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ABSTRACT 
The equations of motion (continuity and momentum 

balance) for a dispersed , negatively buoyant particulate 
of snow entrained in a turbulent airflow contain 
apparent turbulent forces or turbulent particle 
buoyancies. These turbulent buoyancies arise from the 
constitutive assumption that the turbulent fluctuations of 
the snow phase velocity vector U I I' and the drift snow 
density p I I' are proportional to the deviatoric mean rate 
of deformation tensor for the airflow. 

For an established, discretized airflow regime , the 
momentum balance equation for the snow phase can be 
solved by finite difference techniques for the snow 
particle velocity field. The snow phase continuity 
equation can then be solved for the drift snow density 
field . 

The solutions for the snow phase equations of 
motion for a one dimensional airflow adjacent a solid 
surface show that the theory can reproduce an inertial 
snow particle effect. The snow particle decelerates less 
rapidly than the airflow , resulting in the snow particle 
having a positive horizontal impact velocity at the solid 
surface, where air velocity goes to zero . 

The solutions for the snow phase equations of 
motion for mixture flow and subsequent wind-aided snow 
accumulation on the immediate lee of a model mountain 
slope show that the theory can reproduce the geometries 
typical of wind-aided snow accumulation profiles, 
measured on the lee of mountain slopes. 

THEORY 
The following continuum mixture theory for 

entrained snow in a turbulent atmospheric flow is based 
on the classical mechanics principal of conservation of 
mass (continuity) and conservation of momentum 
(momentum balance) respectively below (Decker and 
Brown 1983). 
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where the drift snow density PI is the mean valu.!:. of the 
mass density of snow per unit volume of mixture, 'l. is the 
mean value snow velocity vector, Q is the body acceleration 
vector and l!. is the mean value air velocity vector. ET are 
those terms which contain time averaged products of 
turbulent fluctuating parameters. Where p; is the turbulent 
fluctuation of drift snow density and U ~ is the turbulent 
fluctuation of the snow velocity vector, D is the drag 

coefficient between the air and snow. D has the dimensions 
I/time. The snow particles in naturally occurring mixture 
flows are a diverse, but statistically describable distribution 
of sizes. The drag coefficient D could be characterized by a 
distribution function which would result in the mean snow 
particle velocity vector having a distribution of values at a 
given point in the mixture flow. However, in this 
investigation D is evaluated as a single valued function. 

It is necessary to write these fluctuating turbulent 
parameters as a function of mean flow parameters. This 
requirement leads to the following objective constitutive 
assumptions for U I and p~. 
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Where y and E are vector valued functions with dimensions 
length and time respectively. Pa is the mean rate of 
deformation tensor for the airflow. IT", v" and W. are the 
component mean airflow velocities. In other words, the 
turbulent fluctuation of the snow velocity vector and the 
drift snow density are proportional to the deviatoric or 
shearing portion of the mean rate of deformation tensor of 
the airflow. 

Then, in two space variables the terms ET of 
Equation 3 expanded to the following component equations 
for the apparent turbulent forces. As a result of the 
constitutive asumption, all variables are now mean flow 
parameters. The mean value overscore is now neglected. 
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The apparent turbulent forces or turbulent buoyancies 
of Equations 7 and 8 are assumed to act such that 
suspension is enhanced, or stated conversely, that snow 
particle diffusion is less effective in those directions where 
gradients of the airflow are large, irregardless of the sign. 
To maintain this assumption, it is necessary to consider only 
the absolute magnitudes of the terms of Equation 9. 

Additionally, if the vector valued physical constants 2: 
and E are assumed to be of the form y = ye!) and E = 
E(I) ihen computational tractability is greatly enhanced. 

- In light of these two assumptions, if the turbulent 
buoyancy Equations 7 and 8 are substituted into Equation 2, 
then by dividing through by Ps the non-conservative form 
momentum balance equation is: 
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Since the momentum balance Equation 10 is in 
non-conservative form, it is uncoupled from the continuity 
equation: 
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Equations 10 and 11 are the two dimensional 
turbulent equations of motion for the snow phase of the 
mixture flow. 

Given an airflow regime, it is possible to solve the 
momentum balance Equation 10 for a snow particle veloicty 
field . By substitution of this snow particle velocity field 
into continuity equation 11 , the drift snow density field for 
the mixture is solved for. 

The drag coefficient, D between the snow and air 
phases of the mixture can be evaluated when the airflow is 
zero (still air) and the negatively buoyant snow particle is 
allowed to fall through the air at a constant rate. The 
momentum balance Equation 10 reduces to 
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If v, is to be a constant still air fall velocity then 

D o 

If b = -9.81 m/ sec2, the gravitational potential, and 
the range ~f the still air fall velocity is -0 .5 to -1 .0 M/ sec 
then D would range from 19.6 I / sec to 9.81 I / sec. For all 
following computations D = 13.0 I/ sec. 

The physical constants y and E are the constants of 
proportionality ansmg from the constitutive assumption 
between the turbulent fluctuations of the particle velocity 
vector: U I , the drift snow density: P~ and the deviatoric, 

-, 
mean rate of deformation tensor for the airflow. y and E 
have the dimensions length and time, respectively. There 
may be an intuitive desire to relate y and E to the integral 
length scale and integral time scale respectively of the 
principal turbulent spectra of the airflow. 

Principally to maintain computational stability and to 
fit theoretical results to observational data y and E vary 
from 0.1 to lA in the following computations. 

COMPONENT SNOW PARTICLE VELOCITIES FOR A 
ONE DIMENSIONAL AIRFLOW 

It is of interest to see if the theory can reproduce an 
inertial effect for the component snow particle velocities for 
a one dimensional airflow field (eg flow over a flat 
surface). The snow particles are introduced at the top of 
and allowed to fall through the boundary layer flow. Snow 
particles originating from the bottom of the boundary layer 
(eg via saltation) are not included in this solution. 

The momentum balance equation reduces to: 
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This equation can be solved by finite difference techniques 
for u, and v. versus height y. bx is zero and b is equal to 
the gravitational potential. The airflow profile and its 
gradients are given by: 
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where U· is the frictional velocity, k is Yon Karman's 
constant and y 0 is the roughness height. The boundary 
conditions on u. and v, at the top (I meter above the 
surface) of the solution domain are: 

u.(I) = u.(I) M/ sec 

v. (I) = - 1.0 M/ sec 
(17) 

The results of this solution are plotted in Figure I, 
showing that the theory can model an inertial effect for the 
snow particles by allowing the horizontal snow particle 
velocities to exceed those of the airflow. 
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Fig.l . Component snow particle velocities and airflow 
velocity vs height above the surface U a (lOM) = 10 
M/ sec, Ua(lM) = 7.0 M/ sec, y = 0.6M, E = 0.6 sec, U· = 0.33 M/ sec, K = 0.25 , yo = 0.005 M. 

Also, the theory allows the snow particles to have a 
positive horizontal component impact velocity at the surface, 
where the airflow velocity goes to zero. 

MIXTURE FLOW 
ACCUMULA nON ON 
SLOPE 

AND 
THE 

WIND-AIDED SNOW 
LEE OF A MOUNTAIN 

The mixture flow and subsequent wind-aided snow 
accumulation on the lee of a mountain slope is a natural 
environment which can be theoretically modelled in two 
dimensions . 
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Wind-aided snow accumulation profiles on the 
immediate lee slope (30m) were collected from the summit 
ridge of the Bridger mountains. Access to the ridge was via Bridger Bowl Ski Area, Bozeman, Montana. The Bridger 
mountains are longitudinally symmetric and the longitudinal 
axis of the mountains is normal to the prevailing westerly 
winter storm winds. Wind-aided snow accumulation profiles 
on the lee of mountain slopes have also been measured in 
the Davos, Switzerland region (Fohn and Meister 1983). 

It is of interest to see if the theory can reproduce a 
geometric approximation to these measured wind-aided snow 
accumulation profiles. 

The theoretical approach involves: 
I) Establishing a two dimensional geometric approximation 

to the mountain ridge. 
2) Establishing a model for the airflow regime over and 

in the lee of the ridge. 
3) Solve the momentum balance equation 10 for the snow 

particle velocity field in the lee of the ridge. 
4) Solve the continuity equation I1 for the drift snow 

density field in the lee of the ridge. 
5) Using the slope normal components of the snow 

particle velocities and the drift snow densities at the lee 
slope surface to calculate the snow accumulation flux and 
hence the wind-aided snow accumulation rates. 

Figure 2 shows the geometry of the discretized finite 
difference solution domain with respect to the model ridge. 

Four models for the airflow through this domain are 
investigated. They include two computational models for 
viscous fluid flow (Hirt and others 1975; Amsden and 
Harlow 1970), an empirical model for airflow through a 
half-jet (Yuu and others 1978) and data derived from a 16 
mm movie of smoke-laden airflow filmed on the Bridger 
mountain ridge. 

These airflow model data are discretized over the 
solution domain and the gradients of airflow are computed 
by central finite difference approximations. 

The momentum balance Equation 10 is discretized by 
an asymmetric finite difference approximation. The 
subsequent system of algebraic equations is solved by a 
rapid update (Gauss-Seidel) iterative method for the 

s l o p e 

, , 
/ 

Fig. 2. Location of the discretized solution domain in the lee of a two dimensional model mountain . 
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component snow particle velocities. The non-linear velocity 
coefficients are treated quasi-linearly by retaining their 
value of the n-l iterate during the nth iteration. 

The airflow data derived from the 16 mm smoke-test 
movie and from one of the two computational airflow 
models produced algorithmically singular algebraic equation 
systems for the discretized momentum balance equation. 
Unique snow particle velocity solutions are not available 
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from these airflow data. These airflow models had in 
common and differed from the half-jet airflow and 
remammg computational airflow model in that they 
contained centers of rotary flow in the discretized solution 
domain. 

When the component snow particle velocities resulting 
from the solution of the discretized momentum balance 
equation are substituted into the discretized continuity 
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Fig.3. Airflow velocity field and corresponding snow particle velocity field for U (freestream) 10 
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M/sec, y = 1.4 M, E = 1.4 secs. 
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Fig.4. Drift snow density field corresponding to the airflow and snow particle velocity fie lds of Figure 
3. U (freestream) = 10 M/sec, y = 1.4 M, E = 1.4 secs. 
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equation the drift snow density field is solved for. Only 
that snow particle velocity data that resulted from the 
half - jet airflow model produced reasonable (all positive) 
drift snow density results. 

Figure 3 shows the resultant snow particle velocity 
field overlayed on the half-jet airflow velocity field. The 
boundary conditions are that component snow particle 
velocities are set equal to the component air velocities at 
the left (upstream) and top sides of the solution domain. 
The freestream airflow velocity of Figure 3 is 10 M/sec. 

Figure 4 shows the drift snow density field 
corresponding to the airflow and snow particle velocity 
fields of Figure 3. The boundary conditions on the drift 
snow density field of Figure 4 are: P, decreases 
logarithmically up the left boundary from a maximum of 
1.65 x 10-3 Kg/M3 , to 6.5 x 10-· Kg/M3, along the top 
boundary p. is set equal to 6.5 x 10-· Kg/M3. 

In the row of solution cells adjacent to the slope 
surface the rate of slope normal snow flux from the 
mixture flow must equal the negative of the rate of 
wind-aided snow accumulation flux. This accumulation 
model contains the assumption that all snow particles which 
contact the snow surface in the lee of the mountain are 
deposited. For geometries where the airflow velocities in the 
accumulation zone approach zero this would be a valid 
assumption. However, there are mixture flows where 
wind-aided snow accumulation and erosion of snow particles 
from the surface into the flow are occurring simultaneously. 
In these cases, the wind-aided snow accumulation flux 
would be some fraction of the mixture flow flux. 

v. p. = - (snow accumulation rate) . 

. (accumulated snow mass density) (18) 

An accumulated snow mass density of 175 Kg/ M3 was 
assumed for all following computations. Figures 5 and 6 
show the theoretical wind-aided snow accumulation rates 
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Fig.5. Theoretical wind-aided snow accumulation rates vs 
distance down the lee slope. U (freestream) = 10 M/sec, -. 
y = 1.4 M, E = 1.4 sec, nonwind-aid snow accumulation 
rates = (0, 1, 2.5) cm/ hour. 
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Fig.6. Theoretical wind-aided snow accumulation rates vs 
distance down the lee slope. U (freestream) = 5 M/sec, y 

-a 
= 0.1 M, E = 0.1 sec, nonwind-aided snow accumulation 
rates = CO, I, 2.5) cm/hour. 
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Fig.7. Theoretical and measured wind-aided total snow 
accumulation vs distance down the lee slope for a model 
storm of 4 hour duration [U (measured at ridgetop) = {9, 

10, 12} m/sec, U a (model i;ee-stream) = 10 m/ sec,] y = 

1.4 M, E = 1.4 sec, nonwindaided snow accumulation 
rates = I cm/ hour. 
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versus distance down the lee slope for a range of drift 
snow density boundary conditions characterizing mixture 
flow without atmospheric preciptation (ground blizzard 
conditions) and mixture flow with two intenSltleS of 
atmospheric precipitation. These boundary conditions would 
result in accumulation rates on any surface of 0.0, 1.0 and 
2.5 cm/hour, respectively if the air was still. Figures 5 and 
6 have freestream airflow velocities of 10 M/ sec and 5 
M/sec, respectively. At a freestream airflow velocity of 5 
M/sec it is not possible to compute a stable solution that 
does not oversuspend or underpredict the wind-aided snow 
accumulation rates. The model predicts that the location of 
the wind-aided accumulation maximum moves closer to the 
ridgetop if the ridgetop drift density and/ or freestream 
airflow velocity decreases. 

Figure 7 shows the theoretical total wind-aided snow 
accumulation versus distance down the lee slope for a storm 
duration of 4 hours. The theoretical wind-aid accumulation 
profile results from the half-jet airflow model with a 
freestream velocity of 10 M/sec and the drift snow density 
boundary conditions characterizing moderate atmospheric 
precipitation. In addition, 3 measured wind-aided snow 
accumulation profiles from the Bridger ridge are plotted on 
figure 7. The storms which produced these p[rofiles had 
ridgetop (freest ream) windspeeds of 9.5 M/ sec, 11 M/sec 
and 12.5 M/sec. Storm duration data for the measured 
wind-aided accumulation profiles are not available. The 
model correctly predicts the location with respect to the 
ridgetop of the wind-aided snow accumulation maximum. 
However, the model over-suspends or underpredicts 
wind-aid snow accumulation in the region beyond the 
accumulation maximum. 

CONCLUSIONS 
Two dimensional theoretical models of turbulent 

atmospheric mixture flows of snow and air do produce good 
geometric approximations of wind-aided snow accumulation 
rates and profiles on the immediate lee of mountain slopes. 

The computational flexibility is low for the algebraic 
equation systems resulting from the finite difference 
approximations of the equations of motion (continuity and 
momentum balance) for the snow phase. The computational 
flexibility of the theory is further restricted to those 
geometries where airflow models can be established either 
computationally, empirically of experimentally. 

There is a need for additional research into solution 
methods other than finite difference techniques for the 
snow phase equations of motion. 

Additional research is also needed into the physical 
interaction of the airflow and the particle surface leading to 
a description of the mechanisms which produce the apparent 
turbulent forces or apparent buoyances on the snow particle. 
Hopefully this research would also lead to some bounds on 
the physical constants y and E, the constants of 
proportionality between the turbulent fluctuations of the 
snow particle vector U I, the drift snow density p. and the -. 
mean deviatoric rate of deformation tensor of the airflow. 
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