 2 presents the neutral curves for the Prandtl numbers Pr = 0.7 and 7.0, which
are representative of air and water, respectively. Different Richardson numbers Riδ∗ are
investigated to understand the role of buoyancy in the present flows, with an upper bound
of Riδ∗ � 10−3 in order to guarantee the validity of the OB and base flow boundary layer
approximations. The Blasius boundary layer, i.e. without thermal effects, is included for
comparison purposes. By comparing the transversal modes with the oblique modes, it
is revealed that the critical Reynolds number Rec

δ∗ remains two-dimensional. It is also
important to point out that longitudinal modes could not be investigated because the
local hypothesis for a slowly diverging base flow places a constraint on how small the
streamwise wavenumber can be. Some conclusions can be drawn from the neutral curves of
figure 2. They show that increasing either Riδ∗ or Pr has a destabilizing effect on the flow,
i.e. decreases the critical Reynolds number Rec

δ∗ . Additionally, increasing Riδ∗ enhances
the destabilizing effect of Pr, regardless of whether it is a transversal or oblique mode.
Moreover, doing so also increases the critical streamwise wavenumber kc

δ∗ .
The eigenspectra computed for the Blasius boundary layer and for two mixed convection

boundary layers, with Pr = 0.7 and 7.0, can be visualized in figure 3. Results are obtained
for Reδ∗ = 450, kδ∗ = 0.31 and mδ∗ = 0.0 for all cases and, for the mixed convection
boundary layers, Riδ∗ = 0.001. The streamwise wavenumber kδ∗ � 0.31 was chosen based
on the critical point of the most unstable neutral curve with Pr = 7.0, mδ∗ = 0.0 and
Riδ∗ = 0.001 shown in figure 2. All flows are stable, but the inclusion of thermal effects
introduces additional modes compared with the Blasius case. These additional modes
are related to the inclusion of the energy equation. In other words, when choosing a
non-vanishing Richardson number, the modes related to the energy equation become
relevant to the system dynamics due to its coupling with the momentum equation.
Increasing the Prandtl number also adds more eigenvalues to the discrete spectrum, as
can be observed when comparing the spectra in figures 3(b) and 3(c). The two least
stable frequencies observed in these figures are located at ωr ≈ 0.4 and 1.0, where the
latter is associated with the approximate representation of the continuous modes in the
discrete spectra. When two-dimensional disturbances are excited on both Blasius and
mixed convection boundary layers, the flows become unstable to Tollmien–Schlichting
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kδ∗

Blasius, m = 0.0

Pr = 0.7, m = 0.0, Riδ∗ = 0.0001

Pr =7.0, m = 0.0, Riδ∗ = 0.0001

Pr =0.7, m = 0.1, Riδ∗ = 0.0001

Pr =7.0, m = 0.1, Riδ∗ = 0.0001

Pr =0.7, m = 0.0, Riδ∗ = 0.0005

Pr =7.0, m = 0.0, Riδ∗ = 0.0005

Pr =0.7, m = 0.1, Riδ∗ = 0.0005

Pr =7.0, m = 0.1, Riδ∗ = 0.0005

Pr =0.7, m = 0.0, Riδ∗ = 0.001

Pr =7.0, m = 0.0, Riδ∗ = 0.001

Pr =0.7, m = 0.1, Riδ∗ = 0.001

Pr =7.0, m = 0.1, Riδ∗ = 0.001

Reδ∗
Figure 2. Neutral curves computed for the Blasius boundary layer and for mixed convection boundary layers

considering different values of Pr, mδ∗ and Riδ∗ .
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ωi

(a) (b) (c)

Figure 3. Eigenspectra and pseudospectra for Blasius boundary layer (a) and mixed convection boundary
layers with Pr = 0.7 (b) and Pr = 7.0 (c). For all cases, Reδ∗ = 450, kδ∗ = 0.31 and mδ∗ = 0.0. For the
heated cases, Riδ∗ = 0.001. The eigenvalues are represented by the black circles while the pseudospectra are
represented by the contours and isolines plotted in logarithmic scale. All pseudospectra plots are shown with
the same levels.

(TS) waves. In the present spectra, the TS waves are represented by the eigenvalues at
ωr ≈ 0.4.

The eigenvectors of the TS waves as well as the first, second and fifth least stable
modes of the continuous spectrum are shown in figure 4, which also includes a thin
grey horizontal line to highlight the hydrodynamic boundary layer thickness. Furthermore,
all results are normalized to one for comparison purposes. Figure 4(a–c) presents results
for the Blasius and mixed convection flows with Reδ∗ = 450, kδ∗ = 0.31 and mδ∗ = 0.0,
where Riδ∗ = 0.001 for the heated cases. They indicate that the spatial support of the
u and w velocity components is identical for the Blasius and heated cases. The latter,
however, have non-negligible thermal disturbances with similar shapes, but a different
wall-normal support that depends on the thermal boundary layer thickness. Continuous
modes are displayed in figure 4(d–f ) for Reδ∗ = 450, kδ∗ = 0.31, mδ∗ = 0.0, Riδ∗ = 0.001
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Figure 4. Magnitude of normalized eigenvectors of the (a–c) TS wave computed for Reδ∗ = 450, kδ∗ = 0.31
and mδ∗ = 0.0 for the Blasius and mixed convection boundary layers, with Riδ∗ = 0.001 for the heated cases, as
well as (d–f ) first (solid blue line), second (solid black line) and fifth (solid green line) least stable continuous
modes for Pr = 7.0, Reδ∗ = 450, kδ∗ = 0.31 and mδ∗ = 0.0, and Riδ∗ = 0.001. The thin grey horizontal lines
highlight the boundary layer thickness.

and Pr = 7.0. They indicate a spatially oscillatory behaviour in the wall-normal direction
that spans the entire domain, except near the wall where they are negligible. As discussed
by Grosch & Salwen (1978) and Zaki & Durbin (2021), the continuous modes can be
associated with external disturbances that impact bypass transition in the boundary layer.

A modal analysis provides insights into the disturbance time-asymptotic behaviour.
However, the behaviour of linear disturbances in boundary layers is highly non-normal,
i.e. the eigenvectors of the linear operator are not orthogonal (Andersson et al. 1999;
Schmid & Henningson 2000). In such cases, a non-modal analysis provides insights
into the disturbance transient behaviour (Schmid 2007; Schmid & Brandt 2014). These
non-normal effects are quantified here through the pseudospectra, which are also shown
in figure 3 as colour contours delimited by white isolines. The levels are plotted in
logarithmic scale. Such an analysis indicates which disturbances are the most sensitive to
forcing as well as their response characteristics for the present two-dimensional modes.
One can observe in this figure that non-normal effects are more pronounced between
the most stable modes of the discrete spectrum and the continuous spectrum. Since the
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isoline levels are the same for all plots, it is possible to see that the pseudospectra of the
Blasius and the mixed convection boundary layer with Pr = 0.7 have a similar topology.
However, the latter is noticeably different near the least stable eigenvalue of the continuous
spectrum at ωr ≈ 1.0. This region of the spectrum shows strong interactions between
multiple modes for the heated case. When the Prandtl number is increased to Pr = 7.0, one
can observe that the non-normal effects are more pronounced along the entire spectrum.
This indicates that, for the same thermal conditions, the flow becomes more susceptible to
external excitations at higher Prandtl numbers.

4.2. Resolvent and input–output analyses
In order to better understand the role played by external disturbances, the resolvent analysis
is performed in a componentwise input–output form by choosing appropriate B and C
operators in (3.7) (see Schmid (2007) for more details). The dominant terms from this
analysis are shown in figure 5, where the curves are interpreted as ‘forcing’ → ‘response’.
Figure 5(a–c) shows the cases with Reδ∗ = 510. From left to right, the Blasius boundary
layer, and the thermal cases evaluated at Riδ∗ = 0.0001 for Pr = 0.7 and Pr = 7.0 are
shown. Figure 5(d–f ) presents results for Reδ∗ = 450, Pr = 7.0 and different Richardson
numbers, namely Riδ∗ = 0.0001 and 0.001. All the cases presented in figure 5 are evaluated
at kδ∗ = 0.31 and mδ∗ = 0.0. The gains of the resolvent operator are also depicted in
figure 5(d) for all cases analysed. Under the conditions analysed, it is possible to assess
the individual effects of Reynolds, Prandtl and Richardson numbers on the flow response
to specific disturbances. Hence, the impact of inertial, shearing and buoyancy mechanisms
can be evaluated.

In the Blasius boundary layer, i.e. case 1, the largest receptivity occurs due to forcing of
streamwise u and wall-normal w velocity components. At the frequency of the TS waves,
ωr ≈ 0.4, forcing of u leads to higher receptivity of u and w, respectively. On the other
hand, the receptivity roles played by streamwise and wall-normal components switch order
in both forcing and response at the frequency of the continuous spectrum at ωr ≈ 1.0. The
dominant TS wave receptivity amplitudes are similar when mixed convection is considered
at the same Reynolds number, independent of the Prandtl number. On the other hand, as
expected from the results in figure 3, there is a considerable increase in the receptivity
amplitude associated with the dominant continuous mode due to thermal effects. Cases 2
and 3 in figure 5 show that this occurs because thermal energy is converted into kinetic
energy. In other words, there is a strong response from the streamwise and wall-normal
velocity disturbance components to temperature disturbance forcing. Moreover, these
cases also show that thermal receptivity to forcing by a temperature disturbance is more
pronounced along the entire frequency spectrum for the higher Prandtl number considered
here.

A comparison between cases 3 and 4 allows an assessment of inertia effects for the
same thermal conditions. First and foremost, a change in Reynolds number only affects the
receptivity mechanism associated with the dominant TS wave. Furthermore, its amplitude
decreases with a reduction in Reynolds number, which is expected since figure 2 indicates
that the discrete spectrum becomes even more stable. Finally, an analysis of the thermal
effects can be made by comparing cases 4 and 5, which have the same Reynolds and
Prandtl numbers, but different Richardson numbers. Receptivity amplitudes increase for
both the TS wave at ωr ≈ 0.4 and the continuous mode at ωr ≈ 1.0 when the Richardson
number increases. Nevertheless, the latter is still dominant. For all input–output plots, one
can also see the thermal response to u velocity disturbances. Although this receptivity
mechanism is not dominant when compared with the others, one can still see a Prandtl
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Figure 5. Input–output analysis (‘forcing’ → ‘response’) and gains of the resolvent operator for different
flow conditions excited by two-dimensional disturbances. All cases are solved for kδ∗ = 0.31 and mδ∗ = 0.0.

number effect. Larger temperature responses are observed between the two resonant peaks
for case 2, which has a lower Prandtl number. Since this mechanism represents a transfer of
kinetic to thermal energy, it is impacted by the temperature and velocity gradients of the
boundary layers. The more similar profiles of the thermal and hydrodynamic boundary
layers for Pr = 0.7 seem to enhance the present energy transfer mechanism. Finally,
the gains of the resolvent operator are plotted for all cases. They confirm the higher
amplification at ωr ≈ 1.0 of case 5 due to an increase in thermal effects associated with a
decrease in inertia effects. In other words, natural convection is strengthened while forced
convection is weakened. Cases 2, 3 and 4 display similar gains for the dominant continuous
mode. This implies that it is amplified the most by thermal effects, and slightly by shearing
effects. On the other hand, the TS waves are amplified the most by inertial effects.

In order to provide further insight into the most relevant energy transfer mechanisms
observed in the input–output analysis, the spatial support of the dominant forcing and
response modes is analysed. Doing so, however, is not straightforward because the
continuous mode far-field boundary conditions in the domain-truncated wall-normal
direction are unknown and must be approximated. Although the results presented so far
do not change for different far-field boundary conditions and domain sizes, as discussed in
Appendices A and B, this is not the case for the far-field spatial support of the dominant
forcing and response modes. Hence, in order to obtain interpretable results near the wall,
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the formulation proposed by Nogueira et al. (2020) is employed. It uses the integration
weights of the inner product definition to remove the far-field support from the response
modes in the resolvent analysis, leaving the forcing modes free along the entire domain.
The weighting function proposed by Nogueira et al. (2020) consists of a hyperbolic tangent
function with the following format:

W(z) = 0.5(1 − b)
[
1 − tanh (zp − z)

] + b, (4.1)

where zp stands for the cut-off height and b is selected as 10−20 to avoid zero weighting
for z > zp. In this work, zp was evaluated with 7 and 10δ. The former value approximately
corresponds to the maximum wall-normal distance reached by the TS wave response
modes, whereas the latter value was chosen to evaluate the influence of zp in the
forcing/response modes of the continuous spectrum. The weighting function defined in
(4.1) can be combined with (3.9) to yield

L̃W = W L̃E, (4.2)

where W = (diag(W, W, W, W, 0))1/2. This new weighted operator can be directly
applied to the input–output norm defined in (3.7) by replacing L̃E with L̃W . Further
discussion about weighting of the forcing and response modes is provided in Appendix C.

Figure 6 shows the spatial support of the dominant normalized forcing and response
modes obtained using the above procedure for ω = 0.4 (first two columns) and 1.0 (last
two columns) when Reδ∗ = 450, kδ∗ = 0.31 and mδ∗ = 0.0, with Riδ∗ = 0.001 as well as
zp = 7 and 10δ for the heated cases. In the former case, related to TS waves (ω = 0.4), the
dominant forcing → response pairs are u → u and u → w, as shown in the input–output
maps of figure 5. There is essentially no difference between the Blasius and mixed
convection cases, indicating that heating has no effect on either forcing or response mode
support. Furthermore, forcing near the wall leads to a response both inside and outside
of the boundary layer. Figure 5 also shows that the latter case, related to the continuous
spectrum (ω = 1.0), has θ → u and θ → w as the dominant forcing → response pairs.
This indicates the presence of a thermal to kinetic energy transfer mechanism. Their
spatial support is also shown in figure 6. It is possible to observe that such modes are
not excited for the Blasius boundary layer case. This is an expected result, since setting
Riδ∗ = 0 decouples the momentum and energy equations. On the other hand, they are
significantly affected by heating, but only away from the wall. This is also expected,
since the continuous spectrum eigenvectors display a spatial support along the entire
wall-normal domain away from the wall as well, as shown in figure 4. Such a behaviour
suggests that the unstably stratified boundary layer is susceptible to free-stream thermal
disturbances, which can potentially impact bypass transition. Furthermore, the response
mode support also indicates that the resulting flow structures are two-dimensional, like
TS waves but with a larger support in the wall-normal direction. In other words, they
are equivalent to the traditional transverse rolls that form Rayleigh–Bénard convection
cells, but now in an unbounded domain. Finally, it is important to note that there is a
significant difference between the zp = 7 and 10δ results in the latter case. This is due to
the fact that the continuous modes become non-normal when heated from below, allowing
their superposition to generate a far-field spatial support in the dominant forcing and
response modes. Hence, it becomes impossible to accurately isolate near-wall effects with
the weighting function.
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Figure 6. Magnitude of the dominant forcing and response modes computed for Reδ∗ = 450, kδ∗ = 0.31 and
mδ∗ = 0.0, with Riδ∗ = 0.001 for the heated cases. The first (last) two columns show the modes calculated for
ω = 0.4 (ω = 1.0).

5. Conclusions

In this work, modal and non-modal analyses of shear flows including thermal effects are
employed to assess the role of inertia, shear and buoyancy in unstably stratified horizontal
boundary layers under a regime of mixed convection. The flows are modelled by the
incompressible Navier–Stokes equations including the OB approximation, which couples
the energy and momentum equations through buoyancy effects. The stability properties of
two-dimensional disturbances are investigated by a modal analysis to identify the onset of
instability. Results are presented in terms of the neutral curves for the Blasius boundary
layer (without thermal effects) and for several cases of mixed convection, where the
roles of the Prandtl and Richardson numbers are evaluated. It is shown that both these
non-dimensional parameters destabilize the flow. However, the Richardson number has a
more pronounced effect in reducing the critical Reynolds number.

A resolvent analysis is applied to understand the system’s response to forcing near
marginal stability parametric conditions. Within such a framework, non-normality effects
of the linear operator are investigated. Considering the same Reynolds number, the
spectra and pseudospectra are presented for the Blasius boundary layer and for two
heated boundary layers with different Prandtl numbers, but the same Richardson number.
Results show that both the inclusion of thermal effects and the increase in the Prandtl
number lead to the emergence of additional discrete modes in the spectrum. Changes in
the Prandtl number also lead to different topologies in the pseudospectra. The resolvent
formalism is also employed in a componentwise input–output approach to investigate
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the flow response to specific forcing disturbances. In such analysis, an evaluation of
the inertial, shearing and buoyancy mechanisms is possible through variations in the
Reynolds, Prandtl and Richardson numbers. Results demonstrate that the Richardson
number has a great impact in the thermal to kinetic disturbance energy conversion, leading
to a strong amplification of the flow response for the least stable mode of the continuous
spectrum due to non-normality effects. On the other hand, the Reynolds number is shown
to affect only the stability properties of TS waves, while the Prandtl number affects mostly
the response in terms of temperature fluctuations between resonances.

These results were obtained using Dirichlet boundary conditions in the far field, which
are arguably the most commonly employed boundary conditions for local stability analyses
in semi-infinite domains. Although this choice is an adequate one for the computation of
discrete modes, this is not the case for their continuous counterparts. As far as the authors
are aware, however, the correct artificial boundary conditions for continuous modes in a
truncated semi-infinite domain are not known, except in some highly simplified problems.
All that is known is that these modes and their derivatives are bounded in the far field. This
is not a significant issue for the Blasius boundary layer because the continuous modes are
normal. Things change when heating is applied because they become strongly non-normal.
For this reason, result sensitivity to the artificial far-field boundary model employed was
analysed in three different ways, namely (i) using Neumann boundary conditions as well,
(ii) using three different domain sizes and (iii) using a weighting function in the resolvent
operator that filters out the far-field behaviour of the response modes. None of the results
presented were significantly altered when using these different far-field boundary models
because they are constrained to the near-wall region. There is only one exception. The
spatial support of the weighted forcing and response modes associated with the continuous
spectrum under heating depends on the filter cut-off height. This is due to the fact
that the unstably stratified boundary layer is strongly susceptible to free-stream thermal
disturbances, which can potentially impact bypass transition. Nevertheless, it is possible to
notice that the structure of the response mode is analogous to the transverse rolls typically
found in Rayleigh–Bénard convection, but now with a larger support in the wall-normal
direction due to its unbounded nature. Direct numerical simulations could shed light into
the role of these structures. They could also be used to further explore the thermal to
kinetic energy transfer mechanism in heated boundary layers as a means of flow control.
These are suggested here for future investigations.
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Figure 7. Eigenspectra and pseudospectra computed for the mixed convection boundary layer with Reδ∗ =
450, Riδ∗ = 0.001, Prδ∗ = 0.7, kδ∗ = 0.31 and mδ∗ = 0.0 employing the Dirichlet (a) and Neumann
(b) boundary conditions in the far field.
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Figure 8. Eigenspectra and pseudospectra computed for the mixed convection boundary layer with Reδ∗ =
450, Riδ∗ = 0.001, Prδ∗ = 0.7, kδ∗ = 0.31 and mδ∗ = 0.0, employing the Dirichlet boundary condition with
different domain sizes.

Appendix A. Result sensitivity with respect to far-field boundary conditions

In order to demonstrate the robustness of the results provided in this paper, a result
sensitivity analysis is performed in this and the following appendices. The present one does
so with respect to the far-field boundary conditions applied at the truncated unbounded
domain in the wall-normal direction. Several authors (Schmid & Henningson 2000;
Nogueira et al. 2020; Parente et al. 2020) employ Dirichlet boundary conditions (q̂ = 0)

in the far field when performing a local stability analysis on semi-infinite domains. While
this type of boundary condition is an adequate one for computing the discrete modes of
the spectrum, it is not accurate for the computation of their continuous counterparts. As
discussed by Grosch & Salwen (1978) and Zaki & Durbin (2021), the continuous modes
are not necessarily zero in the far field, but bounded instead. This is the motivation of the
present analysis, which compares the eigenspectra and pseudospectra obtained while using
Dirichlet and Neumann boundary conditions at the far-field artificial boundary.
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Figure 9. Magnitude of the dominant forcing and response modes computed for Reδ∗ = 450, Prδ∗ = 0.7,
kδ∗ = 0.31 and mδ∗ = 0.0, with Riδ∗ = 0.001 for the heated cases. They were computed for Dirichlet (q̂ = 0)

and Neumann (∂ q̂/∂z = 0) boundary conditions with and without the weighted modes; the former denoted by
W (Nogueira et al. 2020) and with zp = 7δ. The first (last) two columns show the modes calculated for ω = 0.4
(ω = 1.0).

Such a comparison is performed for the mixed convection boundary layer with Reδ∗ =
450, Riδ∗ = 0.001, Prδ∗ = 0.7, kδ∗ = 0.31 and mδ∗ = 0.0. Results are shown in figure 7
for Dirichlet (figure 7a) and Neumann (figure 7b) boundary conditions, i.e. q̂ = 0 and
∂ q̂/∂z = 0, respectively. Both spectra and pseudospectra are graphically identical. In
other words, both boundary conditions lead to essentially the same modal and non-modal
results. Although neither boundary condition is the correct one for the artificially truncated
far-field boundary, the above results provide some evidence that the present linear stability
analysis is robust with respect to the far-field boundary condition choice.

Appendix B. Result sensitivity with respect to domain size

This second appendix evaluates result sensitiveness with respect to the wall-normal
domain size. Results are shown in figure 8 for the same parametric conditions used to
evaluate figure 7, where the imposed domain height zmax is 10δ (figure 8a), 30δ (figure 8b)
and 50δ (figure 8c). The latter two figures are essentially identical, but the former ones
displays some small differences. In this smaller domain size (zmax = 10δ), the discrete
modes of the spectrum are well resolved, but the lower portion of the continuous spectrum
does display some differences with respect to the larger domains. Since the modal and
non-modal results presented in this paper were obtained with zmax = 30δ, they can be
considered as independent of domain size.
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Appendix C. Result sensitivity with respect to weighting function

Finally, this third and final appendix evaluates result sensitiveness with respect to the
weighting function employed to filter out the far-field support of the response modes from
the receptivity analysis. Results are shown in figure 9 for the same parametric conditions
used to evaluate figures 7 and 8, including the dominant forcing and response modes
calculated at ω = 0.4 (first two columns) and ω = 1.0 (last two columns). One can observe
that the TS dominant forcing and response modes are graphically identical, independent of
the far-field boundary condition and weighting function employed. On the other hand, the
far-field artificial boundary conditions have a significant impact on the spatial support of
the continuous modes. This is expected since the continuous-mode eigenvectors exist in the
free stream and are not constrained to the near-wall region. While the Dirichlet boundary
condition requires that the eigenvectors decay to zero in the far field, the Neumann do so
for their wall-normal derivatives. This change causes noticeable differences in the support
of the forcing and response modes for θ → w. However, their θ → u counterparts remain
graphically identical. The inclusion of a weighting function, following the approach from
Nogueira et al. (2020), makes the continuous modes independent of boundary condition.
This is an interesting observation that provides evidence in favour of this approach.
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