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The lattice of C∗-covers of an operator
algebra
Adam Humeniuk and Christopher Ramsey
Abstract. In this article, it is shown that the lattice of C∗-covers of an operator algebra does not
contain enough information to distinguish operator algebras up to completely isometric isomor-
phism. In addition, four natural equivalences of the lattice of C∗-covers are developed and proven
to be distinct. The lattice of C∗-covers of direct sums and tensor products are studied. Along the
way key examples are found of operator algebras, each of which generates exactly n C∗-algebras up
to ∗-isomorphism, and a simple operator algebra that is not similar to a C∗-algebra.

1 Introduction

How much information is lost by passing to the C∗-algebra of a completely isometric
representation of a non-selfadjoint operator algebra? Plenty, as many non-isomorphic
operator algebras generate the same C∗-algebra. What about considering the col-
lection of C∗-algebras generated by all completely isometric representations of an
operator algebra? In other words, what does it mean for two operator algebras to
generate the “same” C∗-algebras?

A C∗-algebra generated by a completely isometric representation of an operator
algebra is called a C∗-cover. Proving the existence of the C∗-envelope, the minimal
C∗-cover, and understanding its structure, in general and in many, many particular
algebras, has been a central focus of non-selfadjoint operator algebras. The existence
of the C∗-envelope was conjectured, and proven in many cases, by Arveson in
1969 [1], and proven in general by Hamana [14]. On the other hand, the maximal
C∗-cover simply exists by a standard universality argument over all completely con-
tractive representations and was first studied in detail by Blecher in 1999 [2].

Of course, many C∗-covers have been studied in the case when they are
generated by a “natural” representation of the operator algebra. For instance,
C(D) and the Toeplitz algebra are generated by representations of A(D), or more
generally the Toeplitz-Cuntz–Pimsner algebra is a C∗-cover of a tensor algebra of a
C∗-correspondence, which plays an important role in the theory [25]. This is not
in the least surprising since the most tractable operator algebras are those with nice
concrete representations.
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2 A. Humeniuk and C. Ramsey

C∗-covers and their morphisms were first outlined in Blecher and Le Merdy’s book
[3, Chapter 2] and they consider that Paul Muhly came up with the name. In [18] the
second author and Katsoulis used the structure of C∗-covers to develop the theory
of non-selfadjoint crossed products, and in [17] the first author studied C∗-covers of
semicrossed products, building on earlier results of Davidson, Fuller, and Kakariadis
[8]. The complete lattice structure was proven by Hamidi [15] and Thompson [28] and
the latter associates this lattice to the spectrum of the maximal C∗-cover. It was shown
in [19] and [15] that not every C∗-cover does a good job of encoding the structure of
the operator algebra as there are completely isometric automorphisms of the operator
algebra which fail to extend to ∗-automorphisms of some of the C∗-covers. It should
be noted that the C∗-envelope and the maximal C∗-cover never fail this extension by
way of their universal properties.

So when are the C∗-covers of two operator algebras the “same”? In Section 2
(Definition 2.4), we develop four possible concepts of “same-ness”: lattice intertwined,
lattice ∗-isomorphic, lattice isomorphic, and C∗-cover equivalent. All four equivalences
are shown to be distinct from each other and from completely isometric isomor-
phism by Theorem 4.9, implying that the lattice of C∗-covers does not necessarily
give enough information to tell apart two non-completely-isometrically-isomorphic
operator algebras.

On the way to the main goal of the article, we provide a significant amount of
theory around these equivalences with many examples. In particular, the lattice of
C∗-covers of a direct sum where at least one operator algebra is approximately unital
is the product of the lattices, Theorem 2.6. Studying tensor products and C∗-covers is
known to be enigmatic [3, Section 6.2] but we can describe the lattice of C∗-covers of
tensor product of an operator algebra with a simple, nuclear C∗-algebra, Theorem 4.4,
along with other partial results.

In Section 3, it is asked whether there can be an operator algebra whose
C∗-envelope is also its maximal C∗-cover, akin to the operator system found by
Kirchberg and Wassermann [21] that enjoys this property. Negative results in some
cases are developed. More interesting is the fact that for every integer n there is an
operator algebra that generates exactly n C∗-algebras up to ∗-isomorphism, Theorem
3.11, but do note that this is not up to C∗-cover isomorphism so the lattice of C∗-covers
need not be finite.

Finally, Section 4 discusses several concepts—RFD, action admissibility, and
simplicity—and their relationship to the lattice of C∗-covers and its equivalences. Of
note is Theorem 5.8, that there is a simple operator algebra that is not completely
boundedly isomorphic to a C∗-algebra.

2 Equivalences of the lattice of C*-covers

First, we need to recall the complete lattice structure of C∗-covers developed in [3,
Chapter 2], [15, Section 2.1] and [28]. For more in-depth background on C*-envelopes
and boundary ideals, we recommend [1] and [26, Chapter 15].
Definition 2.1 Let A be an operator algebra. A C∗-cover of A is a pair (C, ι)
consisting of a C∗-algebra C and a completely isometric linear map ι ∶ A→ C such
that C∗(ι(A)) = C.
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The lattice of C∗-covers of an operator algebra 3

Definition 2.2 IfA is an operator algebra, and (B, ι), (C, η) are C*-covers ofA, then
a morphism of C*-covers π ∶ (B, ι) → (C, η) is a ∗-homomorphism π ∶ B→ C which
satisfies πι = η. If there exists a morphism of C∗-covers (B, ι) → (C, η), then we write
(C, η) ⪯ (B, ι).

Because the C*-covers satisfy B = C∗(ι(A)) and C = C∗(η(A)), it is automatic
that if a morphism π ∶ (B, ι) → (C, η) exists, then the ∗-homomorphism π ∶ B→ C is
surjective and unique with this property. Consequently, if (B, ι) ⪯ (C, η) and (B, ι) ⪰
(C, η), then the unique morphism π ∶ (B, ι) → (C, η) consists of a ∗-isomorphism π ∶
B→ C with πι = η. In this case, we write (B, ι) ∼ (C, η), and ∼ defines an equivalence
relation on the class of C*-covers of A. It should be noted that the non-unital case
poses no problems here thanks to the work of Meyer [23], that every completely
contractive (isometric) homomorphism of a non-unital operator algebra extends
uniquely to a completely contractive (isometric) homomorphism on the unitization.

Definition 2.3 Let A be an operator algebra. We let C∗-Lat(A) denote the collection
of equivalence classes [B, ι] of C*-covers (B, ι) of A.

Do note that in [28] C∗-Lat(A) is called Cov(A) but we feel that our naming
convention is more natural. Note as well that we will usually drop the “complete” in
favor of just saying the lattice of C∗-covers.

For any operator algebra A, the collection C∗-Lat(A) is actually a set, and not
just a proper class. To see this, one can identify the lattice of C*-covers with the
set of boundary ideals for A in C∗max(A) in an order reversing fashion. If μ ∶ A→
C∗max(A) is the embedding of A into its maximal C*-algebra, then [C∗max(A), μ] is
the maximum element in C∗-Lat(A). Likewise, if ε ∶ A→ C∗e (A) is the embedding of
A into its C*-envelope, then [C∗e (A), ε] is the minimum element of C∗-Lat(A).

Proposition 2.1 ([15, Theorems 2.1.6 and 2.1.11] and [28, Section 3]) IfA is an operator
algebra, then the ordering ⪯ on C∗-Lat(A) makes C∗-Lat(A) into a complete lattice.
Given an arbitrary family (Bλ , ιλ) of C*-covers for A, their join is

⋁
λ
[Bλ , ιλ] = [C∗ ((⊕

λ
ιλ)(A)) ,⊕

λ
ιλ] .

To describe their meet, it is easiest to use the maximal C*-algebra (C∗max(A), μ).
Let πλ ∶ (C∗max(A), μ) → (Bλ , ιλ) be morphisms of C*-covers, and set Jλ = ker(πλ) ◁
C∗max(A). Then, let

J = ⋁
λ

Jλ = ∑
λ

Jλ ◁ C∗max(A),

and let q ∶ C∗max(A) → C∗max(A)/J be the quotient map. Then

⋀
λ
[Bλ , ιλ] = [C∗max(A)/J , qμ].

Alternatively, one can avoid enlarging all the way to the maximal C*-algebra when
defining the meet in Proposition 2.1. Given a family (Bλ , ιλ) of C*-covers, one can
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4 A. Humeniuk and C. Ramsey

also take the quotient of the C*-algebra ⋁λ Bλ = C∗((⊕λ ιλ)(A)) by the ideal

∑
λ

ker(⋁
μ
[Bμ , ιμ] → [Bλ , ιλ])

generated by the kernel of the C*-cover morphisms from the join to each C*-cover.
For downward directed collections, we can describe the meet without reference to

the maximal C*-algebra.

Proposition 2.2 Let A be an operator algebra. Let ((Bλ , ιλ))λ∈Λ be a subset of
C∗-Lat(A) indexed via a downward directed set Λ, that is, [Bλ , ιλ] ⪰ [Bμ , ιμ] if and
only if λ ≤ μ. Then,

⋀
λ
[Bλ , ιλ] =

⎡⎢⎢⎢⎢⎣
lim�→

λ
Bλ , ι

⎤⎥⎥⎥⎥⎦
,

where the direct limit is taken along the unique morphisms

πλ ,μ ∶ (Bλ , ιλ) → (Bμ , ιμ),

for λ ≤ μ, and if B = lim�→λ
Bλ , and ηλ ∶ Bλ → B are the universal maps to the direct

limit, then ι = ηλ ιλ for all λ ∈ Λ.

Proof For λ ≤ μ, the diagram

B

Bλ Bμ

A,

ημ

πλ ,μ

ηπ

ιλ ιμ

commutes, where the vertical map defines ι. For n ≥ 1 and a ∈ Mn(A), for any fixed
λ ∈ Λ, we have

∥ι(n)(a)∥ = lim sup
μ≥λ

∥π(n)λ ,μ ι(n)λ (a)∥ = lim sup
μ≥λ

∥ι(n)μ (a)∥ = ∥a∥.

So, ι is completely isometric. Then, commutation of the diagram implies that (B, ι)
is a C*-cover and [B, ι] ⪯ [Bλ , ιλ] for every λ. Finally, if (C, ρ) is any C*-cover for
A with [C, ρ] ⪯ [Bλ , ιλ] for all λ, there are unique morphisms σλ ∶ (Bλ , ιλ) → (C, ρ).
The universal property of B = lim�→λ

Bλ implies that there is a ∗-homomorphism σ ∶
B→ C with σ ηλ = σλ for all λ. Then, σ ι = σ ηλ ιλ = σλ ιλ = ρ, so σ is a morphism of
C*-covers and [B, ι] ⪰ [C, ρ]. Therefore, [B, ι] is the greatest lower bound. ∎

Our main question of interest is: To what extent can two operator algebras have
the same lattice of C*-covers? We will discuss four possible notions of “the same
C*-covers”.

Definition 2.4 Let A and B be operator algebras.
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The lattice of C∗-covers of an operator algebra 5

(1) We say that A and B are lattice isomorphic if there is an order isomorphism
F ∶ C∗-Lat(A) → C∗-Lat(B).

(2) We say thatA andB are lattice ∗-isomorphic if there is an order isomorphism F ∶
C∗-Lat(A) → C∗-Lat(B) such that for each C*-cover (C, ι) of A, if F([C, ι]) =
[D, η], then D ≅ C as C*-algebras.

(3) We say that A and B are lattice intertwined if there is an order isomorphism
F ∶ C∗-Lat(A) → C∗-Lat(B) such that whenever (C, ι), (D, η) are C*-covers of
A with (D, η) ⪯ (C, ι), there are ∗-isomorphisms πC ∶ C→ F(C) and πD ∶D→
F(D) such that the diagram

C F(C)

D F(D)

πC

πD

commutes, where the vertical maps are the unique morphisms of C*-covers of A
or B, as appropriate.

(4) We say that A and B are C*-cover equivalent if whenever (C, ι) is a C*-cover of
A, then there is a C*-cover (D, η) of Bwith C ≅D as C*-algebras, and conversely
if (D, η) is a C*-cover of B, then D ≅ C for some C*-cover (C, ι) of A.

It is immediate to see we have the following Hasse diagram of equivalence relations
between operator algebras

Completely isometric isomorphism

Lattice intertwining

Lattice ∗ -isomorphism

Lattice C*-cover
isomorphism equivalence

Our first order of business is to develop some theory around these equivalences so
that we can eventually show that these are, in fact, different relations, Theorem 4.9.

Indeed, it is easy to see that lattice isomorphic is not lattice ∗-isomorphic or
C∗-cover equivalent. In particular, if A is itself a C*-algebra, then a completely
contractive homomorphism of A into B(H) is a ∗-homomorphism. Consequently,
the only C*-cover of A is (A, idA). Therefore the lattice C∗-Lat(A) is a single point.
So, if A and B are nonisomorphic C*-algebras, then A and B are lattice isomorphic,
but not lattice ∗-isomorphic and not C*-cover equivalent.

We next turn to some equivalent statements for lattice intertwined and it should
be noted that lattice intertwined is really the most information you can get out of the
lattice of C∗-covers without knowledge of the specific operator algebras.
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6 A. Humeniuk and C. Ramsey

Proposition 2.3 Suppose A and B are operator algebras. The following are equivalent.
(i) A and B are lattice intertwined.

(ii) There is a ∗-isomorphism

π ∶ C∗max(A) → C∗max(B)

which respects boundary ideals in the sense that J ◁A is a boundary ideal for A if
and only if π(J) is a boundary ideal for B.

(iii) There exist ∗-isomorphisms Φ ∶ C∗max(A) → C∗max(B) and φ ∶ C∗e (A) → C∗e (B)
such that the following diagram commutes

C∗max(A) C∗max(B)

C∗e (A) C∗e (B)

qA

Φ

qB

φ

where qA and qB are the unique canonical quotient maps.

Proof First let us see that (i) and (ii) are equivalent. As it is a poset, the lattice
C∗-Lat(A) is a category. We can define a contravariant functor GA from the category
C∗-Lat(A) that sends each class to a representative C*-algebra in a C*-cover, and
whenever (D, η) ⪯ (C, ι), the associated morphism [D, η] ⪯ [C, ι] is sent to the
unique ∗-homomorphism C→D intertwining ι and η. Then, lattice intertwining is
just the requirement that the functors GA and GB are naturally isomorphic.

Every class in C∗-Lat(A) has a representative of the form [C∗max(A)/J , qJ μ], where
J ◁ C∗max(A) is a boundary ideal for μ(A), and the associated morphisms are just the
induced quotient maps between boundary ideals. This gives a canonical choice for the
functors GA and GB.

(i) implies (iii) is trivial. We will show that (iii) implies (i). Assume now that
(iii) is true. Suppose (C, ι) is a C∗-cover of A. By universality there exist unique
∗-homomorphisms q1 ∶ C∗max(A) → C with ι = q1 μA and q2 ∶ C→ C∗e (A) with q2 ι =
εA. Define D = C∗max(B)/Φ(ker q1) and let q′1 ∶ C∗max(B) →D be the induced quo-
tient ∗-homomorphism. By uniqueness of quotient maps

ker q′1 = Φ(ker q1) ⊆ Φ(ker q2q1) = Φ(ker qA) = ker qB .

Thus, q′1 is completely isometric onB and so (D, q′1 μB) is a C∗-cover ofB. Now define
F([C, ι]) = [D, q′1 μB] which we will now prove is the lattice intertwining.

If (C̃, ι̃) ∼ (C, ι) by the ∗-isomorphism φ̃ then we have the following commutative
diagram:

C∗max(A) C∗max(A)

C̃ C

∃!q̃1

∃!Φ̃

q1

φ̃

It then follows that C∗max(B)/Φ(Φ̃(ker q̃1)) = C∗max(B)/Φ(ker q1) =D. Hence,
F[(C̃, ι̃)] = [D, q′1 μB] is a well-defined map.
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The lattice of C∗-covers of an operator algebra 7

Interchanging the roles of A and B yields a well-defined function going the other
way which acts as the inverse. Thus, F is a bijective function on C∗-Lat(A). The
uniqueness of the quotient maps yields the desired intertwining property (i). ∎

We will see now that lattice intertwining is not strong enough to distinguish an
algebra and its conjugate.

Proposition 2.4 If A be an operator algebra, then A and A∗ are lattice intertwined.

Proof Assume that A is a unital operator algebra. If π ∶ A→ B(H) is a completely
contractive representation, then π extends uniquely to a completely positive map
π̃ ∶ A +A∗ → B(H) by [26, Proposition 3.5]. Since a positive map is selfadjoint, π̃∣A∗
satisfies π̃(a∗) = π(a)∗ for all a ∈ A, from which it follows that π̃∣A∗ is an algebra
homomorphism. Moreover, if π is completely isometric, then π̃ is a complete isometry,
and so π̃∣A∗ is completely isometric.

In particular, this gives the following commutative diagram:

C∗max(A) C∗max(A∗)

C∗e (A) C∗e (A∗)

q

id

q

id

It is now straightforward to see that this result extends to the non-unital case by [23]. In
particular, comparing universal properties shows that the natural ∗-homomorphism
C∗max(A) → C∗max(A1) is injective, and as a consequence of Meyer’s result, C∗e (A) lives
naturally as a C*-subalgebra of C∗e (A1), see [3, Proposition 4.3.5]. Because (A∗)1 =
(A1)∗, upon unitizing and applying the previous argument, one can just restrict at
the end to the C*-algebras generated by A in C∗max(A) and C∗e (A). Therefore, by the
previous proposition, A and A∗ are lattice intertwined. ∎
Example 2.5 However, A and A∗ may not be completely isometrically isomorphic.
For instance, let

A =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a b c
0 a 0
0 0 a

⎞
⎟
⎠

0000000000000
a, b, c ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

And so

A∗ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a 0 0
b a 0
c 0 a

⎞
⎟
⎠

0000000000000
a, b, c ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Suppose for the sake of contradiction that a completely isometric algebra homomor-
phism ρ ∶ A→ A∗ exists. If

N = span{E12 , E13}
consists of the nilpotents in A, then N∗ consists of the nilpotents in A∗. Since ρ is an
algebra homomorphism, ρ preserves nilpotency and so ρ(N) = N∗. Thus ρ restricts to
a completely isometric map between N and N∗. However, no such complete isometry
exists, because N is isomorphic to the row Hilbert space R2 of dimension 2, and N∗ is

https://doi.org/10.4153/S0008414X25000045 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000045


8 A. Humeniuk and C. Ramsey

isomorphic to column Hilbert space C2, and R2 and C2 are not completely isometric
as operator spaces [26, Chapter 14].

Therefore, lattice intertwining and completely isometrically isomorphic are differ-
ent equivalences.

This is not the only way to have lattice intertwined operator algebras, see Proposi-
tion 5.4. With either example we see that operator algebras can indeed have the “same”
lattice of C∗-algebras while not being completely isometrically isomorphic.

Recall now that an operator algebra A is approximately unital if it contains a
contractive approximate identity. That is, there is a net (e i)i∈I of contractions in A such
that limi e i a = limi ae i = a for all a ∈ A. Every C∗-algebra is approximately unital.

Theorem 2.6 Let A and B be operator algebras, and suppose that at least one of
A or B is approximately unital. If π ∶ A⊕B→ B(H) is a completely contractive
homomorphism, then

C∗(π(A⊕B)) ≅ C∗(πA(A)) ⊕ C∗(πB(B)),

where πA(a) = π(a, 0) and πB(b) = π(0, b) for a ∈ A and b ∈ B. Consequently, there
is a lattice isomorphism between

C∗-Lat(A⊕B) and C∗-Lat(A) × C∗-Lat(B).

Proof To show that C∗(π(A⊕B)) ≅ C∗(πA(A)) ⊕ C∗(πB(B)), it suffices to
show that

C∗(πA(A)) ⋅ C∗(πB(B)) = {0}.

This will follow from a standard approximation argument using ∗-polynomials in
A and B if we show that for all a ∈ A and b ∈ B, πA(a)πB(b) = πB(b)πA(a) =
πA(a)∗πB(b) = πB(b)πA(a)∗ = 0.

Now, π is an algebra homomorphism and so πA(a)πB(b) = πB(b)πA(a) = 0.
Without loss of generality, suppose that A is approximately unital, with approximate
unit (e i)i∈I . Then (πA(e i))i∈I is an approximate unit for πA(A). A standard appli-
cation of the C*-identity and triangle inequality shows that both (πA(e i)∗πA(e i))i∈I
and (πA(e i)πA(e i)∗)i∈I are approximate identities for the C*-algebra C∗(πA(A)),
see [3, Lemma 2.1.7]. Therefore

πA(a) = lim
i

πA(e i)∗πA(e i)πA(a),

and so

πA(a)∗πB(b) = lim
i∈I

πA(a)∗πA(e i)∗πA(e i)πB(b) = 0

because πA(e i)πB(b) = 0. A symmetrical argument shows πB(b)πA(a)∗ = 0, and
therefore

C∗(πA(A))C∗(πB(B)) = {0},

which implies C∗(π(A⊕B)) ≅ C∗(πA(A)) ⊕ C∗(πB(B)) as C*-algebras.
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The lattice of C∗-covers of an operator algebra 9

Now, in the case when π is completely isometric, this shows that every C*-cover
for the operator algebra A⊕B must be of the form (C⊕D, ιC ⊕ ιD) where (C, ιC) is
a C*-cover of A and (D, ιD) is a C*-cover of B. Moreover, a C*-cover morphism

σ ∶ (C1 ⊕D1 , ιC1 ⊕ ιD1) → (C2 ⊕D2 , ιC2 ⊕ ιD2)
between two such covers maps ιC1(A) to ιC2(A) ⊆ C2 ⊕ 0, and therefore satis-
fies σ(C1 ⊕ 0) = σ(C∗(ιC1(A))) ⊆ C2 ⊕ 0. Similarly σ(0 ⊕ C1) ⊆ 0 ⊕ C2. Therefore σ
must have the form σ = σA ⊕ σB where σA ∶ C1 → C2 and σB ∶D1 →D2 are mor-
phisms of C*-covers. And, any such direct sum of morphisms of C*-covers yields a
morphism. This shows that there is a lattice isomorphism between

C∗-Lat(A⊕B) and C∗-Lat(A) × C∗-Lat(B).

∎
Corollary 2.7 Suppose A, Ã, B, and B̃ are operator algebras with A and Ã approx-
imately unital. If both pairs A, Ã and B, B̃ are individually completely isometrically
isomorphic, lattice intertwining, lattice ∗-isomorphic, lattice isomorphic, or C∗-cover
equivalent then so are A⊕B and Ã⊕ B̃.
Corollary 2.8 If A is an operator algebra and C is a C∗-algebra, then A and A⊕ C are
lattice isomorphic.
Proof The previous theorem shows that A and A⊕ C are naturally lattice isomor-
phic via the lattice isomorphism F([A, ι]) = (A⊕ C, ι ⊕ idC) because C∗-Lat(C) is a
single point. ∎

However, F may not implement a lattice ∗-isomorphism. For instance, T2, and
T2 ⊕K, whereT2 is the upper triangular 2 × 2 matrices andK is the compact operators
on a separable Hilbert space, are lattice isomorphic but not lattice ∗-isomorphic. In
particular, M2 is a C∗-cover of T2 but clearly every C∗-cover of T2 ⊕K must be
infinite-dimensional.

Theorem 2.6 fails if both A and B are not approximately unital. The next two
examples illustrate this fact.
Example 2.9 Let

A = span(E12) = {(
0 a
0 0) ∣ a ∈ C} ⊂ M2 .

The homomorphism π ∶ A⊕A→ M3 given by

π ((0 a
0 0) ,(0 b

0 0)) =
1
2

⎛
⎜
⎝

0 a b
0 0 0
0 0 0

⎞
⎟
⎠

is completely contractive, by the triangle inequality. Here, C∗(π(A⊕A)) = M3 does
not split as a direct sum of two proper C*-subalgebras. Moreover, if idA⊕A ∶ A⊕A→
M2 ⊕ M2 is the identity representation, then

(M2 ⊕ M2 ⊕ M3 , idA⊕A ⊕ π)
is a C*-cover which does not split as a direct sum of two C*-covers of A.
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10 A. Humeniuk and C. Ramsey

Example 2.10 Let z ∈ A(D) denote the identity function on D, the standard genera-
tor, and consider the nonunital operator subalgebra

B = ⟨z⟩ = span{z, z2 , z3 , . . . } = { f ∈ A(D) ∣ f (0) = 0},

which is the universal nonunital operator algebra generated by a single contraction. If
a, b ∈ B(H) are any contractions which satisfy ab = ba = 0, then there is a completely
contractive homomorphism π ∶ B⊕B→ B(H) which is determined by π(z, 0) = a
and π(0, z) = b. For instance, if we choose a and b such that a∗b ≠ 0 or ba∗ ≠ 0,
then C∗(π(B⊕ 0))C∗(π(0 ⊕B)) ≠ {0}, and so C∗(π(B⊕B)) does not split as
an internal direct sum of C∗(π(B, 0)) and C∗(π(0,B)). As in Example 2.9, direct
summing with the identity representation yields many C*-covers for B⊕B which do
not arise as direct sums.

3 A one point lattice of C*-covers?

Question 3.1 If A is an operator algebra which is lattice isomorphic to a C∗-algebra,
is A itself a C∗-algebra? (That is, can the lattice of a properly non-selfadjoint operator
algebra be a single point?)

For operator systems, it was shown in [21] that there are examples where the
minimal and maximal C∗-covers coincide. However, their proof does not generalize to
the operator case since it relies on forgetting the multiplicative structure of C∗-algebra.
In particular, an essential difference is that the maximal C*-algebra of a C*-algebra
A considered only as an operator system is much larger than A, because its operator
system representations (i.e., ucp maps) need not be multiplicative on A. Considered
as an operator algebra, multiplicativity is forced and so C∗max(A) = A in the setting of
operator algebras. We do not know whether the lattice of C∗-covers can be a single
point for a non-selfadjoint operator algebra but we do have some partial results in this
direction.

The proof of the following is straightforward.

Proposition 3.2 Let A be an operator algebra. The following are equivalent.

(1) A is lattice isomorphic to a C*-algebra.
(2) The C*-cover morphism

C∗max(A) → C∗e (A)

is a ∗-isomorphism.
(3) Whenever ι ∶ A → B(H) is a completely isometric homomorphism, the induced

∗-homomorphism ι̃ ∶ C∗max(A) → B(H) with ι̃∣A = ι is injective.

Remark 3.3 Proposition 3.2 implies that if A has a one point lattice, and C∗max(A) =
C∗e (A) is simple, then A is simple as an operator algebra. Indeed, any representation
of A extends to a ∗-representation of C∗max(A), which is automatically completely
isometric. So, every representation of A is completely isometric. Although, given the
discussion at the end of this article simple operator algebras, that are not C*-algebras,
are unlikely to have a one point lattice.
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Suppose A is an operator algebra and ρ ∶ A→ B(H) is a completely contractive
representation. Recall, that a dilation σ ∶ A→ B(K) of ρ is a completely contractive
representation such that H ⊂ K is a semi-invariant subspace, meaning that σ has the
following form

σ =
⎡⎢⎢⎢⎢⎢⎣

∗ 0 0
∗ ρ 0
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎦
.

The dilation σ is an extension if H is invariant for σ(A), and a co-extension if H is
co-invariant for σ(A). Then ρ is called maximal if the only dilations possible are
direct sums, meaning H will always be a reducing subspace of σ . Maximal dilations
were introduced by Muhly and Solel [24] and then shown to exist by a direct argu-
ment by Dritschel and McCullough [11]. Every maximal representation extends to a
∗-homomorphism of the C∗-envelope and in particular, if ρ is a completely isometric
maximal representation then C∗e (A) ≃ C∗(ρ(A)). For a thorough treatment of the
dilation theory of representations see [7], and for the non-unital case see [10], which
carefully develops the theory of the unique extension property (UEP) and maximal
representations.

The next result is somewhat opposite to the previous discussion of maximality.

Proposition 3.4 If A is a non-selfadjoint operator algebra, then it has a non-maximal
representation.

Proof Assume first that A is unital. Throughout this proof, we will consider A as
a subalgebra of its C*-envelope C∗e (A). By hypothesis, there is an element a ∈ A
such that a∗ ∉ A. The Hahn–Banach Separation theorem gives that there is a linear
functional ρ on C∗e (A) such that ∥ρ∥ = 1, ρ(a∗) ≠ 0 and ρ(A) = 0.

Now, by [26, Theorem 8.4] there exists a ∗-homomorphism π ∶ C∗e (A) → B(K)
and vectors ξ, η ∈ K such that ∥ξ∥ = ∥η∥ = 1 and

ρ(c) = ⟨π(c)ξ, η⟩.

Let H = π(A)ξ which is a closed subspace of K. Since 0 = ρ(A) and because A

is unital, η ∈ H⊥ , ξ ∈ H and H ≠ K. Thus, σ = PH π(⋅)∣H is a completely contractive
representation of A, by compression to an invariant subspace. However,

0 ≠ ρ(a∗) = ⟨π(a∗)ξ, η⟩ = ⟨ξ, π(a)η⟩

which implies that PH π(A)∣H⊥ ≠ 0. Hence, σ is a representation that is not extremal
by extensions and so not a maximal representation.

Now if A is nonunital, then do the above argument for its unitization,A1, choosing
a ∈ A such that a∗ ∉ A (this doesn’t actually matter but it is easier to see the non-
maximality below). This still gives that σ is a completely contractive representation of
A by restriction from the unitization. Moreover, σ is still not maximal. ∎

Recall that an operator algebra A is called hyperrigid if whenever π ∶ C∗e (A) →
B(H) is a ∗-homomorphism then π is the only possible way to extend π∣A to a
completely positive, completely contractive map on C∗e (A). Dirichlet operator alge-
bras, A +A∗ = C∗e (A), are hyperrigid and the second author and Katsoulis [20] have
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12 A. Humeniuk and C. Ramsey

developed conditions for the hyperrigidity of tensor algebras of C∗-correspondences,
providing many non-Dirichlet hyperrigid examples.

Proposition 3.5 If A is a hyperrigid non-selfadjoint operator algebra, then C∗-Lat(A)
is not just a single point.
Proof By Proposition 3.4, there exists a non-maximal representation ρ of A

on B(H). This dilates to a maximal representation π which extends to a
∗-homomorphism of C∗e (A). This implies that PH π(⋅)∣H is a completely positive,
completely contractive map of C∗e (A) that is not a∗-homomorphism, or else the space
H would be a reducing subspace for ρ and ρ would be maximal. Thus, ρ cannot extend
to a ∗-homomorphism since A is hyperrigid. Therefore, C∗e (A) does not enjoy the
universal property of C∗max(A). ∎

This approach does not work in general since there are examples of non-maximal
representations that extend to ∗-homomorphisms of the C∗-envelope.

Example 3.6 Consider the semicrossed product operator algebra C([0, 1]) ⋊α Z
+

where α(x) = 0 for all x ∈ [0, 1].
By [20, Theorem 3.3] since α([0, 1]) = {0} is not contained in the closure of its

interior, then C([0, 1]) ⋊α Z
+ is not hyperrigid. Moreover, by [20, Section 3] we know

that Katsura’s ideal is obtained from the dynamics

JX = C0([0, 1]/([0, 1]/α([0, 1]))○) = C0([0, 1]/(0, 1]) = {0}
and so C∗e (C([0, 1]) ⋊α Z

+), the Cuntz–Pimnser algebra, is ∗-isomorphic to the
Toeplitz–Cuntz–Pimsner algebra (sometimes just called the Toeplitz algebra). This is
the C∗-algebra generated by all orbit representations

σx( f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f (x)
f (0)

f (0)
⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

1 0
⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Hence,

C∗e (C([0, 1]) ⋊α Z
+) ≃ C∗

⎛
⎝
⎛
⎝ ⊕

x∈[0,1]
σx
⎞
⎠
(C([0, 1])),

⎛
⎝ ⊕

x∈[0,1]
S
⎞
⎠
⎞
⎠

Now, compression to the 0-orbit, given by C∗(σ0(C([0, 1])), S) ≃ T (whereT is the
classical Toeplitz algebra), is a completely contractive representation of C([0, 1]) ⋊α
Z
+, onto A(D), and a ∗-homomorphism of its C∗-envelope. But notice that this

representation on the semicrossed product algebra non-trivially dilates to

f ↦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋱
f (0)

f (0)
⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and S ↦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋱
⋱ 0

1 0
⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which also extends to a ∗-homomorphism of the C∗-envelope, since this is just T →
C(T). Therefore, a non-maximal representation of a non-hyperrigid operator algebra
can still possibly extend to a ∗-homomorphism of the C∗-envelope.
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The lattice of C∗-covers of an operator algebra 13

Besides hyperrigidity, we also have the same result as the previous proposition for
operator algebras with finite-dimensional C∗-envelopes.

Proposition 3.7 If A is a non-selfadjoint operator algebra whose C∗-envelope is finite-
dimensional, then C∗-Lat(A) is not just a single point.

Proof Suppose C∗e (A) ≃ Mn1 ⊕ . . . ⊕ Mnk . This implies that A = A1 ⊕ ⋅ ⋅ ⋅ ⊕Ak
with C∗(Ai) = Mn i . Since A is non-selfadjoint then without loss of generality we can
assume A1 is non-selfadjoint.

By Burnside’s theorem, there is a proper invariant subspace K ⊆ C
n1 for A1. Then

a ↦ a∣K defines a completely contractive representation ρ ofA1 that does not extend to
a ∗-homomorphism of Mn1 . So, q ⊕ id ⊕ . . . ⊕ id is a completely contractive represen-
tation of A that does not extend to the C∗-envelope. Therefore, the C∗-envelope does
not have the universal property of the maximal C∗-cover and the lattice C∗-Lat(A) is
not a single point. ∎

The situation is much clearer if we instead ask only for C∗-cover equivalence to a
one-point lattice.

Proposition 3.8 Let A be an operator algebra. Define

CA ∶= ⊕
[C, ι]∈C∗-Lat(A)

∞
⊕
n=1

C.

Then every C∗-algebra that is a C∗-cover of A⊕ CA is ∗-isomorphic to CA. Moreover,
every operator algebra is lattice isomorphic to an operator algebra which is C∗-cover
equivalent to a C∗-algebra.

Proof It should be first noted that CA is properly defined since we know that
C∗-Lat(A) is a set. By Theorem 2.6, every C∗-cover (D, ι̃) of A⊕ CA is isomorphic to
(C⊕ CA , ι ⊕ idCA

)where (C, ι) is a C∗-cover of A. Therefore, D ≃ C⊕ CA ≃ CA. ∎

Corollary 3.9 If A and B be operator algebras, then A is lattice isomorphic to
A⊕ CA ⊕ CB which is C∗-cover equivalent toB⊕ CA ⊕ CB which is lattice isomorphic
to B.

Proof This follows immediately from the previous proposition and Corollary 2.8.
∎

Corollary 3.10 Let A and B be operator algebras. If A is lattice isomorphic to B then
A⊕ CA ⊕ CB is lattice ∗-isomorphic to B⊕ CA ⊕ CB.

It is now easy to see that C∗-cover equivalence does not imply lattice isomorphism,
and so they are unrelated. For instance, T2 ⊕ CT2 and CT2 are C∗-cover equivalent but
not lattice isomorphic.

Theorem 3.11 For any n ∈ N there is an operator algebra which generates exactly n
distinct C∗-algebras up to ∗-isomorphism.

Proof The case n = 1 is dispensed with by a C∗-algebra (or the previous proposition).
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14 A. Humeniuk and C. Ramsey

For n = 2, consider the operator algebra A = {[0 b
0 0] ∶ b ∈ C} and its unitization

A1. Loring in [22] (cf. [2, Example 2.4]) proved that

C∗max(A) ≃ M2 ⊗ C((0, 1])
and so the unitization satisfies

C∗max(A1) ≃ { f ∈ M2 ⊗ C([0, 1]) ∶ f (0) ∈ CI} ≃ C∗max(A) ⊕C.

Additionally, M2 is a C∗-cover of both A1 and A. Then CA is a C∗-cover of A1 ⊕ CA.
A has no nonzero multiplicative linear functionals since it is made up of nilpotents.

Thus, there is no C∗-cover that is ∗-isomorphic to a C∗-algebra that has C as a
direct summand. Hence, using the C∗-algebra construction defined in the previous
proposition, A1 ⊕ CA generates exactly two non-∗-isomorphic C∗-algebras: CA and
CA ⊕C.

For n ≥ 3, by Theorem 2.6 we know that ⊕n−1
k=1(A1 ⊕ CA) generates n non-

∗-isomorphic C∗-algebras

CA , CA ⊕C, . . . , CA ⊕C
n−1

since CA ⊕ . . . ⊕ CA ≃ CA. ∎
Buried in the proof of this theorem is the fact, developed by Thompson [28,

Theorem 3.1 and Example 3], that the topology of C∗-covers need not be Hausdorff.

4 Tensor products

Tensor products of operator algebras have played a significant role in C∗-algebras and
von Neumann algebras. This is largely because many aspects are well-behaved and
have lead to a rich theory while on the other hand there are many significant open
questions that drive to the very core of the area. It should come as no surprise then
that in the non-selfadjoint setting much can still be proven while many aspects remain
mysterious. Excellent sources for further reading about tensor products are Brown and
Ozawa [4, Chapter 3] in the selfadjoint setting and Blecher and Le Merdy [3, Chapter
6] in the non-selfadjoint setting.

As is customary, ⊙ will always denote the algebraic tensor product and ⊗max and
⊗min will denote the maximal and minimal operator algebra or C*-tensor products.
In the case where A is an approximately unital operator algebra and B is a nuclear
C*-algebra, then A⊗max B = A⊗min B[3, Proposition 6.1.14], and then one writes
A⊗B.

IfA andB are approximately unital operator algebras, every completely contractive
homomorphism

π ∶ A⊗max B→ B(H)
is of the form π = πA ⋅ πB, where πA ∶ A→ B(H) and πB ∶ B→ B(H) are completely
contractive homomorphisms with commuting ranges and

(πA ⋅ πB)(a ⊗ b) = πA(a)πB(b)
on pure tensors a ⊗ b ∈ A⊙B [3, Corollary 6.1.7].

https://doi.org/10.4153/S0008414X25000045 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000045


The lattice of C∗-covers of an operator algebra 15

We will need the following result of Murray and von Neumann.

Lemma 4.1 [27, Proposition IV.4.20] If M ⊆ B(H) is a factor, then the multiplication
map

M′ ⊙M→ B(H)
a ⊗ b ↦ ab

is injective.

This has the following C*-algebraic version, which is known but not written in this
explicit format. We include our proof for completeness, but note that there are other
ways to achieve this, e.g., pure state excision.

Proposition 4.2 If C,B ⊆ B(H) are commuting C*-algebras, and B is simple, then the
multiplication map

μ ∶ C⊙B→ B(H)
c ⊗ b ↦ cb

is injective. In particular, there is an embedding B′ ⊙B↪ B(H).

Proof Without loss of generality, by passing to B +CI and C +CI, we will assume
that C and B are unital. Note that while B +CI may no longer be simple, we will
only use the fact that a unital ∗-homomorphism on B +CI that is nonzero on B is
automatically injective, which is true even when B is nonunital and so a proper ideal
in B +CI.

Since C and B commute, they generate the C*-algebra

C∗(C ∪B) = CB ⊆ B(H).

Let π ∶ CB→ B(Hπ) be any irreducible representation. Then, π(C) and π(B) are
commuting C*-algebras with

π(C)′ ∩ π(B)′ = π(CB)′ = CI.

It follows that both π(C)′′ and π(B)′′ are factors [27, Proposition IV.4.21]. Indeed,
π(C) ⊆ π(B)′, and so π(B)′′ ⊆ π(C)′, implying

π(B)′′ ∩ π(B)′ ⊆ π(C)′ ∩ π(B)′ = CI.

Similarly, π(C)′′ ∩ π(C)′ = CI. Therefore, Lemma 4.1 applies with M = π(B)′′, and
so the multiplication map

π(C) ⊙ π(B) → π(C)′′ ⊙ π(B)′′ ⊆ π(B)′ ⊙ π(B)′′ =M′ ⊙M→ B(Hπ)

is injective. Because B is simple, π∣B is injective, and so

idπ(C) ⊗ π∣B ∶ π(C) ⊙B→ π(C) ⊙ π(B)
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is injective. So, the diagram of ∗-homomorphisms

C⊙B π(C) ⊙B

CB B(Hπ)

μ

π∣C⊗idB

μπ

π

commutes, where

μπ(π(c) ⊗ b) = π(c)π(b)

is an injective map.
Let Λ be a set of irreducible representations π ∶ CB→ B(Hπ) that separates points

of CB. So,

⊕
π∈Λ

π∣C ∶ C→ ∏
π∈Λ

π(C) ⊆ B(⊕
π∈Λ

Hπ)

is an injective linear map. Since ⊙ is injective,

(⊕
π∈Λ

π∣C) ⊗ idB ∶ C⊙B→ (∏
π∈Λ

π∣C(C)) ⊙B

is also injective. Then, we have a commuting diagram

C⊙B (∏π π∣C(C)) ⊙B ∏π(π∣C(C) ⊙B)

CB B(⊕π Hπ).

(⊕π π∣C)⊗idB

μ ⊕π μπ

⊕π π

Here, the natural linear map

(∏
π

π∣C(C)) ⊙B→∏
π
(π∣C(C) ⊙B)

(aπ)π ⊗ b ↦ (aπ ⊗ b)π

is injective. Since all other maps in this commuting diagram are injective, it follows
that μ is injective. ∎

Now we turn to a technical result showing that tensor products of C∗-covers respect
the lattice structure.

Lemma 4.3 Let A and B be operator algebras. Let (C1 , ι1) and (C2 , ι2) be C*-covers
for A, and let (D1 , η1) and (D2 , η2) be C*-covers for B. Let α denote either “max” or
“min”. A ∗-homomorphism π makes the diagram
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C1 ⊗α D1 C2 ⊗α D2

A⊗α B

π

ι1⊗η1
ι2⊗η2

commute if and only if it has the form πA ⊗ πB where

πA ∶ (C1 , ι1) → (C2 , ι2) and πB ∶ (D1 , η1) → (D2 , η2)
are morphisms of C*-covers. Consequently, if (C1 ⊗α D1 , ι1 ⊗ η1) and (C2 ⊗α D2 , ι2 ⊗
η2) are C*-covers of A⊗α B, then

(C1 ⊗α D1 , ι1 ⊗ η1) ⪰ (C2 ⊗α D2 , ι2 ⊗ η2) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

(C1 , ι1) ⪰ (C2 , ι2) and
(D1 , η1) ⪰ (D2 , η2)

Proof As in [3, Section 6.1.6], upon passing to the unitizations A1 and B1, we have

A⊗α B ⊆ A1 ⊗α B1

completely isometrically–and similarly for the C*-tensor products involved.
The ∗-homomorphism π ∶ C1 ⊗α D1 → C2 ⊗α D2 is of the form πC ⋅ πD for

∗-homomorphisms πC ∶ C1 → C2 ⊗D2 and πD ∶D1 → C1 ⊗D2 [4, Theorem 3.2.6].
So, π extends all the way to a unital ∗-homomorphism

π̃ = π1
C ⋅ π1

D ∶ C1
1 ⊗α D1

1 → C1
2 ⊗α D1

2 .

And, π̃ splits as a tensor product of∗-homomorphisms if and only if π does. Therefore,
by unitizing the algebras A,B,Ci ,Di , and considering the extended maps ι1

i ⊗ η1
i and

π̃, we can assume without loss of generality that A and B, their C*-covers, and all
homomorphisms involved are unital.

If π is of the form πA ⊗ πB, it follows readily that the diagram commutes. Con-
versely, suppose π is any ∗-homomorphism with π(ι1 ⊗ η1) = ι2 ⊗ η2. Then, π maps
ι1(A) ⊗α C1D1 into the subalgebra ι2(A) ⊗α C1D2 , and since C∗(ι1(A) ⊗α C1D1) =
C1 ⊗α C1D1 , it follows that π maps C1 ⊗α C1D1 into C2 ⊗α C1D2 . Symmetrically, π
maps C1C1 ⊗α D1 into C1C2 ⊗α D2. From this, it must be the case that π has the form
πA ⊗ πB, where πA and πB are uniquely defined by

πA(c) ⊗ 1D1 = π(c ⊗ 1D1) and 1C1 ⊗ πB(d) = π(1C1 ⊗ d)
for c ∈ C1 and d ∈D1. ∎

If (L, ≤) is a lattice, we say a subset S ⊆ L is upward-closed if for all a ∈ L, whenever
there exists b ∈ S with a ≥ b, then a ∈ S.

Theorem 4.4 Let A be an operator algebra, and let B be a C*-algebra. Define

C∗-LatB,max(A) ∶= {[C, ι] ∣ ι ⊗ idB ∶ A⊗max B→ C⊗max B is completely isometric}.

(1) C∗-LatB,max(A) is a nonempty upward-closed complete sublattice of C∗-Lat(A).
(2) There is an order injection

Φ ∶ C∗-LatB,max(A) ↪ C∗-Lat(A⊗max B)
[C, ι] ↦ [C⊗max B, ι ⊗ idB].
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(3) If B is nuclear, then

C∗-LatB,max(A) = C∗-Lat(A).

(4) If B is simple, then every C*-cover for A⊗max B is isomorphic to one of the form

(C⊗α B, ι ⊗ idB),

where (C, ι) is a C*-cover forA satisfying [C, ι] ∈ C∗-LatB,max(A), and⊗α denotes
a completion of C⊙B with respect to some C*-norm ∥ ⋅ ∥α .

(5) If B is nuclear and simple, then Φ is a lattice isomorphism

C∗-Lat(A) ≅ C∗-Lat(A⊗B).

In particular, every C*-cover of A⊗B has the form C⊗B for a C*-cover
C of A.

Proof (1) In [3, Section 6.1.9], Blecher and Le Merdy show that

A⊗max B→ C∗max(A) ⊗max B

is completely isometric using only the universal property of C∗max(A). So,
C∗-LatB,max(A) contains C∗max(A) and is always nonempty. To show that it is upward
closed, suppose [C, ι] ∈ C∗-Lat(A) and [D, η] ∈ C∗-LatB,max(A)with [C, ι] ⪰ [D, ι].
Then there is a morphism π ∶ (C, ι) → (D, η) of C*-covers. Taking a maximal tensor
product with B shows that the diagram

C⊗max B D⊗max B

A⊗max B

π⊗idB

ι⊗idB η⊗idB

commutes. Since η ⊗ idB is completely isometric and π ⊗ idB is completely contrac-
tive, this implies that ι ⊗ idB is completely isometric. So, [C, ι] ∈ C∗-LatB,max(A).

Being upward closed, C∗-LatB,max(A) is closed under arbitrary joins. To show that
C∗-LatB,max(A) is closed under arbitrary meets, by the description of the meet in
Proposition 2.1, it suffices to assume that (C, ι) is a C*-cover for A, and Iλ , λ ∈ Λ,
are boundary ideals with quotient maps qλ ∶ C→ C/Iλ such that [C/Iλ , qλ ι] is in
C∗-LatB,max(A) for each λ ∈ Λ. Then, for I = ∑λ∈Λ Iλ with quotient map q, we will
show that [C/I, qι] is also in C∗-LatB,max(A). Since the maximal tensor product⊗max
of C*-algebras is exact [4, Proposition 3.7.1], for any closed ideal J◁ C, the natural map
J⊗max B→ C⊗max B is injective and so we identify J⊗max B ⊆ C⊗max B as a literal
subset which satisfies

C⊗max B

J⊗max B
≅ C

J
⊗max B

via the natural map. Then, when identified as subsets of C⊗max B, we have

I⊗max B = (∑
λ∈Λ

Iλ) ⊗max B = ∑
λ∈Λ

(Iλ ⊗max B).
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Since each Iλ ⊗max B is a boundary ideal for (ι ⊗ idB)(A⊗max B), and the boundary
ideals form a complete sublattice of the ideal lattice in C⊗max B, the ideal I⊗max B is
also a boundary ideal. That is, the map

qι ∶ A⊗max B→ (C
I
) ⊗max B ≅ C⊗max B

I⊗max B

is completely isometric, and so [C/I, qι] is in C∗-LatB,max(A). This proves
C∗-LatB,max(A) is closed under arbitrary meets and so is a complete lattice.

(2) Lemma 4.3 shows that Φ is a well-defined order injection.
(3) IfB is a nuclear C*-algebra, thenC⊗max B = C⊗min B =∶ C⊗B for every oper-

ator algebra C. Since the minimal tensor product ⊗min preserves complete isometry,
ι ⊗ idB ∶ A⊗B→ C⊗B is completely isometric for every C*-cover (C, ι) of A. So,

C∗-LatB,max(A) = C∗-Lat(A).

(4) Suppose that B is simple. Let (D, η) be a C*-cover for A⊗max B. Then we have
η = ι ⋅ σ , where ι ∶ A→D is a completely isometric homomorphism, and σ ∶ B→D

is an injective ∗-homomorphism. Set C ∶= C∗(ι(A)), so that (C, ι) is a C*-cover of
A. Since σ(B) ≅ B is simple and commutes with C, Proposition 4.2 shows that the
multiplication map

C⊙B
idC⋅σ���→D

is injective. Let ∥ ⋅ ∥α be the norm induced on C⊙B via this injection, and then idC ⋅ σ
extends to an injective ∗-homomorphism on the completion C⊗α B with respect to
the C*-norm ∥ ⋅ ∥α . Then, the diagram

C⊗α B D

A⊗max B

idC⋅σ

ι⊗idB η

commutes. Since D = C∗(η(A⊗max B)), it also follows that idC ⋅ σ is surjective and
so an isomorphism

(D, η) ≅ (C⊗α B, ι ⊗ idB)

of C*-covers. Finally, using the unique ∗-homomorphism C⊗max B→ C⊗α B, the
diagram

C⊗max B C⊗α B

A⊗max B

ι⊗idB ι⊗idB

commutes, and since the diagonal map is completely isometric, so is the vertical map.
Hence, this shows C ∈ C∗-LatB,max(A).

(5) If B is both nuclear and simple, then statements (2) and (3) show that Φ
gives an order injection C∗-Lat(A) → C∗-Lat(A⊗B). Item (4) implies that Φ is also
surjective, because nuclearity implies thatC⊗α B = C⊗max B for any C*-coverC. ∎
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Using the standard assignment Mn(A) ≅ A⊗ Mn for any operator algebra, we
recover the following result, which can be proved on its own using basic representation
theory of Mn .

Corollary 4.5 If A is an operator algebra, then A and Mn(A) are lattice isomorphic
via the assignment

[C, ι] ↦ [Mn(C), ι(n)].

The theory discussed above then also gives a complementary theory for the min
tensor product. Note that the final sentence in the following proposition was proved
without any restriction on simplicity first in [9, Corollary 2.7], but we are able to obtain
it again in the simple case as a consequence of our methods.

Proposition 4.6 Let A be an operator algebra, and let B be a C*-algebra. There is an
order injection

Ψ ∶ C∗-Lat(A) ↪ C∗-Lat(A⊗min B)
[C, ι] ↦ [C⊗min B, ι ⊗ idB].

Moreover, if B is simple, then every C*-cover for A⊗min B is isomorphic to one of the
form (C⊗α B, ι ⊗ idB), where (C, ι) is a C*-cover for A, and ι ⊗ idB ∶ A⊗min B→
C⊗α B is completely isometric. Consequently, if B is simple, then

C∗e (A⊗min B) ≅ C∗e (A) ⊗min B.

Proof Since the minimum tensor product ⊗min is injective, it follows that if ι ∶ A→
C is completely isometric, then ι ⊗ 1B ∶ A⊗min B→ C⊗min B is completely isometric.
Therefore Ψ is well defined. Lemma 4.3 with α = min shows that Ψ is an order
injection.

If B is simple, then the same argument as in the proof of Theorem 4.4.(3) with
⊗min in place of ⊗max shows that any C*-cover is a C*-completion of C⊙B, for some
C*-cover (C, ι). (However, we cannot conclude from this that C ∈ C∗-LatB,max(A).)
In particular, we have

C∗e (A⊗min B) ≅ C⊗α B

for some C*-cover (C, ι). If π ∶ (C, ι) → (C∗e (A), η) is the universal homomorphism
to the C*-envelope, and q ∶ C⊗α B→ C⊗min B is the quotient to the minimal tensor
product, then the following diagram commutes:

C⊗α B C⊗min B C∗e (A) ⊗min B

A⊗min B.

q π⊗idB

ι⊗idB

ι⊗idB
ε⊗idB

Therefore (π ⊗ idB)q is a morphism of C*-covers, and therefore a ∗-isomorphism

C∗e (A⊗min B) = C⊗α B ≅ C∗e (A) ⊗min B.

∎
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The following example shows that if B is not simple, then Theorem 4.4.(3) and the
corresponding statement in Proposition 4.6 both may fail.

Example 4.7 If A is any operator algebra, then we have

A⊗C
2 ≅ A⊕A

completely isometrically. Then, for any pair (C, ι) and (D, η) of C*-covers forA, (C⊕
D, ι ⊕ η) is a C*-cover for A⊕A. However, it is not isomorphic to one of the form
(B⊗C

2 , ρ ⊗ idC2) ≅ (B⊕B, ρ ⊕ ρ) for a C*-cover (B, ρ) unless

(C, ι) ≅ (B, ρ) ≅ (D, η).

Indeed, a C*-cover isomorphism

C⊕D B⊕B

A⊕A

π

ι⊕η
ρ⊕ρ

must be of the form α ⊕ β, where α ∶ (C, ι) → (B, η) and β ∶ (D, η) → (B, ρ) are
isomorphisms. (This same argument appears in the proof of Theorem 2.6.)

If neitherAnorB is a C*-algebra, the C*-covers of a tensor productA⊗α Bmay be
even more ill-behaved. A fundamental obstruction is that in a (completely isometric)
representation of A⊗α B, the images of A and B commute but need not ∗-commute.

Example 4.8 If A and B are non-selfadjoint, then A⊗max B and A⊗min B can have
C*-covers which are not tensor products of C*-covers of A and B. For instance, let
A = B = A(D) be the disk algebra. Ando’s dilation theorem implies that

A(D) ⊗max A(D) = A(D) ⊗min A(D),

see [3, Section 6.2], and we will write both as simply A(D) ⊗ A(D).
Let ι ∶ A(D) → C(T) be the inclusion of A(D) into its C*-envelope (or, any

completely isometric representation of A(D) gives a working example here). Since
ι is completely isometric, and ⊗min is injective,

ι ⊗ ι ∶ A(D) ⊗ A(D) → C(T) ⊗ C(T)

is completely isometric. Let S ∈ B(�2) be the unilateral shift, and π ∶ A(D) → B(�2)
be the completely isometric representation determined by mapping the generator z in
A(D) to S. Then,

π ⋅ π ∶ A(D) ⊗ A(D) → B(�2)

is a completely contractive representation of A(D) ⊗ A(D). Then σ = (ι ⊗ ι) ⊕ (π ⋅ π)
is a completely isometric representation. Here,

σ(z ⊗ 1) = (z ⊗ 1) ⊕ S and σ(1 ⊗ z) = (1 ⊗ z) ⊕ S

commute, but do not ∗-commute because S is not normal. Therefore

(C∗(σ(A(D) ⊗ A(D))), σ)
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is a C*-cover which is not of the form

(C⊗α D, α ⊗ β)

for any C*-tensor product ⊗α and C*-covers (C, α), (D, β) for A(D). This also shows
that the images of z ⊗ 1 and 1 ⊗ z do not ∗-commute in the maximal C*-algebra of
A(D) ⊗ A(D), and so the morphism of C*-covers

C∗max(A(D) ⊗ A(D)) → C∗max(A(D)) ⊗max C∗max(A(D))

is not a ∗-isomorphism.

Finally, we can complete our task of showing the five equivalences of operator
algebras are all different. Much of this has been proven already but it will greatly help
the reader to have this all in one place.

Theorem 4.9 Completely isometrically isomorphic is strictly stronger than lattice
intertwined which is strictly stronger than lattice ∗-isomorphic which is strictly stronger
than either of lattice isomorphic or C∗-cover equivalent. Moreover, lattice isomorphic
and C∗-cover equivalent are unrelated.

Proof Proposition 2.4 and Example 2.5 showed that there is an operator algebra A

such that A is not completely isometrically isomorphic to A∗ but A and A∗ are always
lattice intertwined.

By Corollary 2.8, we know that T2 and T2 ⊕K are lattice isomorphic but not
C∗-cover equivalent and so not lattice ∗-isomorphic either.

By Proposition 3.8, we know that T2 ⊕ CT2 and CT2 are C∗-cover equivalent but
not lattice isomorphic and so not lattice ∗-isomorphic either.

The only thing left to prove is to show lattice ∗-isomorphic does not imply
lattice intertwined. To this end, Theorem 4.4 gives us that T2 and M2(T2) are lattice
isomorphic. By Corollary 3.10, T2 ⊕ CT2 ⊕ CM2(T2) and M2(T2) ⊕ CT2 ⊕ CM2(T2) are
lattice ∗-isomorphic. Again by [22] and [2, Example 2.4] we know that

C∗max(T2 ⊕ CT2 ⊕ CM2(T2))
≃ { f ∈ M2(C([0, 1])) ∶ f (0) is diagonal} ⊕ CT2 ⊕ CM2(T2)

and

C∗max(M2(T2) ⊕ CT2 ⊕ CM2(T2))
≃ M2({ f ∈ M2(C([0, 1])) ∶ f (0) is diagonal}) ⊕ CT2 ⊕ CM2(T2) .

As well,

C∗e (T2 ⊕ CT2 ⊕ CM2(T2)) ≃ M2 ⊕ CT2 ⊕ CM2(T2)

and

C∗e (M2(T2) ⊕ CT2 ⊕ CM2(T2)) ≃ M4 ⊕ CT2 ⊕ CM2(T2).
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Thus, the canonical quotient maps from the max covers to the min covers, point
evaluation at 1, have kernels

{ f ∈ M2(C([0, 1)) ∶ f (0) is diagonal} and
M2({ f ∈ M2(C([0, 1])) ∶ f (0) is diagonal}).

These ideals are not ∗-isomorphic since the latter has a ∗-homomorphism onto
M4, e.g., point evaluation at 1/2, while the former does not. Therefore, T2 ⊕ CT2 ⊕
CM2(T2) and M2(T2) ⊕ CT2 ⊕ CM2(T2) are lattice ∗-isomorphic but they are not lattice
intertwined by Proposition 2.3. ∎

5 Properties preserved (or not) by C*-lattice equivalences

5.1 Residually finite-dimensional

An operator algebra is residually finite-dimensional (RFD) if it is completely iso-
metrically isomorphic to a subalgebra of a (possibly infinite) product of matrix
algebras [6]. In other words, an operator algebra is RFD if and only if it has an
RFD C∗-cover. Thus, RFD is preserved by C∗-cover equivalence, and so by lattice
∗-isomorphism, lattice intertwining, and completely isometric isomorphism, but not
by lattice isomorphism (e.g., C and K are lattice isomorphic).

Given an RFD operator algebra, the subset of C∗-covers that are RFD is an object
of some interest. It has been shown that there are examples of an RFD operator algebra
where the C∗-envelope need not be RFD [6, Example 3], even when the operator
algebra is finite-dimensional [15], and recently by Hartz that the maximal C∗-cover
need not be RFD either [16]. However, [28] shows that there is always a maximal RFD
C∗-cover since the RFD property is preserved by direct sums. See also [5] for more on
when the maximal C*-cover is RFD.

Proposition 5.1 Every C∗-cover of T2 is RFD.

Proof As we have seen,

C∗max(T2) ≃ { f ∈ C([0, 1]) ⊗ M2 ∶ f (0) is diagonal}.

This implies that for every C∗-cover (C, ι) there exists a compact set X ⊆ [0, 1] such
that C is ∗-isomorphic to a subalgebra of C(X) ⊗ M2. Therefore, every C∗-cover is
RFD. ∎

We do not know if the subset of RFD C∗-covers forms a complete sublattice as in
the previous proposition. Certainly it forms a complete upper semilattice since the
join of RFD C∗-covers (direct sum) is RFD. However, it is not known whether there
is always a minimal RFD C∗-cover.

In summary:

Proposition 5.2 Let A and B be operator algebras.
(i) If A and B are C∗-cover equivalent, then A is RFD if and only if B is RFD.

(ii) If A and B are lattice ∗-isomorphic, then the subsets of RFD C∗-covers of A and
B are in bijective correspondence.
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(iii) If A and B are lattice intertwined, then the complete upper semilattices of RFD
C∗-covers of A and B are intertwined.

Proof For (i), if A is RFD it must have a C∗-cover that is RFD as well. Thus, by the
C∗-cover equivalence with B we see that B must then have an RFD C∗-cover and
hence is RFD.

For (ii), if A and B are lattice ∗-isomorphic, then there is an order isomorphism
F ∶ C∗-Lat(A) → C∗-Lat(B) such that F([C, ι]) = [D, η] implies that C and D are
∗-isomorphic. Since the property being RFD (or not) is preserved by∗-isomorphisms,
the map F puts the RFD C∗-covers of A and B in bijective correspondence.

For (iii), lattice intertwined is stronger than lattice ∗-isomorphic so such an F in
the proof of part (ii) exists but also intertwines the C∗-covers according to the lattice
structure, see Definition 2.4. ∎

5.2 Action-admissible

Consider a dynamical system (A, G , α), that is, A is an operator algebra, G is a
locally compact group, and α is a strongly continuous action of G on A by completely
isometric automorphisms. A C∗-cover (C, ι) is called α-admissible if there exists a
strongly continuous αC ∶ G → Aut(C) such that αCι = ια on A. This was first defined
in [18] and they showed that the minimal and maximal C∗-covers are always α-
admissible.

It was shown in [15] that the subset of α-admissible C∗-covers is a complete
sublattice. This complete sublattice need not be the whole lattice as there are examples
of non-α-admissible C∗-covers in [19] and [15].

On the other hand, every completely isometric automorphism of Tn is a diagonal
unitary inner automorphism. Thus, every C∗-cover is admissible for every completely
isometric automorphism of Tn .

Example 5.3 Consider the algebra

A =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a b c
0 a 0
0 0 a

⎞
⎟
⎠

0000000000000
a, b, c ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭

from Example 2.5, which is lattice intertwined with A∗ but not completely isomet-
rically isomorphic. We know that C∗e (A) = M3 and so every completely isometric
automorphism of A⊕A extends to a ∗-automorphism of M3 ⊕ M3. Hence, every
such automorphism preserving A⊕A is a diagonal unitary inner automorphism in
each component and a Z2 action which permutes the components.

Consider now A⊕A∗ whose completely isometric automorphisms are now only
the diagonal unitary inner automorphisms in each component, because A and A∗

are not completely isometrically isomorphic. However, the Z2 action on M3 ⊕ M3
does not preserve A⊕A∗. Therefore, group actions may not be preserved by lattice
intertwining, in the sense that the admissible covers of a given action don’t correspond
under the intertwining.
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5.3 Simplicity

First off, it is immediate that lattice isomorphism doesn’t preserve simplicity since
all C∗-algebras are lattice isomorphic. However, saying anything about the other
equivalences is not really possible since, as far as the authors are aware, no one has
a good understanding of what a simple operator algebra is. What is more, simplicity
is really a completely bounded isomorphism property.

Similarities of simple C∗-algebras give the first examples of simple non-selfadjoint
operator algebras. To give us some idea of the form of the lattice of C∗-covers of
a simple non-selfadjoint operator algebra, we turn to the simplest simple operator
algebra.

Proposition 5.4 If E1 and E2 are non-selfadjoint idempotents then e ∶ 1 and CE2 are
lattice intertwined.

Proof It is probably folklore, but something similar can be found in [12, Example
4.4], that

C∗max(CE) ≃ { f ∈ M2 (C ([0,
√
∥E∥2 − 1])) ∶ f (0) ∈ [C 0

0 0]} ,

where the embedding of CE is given by E ↦ [1 x
0 0]. Of course, [0,

√
∥E∥2 − 1] is

homeomorphic to [0, 1] by x ↦ 1√
∥E∥2−1

x. This implies that

C∗max(CE) ≃ { f ∈ M2 (C ([0, 1])) ∶ f (0) ∈ [C 0
0 0]} ,

where the embedding of CE is given by E ↦ [1
√
∥E∥2 − 1x

0 0 ].

Now, for a non-selfadjoint idempotent E one has C∗e (CE) ≃ M2 given by

E ↦ [1
√
∥E∥2 − 1

0 0 ] .

Hence, for two non-selfadjoint idempotents E1 and E2 we have

C∗max(CE1) C∗max(CE2)

C∗e (CE1) C∗e (CE2)

ρ1

Φ

ρ1

φ

where ρ1 is point evaluation at 1 and where Φ and φ are the natural ∗-isomorphisms

running through the intermediate algebras { f ∈ M2 (C ([0, 1])) ∶ f (0) ∈ [C 0
0 0]}

and M2, respectively. Therefore, CE1 and CE2 are lattice intertwined by Proposi-
tion 2.3. ∎

So are there simple operator algebras not similar to C∗-algebras? We will spend the
rest of this section answering in the affirmative.
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Let H = �2 be a separable Hilbert space with basis {e1 , e2 , . . . , }. In B(H ⊗C
2),

define

Ẽ i j = E i j ⊗ (1 j
0 0) ,

where E i j are the standard matrix units in B(H). We have the relation

Ẽ i j Ẽk� = δ j,k Ẽ i� ,

and so

A ∶= span{Ẽ i j ∣ i , j ≥ 1}

is an operator algebra.
Here is another description of A. If we let

Jn ∶= (
1 −n
0 1 )

for n ∈ R, then up to the standard unitary identifying Mn(M2) with Mn ⊗ M2, and
the standard identification K(H) = ⋃n Mn , we have

A = ⋃
n
(J1 ⊕ . . . ⊕ Jn)Mn(C⊕ 0)(J1 ⊕ . . . ⊕ Jn)−1 ⊆ K(H) ⊗ M2 = K(H ⊗C

2).

That is, roughly speaking, A is built from the inductive limit ⋃n Mn by applying
a sequence of similarities to each copy of Mn whose norm tends to infinity. We
show in Theorem 5.8 below that the resulting algebra A is not completely boundedly
isomorphic to any C*-algebra.

Lemma 5.5 For all a ∈ A, we have
(i) Ẽ i j a = (E i j ⊗ 12)a for all i , j ≥ 1,

(ii) aẼ i i = a(E i i ⊗ 12) for all i ≥ 1, and
(iii) if un = ∑n

k=1 Ẽkk , then un aun → a as n →∞.

Proof Items (i) and (ii) follow by checking on the generators Ẽk�, k, � ≥ 1. Indeed

Ẽ i j Ẽk� = δ j,k (E i ,� ⊗ (1 �
0 0)) = (E i j ⊗ 12)Ẽk� ,

and

Ẽk�Ẽ i i = δ�, i (Ek , i ⊗ (1 i
0 0)) = δ�, i (Ek , i ⊗ (1 �

0 0)) = Ẽk ,�(E i i ⊗ 12).

Let vn = ∑n
k=1 Ekk ∈ K(H). Then combining (i) and (ii) shows that for a ∈ A,

un aun = (vn ⊗ 12)a(vn ⊗ 12).

Since vn is an approximate identity for K(H), vn ⊗ 12 is an approximate identity for
K(H) ⊗ M2 ⊇ A, and so un aun = (vn ⊗ 12)a(vn ⊗ 12) → a as n →∞. ∎

Proposition 5.6 A is a simple operator algebra.

https://doi.org/10.4153/S0008414X25000045 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000045


The lattice of C∗-covers of an operator algebra 27

Proof Suppose that J ⊆ A is a nonzero closed ideal, so there is some a ≠ 0 in J. By
Lemma 5.5, we must have un aun ≠ 0 for some n. Since un = ∑n

k=1 Ẽkk , there are some
i , j ≥ 1 with

Ẽ i i aẼ j j ≠ 0.

Then,

Ẽ1i Ẽ i i aẼ j j Ẽ j1

is nonzero, is in J, and is in Ẽ11AẼ11 = CẼ11. Therefore Ẽ11 ∈ J, and it follows that Ẽ i j ∈ J
for all i , j ≥ 1. Since J is a closed subspace, we have J = A. ∎

Let H0 ∶= H ⊗Ce1 ⊆ H ⊗C
2. Then checking on generators shows that H0 is invari-

ant for A.

Proposition 5.7 The restriction map π ∶ A→ K(H0) is an injective completely con-
tractive homomorphism with dense range. However, π is not onto.

Proof Since H0 is invariant, π is a homomorphism. Any compression map is
completely contractive, so π is a completely contractive homomorphism. Identifying
H0 ≅ H, on generators we have

π(Ẽ i j) = E i j .(5.1)

This implies that π(A) is dense in K(H0). For n ≥ 1, let

An = span{E i j ∣ 1 ≤ i , j ≤ n},

so that An are closed subalgebras with A = ⋃n An . The relation (5.1) shows π is
injective on each An . Suppose that a ∈ A satisfies π(a) = 0. With

un =
n
∑
k=1

Ẽkk ,

we have un aun ∈ An and

π(un aun) = π(un)π(a)π(un) = 0

for all n. Since π∣An is injective, un aun = 0 for all n, and by Lemma 5.5, a =
limn un aun = limn 0 = 0. Therefore π is injective.

By the inverse mapping theorem, if π were onto, it would be bounded below.
However, π is not bounded below, for instance

∥un∥ = ∥Ẽnn∥ =
√

1 + n2 ,

while

∥π(un)∥ = ∥E11 + . . . + Enn∥ = 1.

So, π is not onto. ∎

Theorem 5.8 The simple operator algebra A is not completely boundedly isomorphic
to a C*-algebra.
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Proof Suppose for the sake of contradiction that there is a C*-algebra B and a
completely bounded algebra isomorphism ρ ∶ B→ A. By Proposition 5.7, there is
a completely contractive injective homomorphism π ∶ A→ K(H0) with dense but
not closed range. Then σ ∶= πρ ∶ B→ K(H0) is a nondegenerate injective completely
bounded homomorphism between C*-algebras with non-closed range.

By [13, Theorem 1.10], any nondegenerate completely bounded homomorphism of
C*-algebras is similar to a ∗-homomorphism. So, there is an invertible operator S ∈
B(H) such that

b ↦ Sσ(b)S−1

is a ∗-homomorphism. Since a ∗-homomorphism has closed range, Sσ(B)S−1 is
closed. But then σ(B) = S−1(Sσ(B)S−1)S is also closed, because adS−1 is a homeo-
morphism, and this contradicts the conclusion of the first paragraph above. ∎

In particular, A cannot be similar to a C*-algebra in any completely isometric
representation, since a completely isometric isomorphism and a similarity compose
to a completely bounded isomorphism.
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