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1. Introduction

In [20] Monge was one of the first authors to discuss line congruences in R
3(see

[7] for historical notes). In recent decades, some papers are dedicated to the study of
line congruences from singularity theory and differential affine geometry viewpoints
[1, 4, 5, 8, 14]. There is a particular interest in the Blaschke normal congru-
ences, in the behaviour of affine principal lines near an affine umbilic point [1] and
the behaviour of affine curvature lines at isolated umbilic points [5]. From singu-
larity theory viewpoint, there is a particular interest in the classification of the
singularities related to line congruences [14].

A 3-parameter line congruence in R
4 is nothing but a 3-parameter family of

lines over a hypersurface in R
4. Locally, we denote a line congruence by C =

{x(u), ξ(u)}, where x is a parametrization of the reference hypersurface S and
ξ is a parametrization of a director hypersurface. A classical example appears when
we consider the congruence generated by the normal lines to a regular hypersur-
face S in R

4, which is called an exact normal congruence. Here, we look at a
line congruence C = {x(u), ξ(u)} as a smooth map F(x,ξ) : U × I → R

4, given by
F(x,ξ)(u, t) = x(u) + tξ(u), where I is an open interval and U ⊂ R

3 is an open
subset.

Taking into account [14], we seek to provide a classification of the generic sin-
gularities of 3-parameter line congruences, 3-parameter normal congruences and
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Blaschke normal congruences in R
4. As we want to use methods of singularity

theory to classify congruences, in § 2 we review some results that are useful for
the next sections. In § 3, we give some basic definitions and results on 3-parameter
line congruences. In § 4 and 5 we use the same approach as in [14] to classify
generically the singularities of 3-parameter line congruences and 3-parameter nor-
mal congruences in theorems 4.1 and 5.2, respectively. The comparison of these
two theorems shows that the generic singularities of 3-parameter line congruences
are different from the generic singularities of 3-parameter normal congruences. Fur-
thermore, we show that generically we also have singularities of corank 2 in both
cases and the proof of theorem 4.1 relies on a refinement of K-orbits by A-orbits of
Ae-codimension 1.

In § 6, we look at the Blaschke (affine) normal congruences, i.e. congruences
related to the Blaschke vector field of a non-degenerate hypersurface in R

4, which
is a classical equiaffine transversal vector field. Based on the theory of Lagrangian
singularities, we define the family of support functions associated to the Blaschke
congruence and prove that this is a Morse family of functions. We then classify the
generic singularities of the Blaschke exact normal congruences and Blaschke normal
congruences, providing a positive answer to the following conjecture presented in
[14]:

Conjecture. Germs of generic Blaschke affine normal congruences at any point
are Lagrangian stable.

2. Fixing notations, definitions and some basic results

We denote by I ⊂ R an open interval and U an open subset of R
3, where t ∈ I

and u = (u1, u2, u3) ∈ U . Here, x : U → R
4 is not necessarily an immersion, i.e. it

may have singularities. Given any smooth map f : U → R, we denote by fui
the

derivative of f with respect to ui, i = 1, 2, 3.
We now present some basic results in singularity theory which help us in the next

sections. More details can be found in [9, 19] and [23]. Given map germs f, g :
(Rn, 0) → (Rp, 0), if there is a germ of a diffeomorphism h : (Rn, 0) → (Rn, 0),
such that h∗(f∗(Mp)) = g∗(Mp), where h∗(f∗(Mp)) is the ideal generated by the
coordinate functions of f ◦ h and g∗(Mp) is the ideal generated by the coordinate
functions of g, we say that f and g are K-equivalent, denoted by, f ∼

K
g. Let Jk(n, p)

be the k-jet space of map germs from R
n to R

p. For any jkf(0), we set

Kk(jkf(0)) = {jkg(0) : f ∼
K

g},

for the K-orbit of f in the space of k-jets Jk(n, p). For a map germ f : (Rn ×
R

r, 0) → (Rp, 0) we define

jk
1 f : (Rn × R

r,0) → Jk(n, p)

(x, u) �→ jk
1 f(x, u),

where jk
1 f(x, u) indicates the k-jet with respect to the first variable.
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Figure 1. Associated diagram.

The next definition of unfolding is locally equivalent to the usual parametrized
one (see [10], chapter 3).

Definition 2.1. Let f : (N, x0) → (P, yo) be a map germ between manifolds. An
unfolding of f is a triple (F, i, j) of map germs, where i : (N, x0) → (N ′, x′

0), j :
(P, y0) → (P ′, y′

0) are immersions and j is transverse to F , such that F ◦ i = j ◦ f
and (i, f) : N → {(x′, y) ∈ N ′ × P : F (x′) = j(y)} is a diffeomorphism germ (see
the associated diagram in figure 1). The dimension of the unfolding is dim(N ′) −
dim(N).

Lemma 2.1 [14], lemma 3.1. Let F : (Rn−1 × R, (0, 0)) → (Rn, 0) be a map germ
with components Fi(x, t), i = 1, 2, · · · , n, i.e.

F (x, t) = (F1(x, t), · · · , Fn(x, t)).

Suppose that
∂Fn

∂t
(0, 0) �= 0. We know by the Implicit Function Theorem that there

is a germ of function g : (Rn−1, 0) → (R, 0), such that

F−1
n (0) = {(x, g(x)) : x ∈ (Rn−1,0)}.

Let us consider the immersion germs i : (Rn−1, 0) → (Rn, (0, 0)), given by i(x) =
(x, g(x)), j : (Rn−1, 0) → (Rn, (0, 0)), given by j(y) = (y, 0) and a map germ f :
(Rn−1, 0) → (Rn−1, 0), given by f(x) = (F1(x, g(x)), · · · , Fn−1(x, g(x))). Then
the triple (F, i, j) is a one-dimensional unfolding of f .

Lemma 2.2 [13], lemma 3.3. Let F : (Rn × R
r, 0) → (Rp × R

r, 0) be an unfolding
of f0 of the form F (x, u) = (f(x, u), u). If jk

1 f is transverse to Kk(jkf0(0)) for a
sufficiently large k, then F is infinitesimally A-stable.

Definition 2.2. We say that a r-parameter family of germs of functions F :
(Rn × R

r, 0) → (R, 0) is a Morse family of functions if the map germ ΔF :
(Rn × R

r, 0) → (Rn, 0), given by

ΔF (x, u) =
(

∂F

∂x1
, · · · ,

∂F

∂xn

)
(x, u)

is not singular.
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Definition 2.3. Let G be one of Mather’s subgroups of K and B a smooth manifold.
A family of maps F : R

n × B → R
k, given by F (x, u) = fu(x), is said to be locally

G-versal if for every (x, u) ∈ R
n × B, the germ of F at (x, u) is a G-versal unfolding

of fu at x.

Let g : M → R
n be an immersion, where M is a smooth manifold, and denote by

φg : M × B → R
k the map given by

φg(y, u) = F (g(y), u).

Denote by Imm(M, R
n) the subset of C∞(M, R

n) whose elements are proper C∞-
immersions from M to R

n.

Theorem 2.1 [21], theorem 1. Suppose F : R
n × B → R

k as above is locally
G-versal. Let W ⊂ Jr(M, R

k) be a G-invariant submanifold, where M is a manifold
and let

RW = {g ∈ Imm(M, Rn) : jr
1φg � W}.

Then RW is residual in Imm(M, R
n). Moreover, if B is compact and W is closed,

then RW is open and dense.

3. Line congruences

In this section, we define 3-parameter line congruences and discuss some of their
properties.

Definition 3.1. A 3-parameter line congruence in R
4 is a 3-parameter family of

lines in R
4. Locally, we write C = {x(u), ξ(u)} and the line congruence is given by

a smooth map

F(x,ξ) : U × I → R
4

(u, t) �→ F (u, t) = x(u) + tξ(u),

where

• x : U → R
4 is smooth and it is called a reference hypersurface of the congruence;

• ξ : U → R
4 \ {0} is smooth and it is called the director hypersurface of the

congruence.

When there is no risk of confusion, we denote the line congruence just by F
instead of F(x,ξ).

Lemma 3.1. The singular points of a line congruence F(x,ξ) are the points (u, t)
such that

t3〈ξ, ξu1
∧ ξu2

∧ ξu3
〉 + t2〈ξ,xu1 ∧ ξu2

∧ ξu3
+ ξu1

∧ xu2 ∧ ξu3
+ ξu1

∧ ξu2
∧ xu3〉

+ t〈ξ,xu1 ∧ xu2 ∧ ξu3
+ xu1 ∧ ξu2

∧ xu3 + ξu1
∧ xu2 ∧ xu3〉

+ 〈ξ,xu1 ∧ xu2 ∧ xu3〉 = 0.
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Proof. The Jacobian matrix of F is

JF =
[
xu1 + tξu1

xu2 + tξu2
xu3 + tξu3

ξ
]
.

As we know, (u, t) is a singular point of F if, and only if, detJF (u, t) = 0, thus
the result follows from

det JF (u, t) = 〈ξ, (xu1 + tξu1
) ∧ (xu2 + tξu2

) ∧ (xu3 + tξu3
)〉 = 0. �

Definition 3.2. We say that y(u) = x(u) + t(u)ξ(u) is a focal hypersurface of the
line congruence F(x,ξ) if

〈ξ(u),yu1
∧ yu2

∧ yu3
〉 = 0. (3.1)

If y(u) = x(u) + t(u)ξ(u) is a focal hypersurface of the line congruence F(x,ξ)

then

t3〈ξ, ξu1
∧ ξu2

∧ ξu3
〉 + t2〈ξ,xu1 ∧ ξu2

∧ ξu3
+ ξu1

∧ xu2 ∧ ξu3
+ ξu1

∧ ξu2
∧ xu3〉

+ t〈ξ,xu1 ∧ xu2 ∧ ξu3
+ xu1 ∧ ξu2

∧ xu3 + ξu1
∧ xu2 ∧ xu3〉

+ 〈ξ,xu1 ∧ xu2 ∧ xu3〉 = 0.

3.1. Ruled surfaces of the congruence

There is a geometric interpretation related to definition 3.2, when x is an
embedding and ξ is an immersion, as follows. Let {x(u), ξ(u)} be a 3-parameter
line congruence and C a regular curve on the reference hypersurface x. If we
restrict the director hypersurface ξ to this curve, we obtain a ruled surface asso-
ciated to the 1-parameter family of lines {x(s), ξ(s)}, where s is the parameter
of C, x(s) = x(u(s)) and ξ(s) = ξ(u(s)). The line obtained by fixing s is called a
generator of the ruled surface. These kind of ruled surfaces are called surfaces of
the congruence and since ξ′(s) �= 0, it is possible to define its striction curve (see
§ 3.5 in [6] for details). In the special case where this ruled surface is developable,
the points of contact of a generator with the striction curve are called focal points.
Let us write α(s) = x(u(s)) + ρ(u(s))ξ(u(s)) as the striction curve, where ρ(u(s))
denotes the coordinate of the focal point relative to ξ(u(s)). Suppose α′(s) �= 0 for
all s, then it is possible to show that α′ is parallel to ξ and assuming ‖ξ‖ = 1, α′

is perpendicular to ξui
, i = 1, 2, 3, thus⎧⎪⎨⎪⎩

u′
1(h11 + ρg11) + u′

2(h21 + ρg12) + u′
3(h31 + ρg13) = 0

u′
1(h12 + ρg12) + u′

2(h22 + ρg22) + u′
3(h32 + ρg23) = 0

u′
1(h13 + ρg13) + u′

2(h23 + ρg23) + u′
3(h33 + ρg33) = 0,

where gij = 〈ξui
, ξuj

〉 and hij = 〈xui
, ξuj

〉. As we want to find a non-trivial
solution for the above system, we obtain the cubic equation∣∣∣∣∣∣

h11 + ρg11 h21 + ρg12 h31 + ρg13

h12 + ρg12 h22 + ρg22 h32 + ρg23

h13 + ρg13 h23 + ρg23 h33 + ρg33

∣∣∣∣∣∣ = 0,

from which we obtain the coordinates ρi of the focal points, i = 1, 2, 3. Hence,
related to each line of the congruence we have (possibly) three focal points.
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We define a focal set of the congruence as

yi(u) = x(u) + ρi(u)ξ(u), i = 1, 2, 3.

Thus, for every u0, yi(u0) is a focal point and there is a curve in this focal set
(striction curve) α(s) = x(u(s)) + ρi(u(s))ξ(u(s)), such that α(s0) = yi(u0) and
α′(s0) is parallel to ξ(u0), then

〈ξ(u0),yiu1
∧ yiu2

∧ yiu3
〉 = 0. (3.2)

Therefore, the focal points are located at the focal hypersurfaces defined 3.2.

4. Generic classification of 3-parameter line congruences in R
4

In this section we use methods of singularity theory to obtain the generic singular-
ities of 3-parameter line congruences in R

4. Our approach is the same as in [14],
but here we are dealing with the case of 3 parameters in R

4. Let F(x,ξ) be a line
congruence and take xi and ξi, i = 1, 2, 3, 4, as the coordinate functions of x and ξ,
respectively, thus we have

F(x,ξ)(u, t) = (x1(u) + tξ1(u), x2(u) + tξ2(u), x3(u) + tξ3(u), x4(u) + tξ4(u)) .

If (u0, t0) ∈ U × I and ξ4(u0) �= 0 then there exists U4 ⊂ U an open subset given
by {u ∈ U : ξ4(u) �= 0}. Let us define

c4(u) = −x4(u) − a0

ξ4(u)
, (4.1)

where u ∈ U4 and a0 = x4(u0) + t0ξ4(u0). Therefore,

F(x,ξ)(u, t) = x(u) + c4(u)ξ(u) + (t − c4(u)) ξ(u)

= x(u) + c4(u)ξ(u) + t̃ξ(u), where t̃ = t − c4(u).

Then, if we look at F̃(x,ξ)(u, t̃) = x(u) + c4(u)ξ(u) + t̃ξ(u) we can see that its fourth
coordinate, which is denoted by F̃4, is x4(u) + c4(u)ξ4(u) + t̃ξ4(u) = a0 + t̃ξ4(u),
by (4.1). Furthermore, F̃−1

4 (a0) = {(u, 0) : u ∈ U4} and via the Implicit Function
Theorem and lemma 2.1, the germ of F̃(x,ξ) at (u0, 0) is an one-dimensional
unfolding of

f̃(u) = π̃4 ◦ F̃(x,ξ)(u, 0) = (x1(u) + c4(u)ξ1(u), x2(u) + c4(u)ξ2(u), x3(u) + c4(u)ξ3(u)) ,

where π̃4(y1, y2, y3, y4) = (y1, y2, y3).

Lemma 4.1. Let F(x,ξ) : U × I → R
4 be a line congruence. With notation as above,

the singularity of f̃ at u0 is determined by π̃4 ◦ x.

Proof. Let us suppose ξ4(u0) �= 0 (other cases are analogous), (u0, t0) = (0, 0) ∈
U × I and ξ(0) = (0, 0, 0, 1). Using the above notation, c4(0) = 0, thus the
Jacobian matrix of f̃ at 0 is equal to the Jacobian matrix of π̃4 ◦ x at 0. �
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The above lemma is important because it shows that the singularity of f̃ , and
therefore the unfolding F̃ , is determined by π̃4 ◦ x : U → R

3.

Lemma 4.2 [11], lemma 4.6 (Basic Transversality Lemma). Let X, B and Y be
smooth manifolds with W a submanifold of Y . Consider j : B → C∞(X, Y ) a
non-necessarily continuous map and define Φ : X × B → Y by Φ(x, b) = j(b)(x).
Suppose Φ smooth and transversal to W, then the set

{b ∈ B : j(b) � W}

is a dense subset of B.

The next lemma is the result for 3-parameter line congruences in R
4 which

corresponds to the lemma 4.1 in [14].

Lemma 4.3. Let W ⊂ Jk(3, 3) be a submanifold. For any fixed map germ ξ : U →
R

4 \ {0} and any fixed point (u0, t0) ∈ U × I with ξ4(u0) �= 0, the set

T ξ
4,W,(u0,t0)

=
{

x ∈ C∞(U, R4) : jk
1

(
π̃4 ◦ F̃(x,ξ)

)
� W at (u0, t0)

}
is a residual subset of C∞(U, R

4).

Proof. See lemma 4.1 in [14]. �

If ξj(u0) �= 0, j = 1, 2, 3, we can define the set

T ξ
j,W,(u0,t0)

=
{

x ∈ C∞(U, R4) : jk
1

(
π̃j ◦ F̃(x,ξ)

)
� W at (u0, t0)

}
, j = 1, 2, 3

where π̃j is the projection in the coordinates different than j. Thus, the above
lemma holds for the sets T ξ

j,W,(u0, t0)
, j = 1, 2, 3, 4.

Remark 4.1. Define

O1 =
{
ξ ∈ C∞ (

U, R4 \ {0}
)

: ξu1
∧ ξu2

∧ ξ �= 0, or ξu1
∧ ξu3

∧ ξ �= 0,

or ξu2
∧ ξu3

∧ ξ �= 0,∀ u ∈ U
}

Then, O1 is residual as follows. Take the matrix [ξ ξu1
ξu2

ξu3
] and suppose that

ξ /∈ O1. Thus, ξui
(u0) ∧ ξuj

(u0) ∧ ξ(u0) = 0, for some u0 ∈ U and i, j = 1, 2, 3, i.e.,
the sets {ξ(u0), ξui

(u0), ξuj
(u0)} are linearly dependent. So we have two cases:

(i) {ξu1
(u0), ξu2

(u0), ξu3
(u0)} is a linearly independent set, then we would have

ξ(u0) = 0. Contradiction.

(ii) {ξu1
(u0), ξu2

(u0), ξu3
(u0)} is a linearly dependent set, thus [ξ(u0) ξu1

(u0)
ξu2

(u0) ξu3
(u0)] has rank less than or equal to 2.

Let Σ be a submanifold of the space of 4 × 4 matrices formed by the matrices with
rank � 2, i.e., in which the minors of order 3 × 3 are zero, so, Σ has codimension
4. Since ξ ∈ C∞(U, R

4 \ {0}) is such that j1ξ � Σ and U is an open subset of
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R
3, we have j1ξ(U) ∩ Σ = ∅, what happens if, and only if, ξ ∈ O1. Therefore, by

Thom’s Transversality Theorem, O1 is residual. Note above that we are denoting
j1ξ(u) = [ξ(u) ξu1

(u) ξu2
(u) ξu3

(u)].
Thus, it follows from lemma 4.3 that

T̃4,W,(u0,t0) =
{

(x, ξ) : jk
1

(
π̃4 ◦ F̃(x,ξ)

)
� W at (u0, t0), ξ ∈ O1

}
is residual.

Now, we are able to prove our first main theorem, which provides a classification
of the generic singularities of 3-parameter line congruences in R

4.

Theorem 4.1. There is an open dense set O ⊂ C∞(U, R
4 × (R4 \ {0})), such

that:

(a) For all (x, ξ) ∈ O, the germ of the line congruence F(x,ξ) at any point
(u0, t0) ∈ U × I is stable;

(b) For all (x, ξ) ∈ O, the germ of the line congruence F(x,ξ) at any point
(u0, t0) ∈ U × I is a 1-parameter versal unfolding of a germ f : (R3, u0) →
R

3 at t = t0. Then, F(x,ξ) is A-equivalent to one of the normal forms below

• (x, y, z, w) �→ (x, y, w, z2)(Fold).

• (x, y, z, w) �→ (x, y, w, z3 + xz)(Cusp).

• (x, y, z, w) �→ (x, y, z3 + (x2 ± y2)z + wz, w)(Lips/Beaks).

• (x, y, z, w) �→ (x, y, w, z4 + xz + yz2)(Swallowtail).

• (x, y, z, w) �→ (x, y, w, z4 + xz ± y2z2 + wz2).

• (x, y, z, w) �→ (x, y, w, z5 + xz + yz2 + wz3)(Butterfly).

• (x, y, z, w) �→ (z, x2 + y2 + zx + wy, xy, w)(Hyperbolic Umbilic).

• (x, y, z, w) �→ (z, x2 − y2 + zx + wy, xy, w)(Elliptic Umbilic).

Proof. We first prove item (a). Given f ∈ E3,3 and z = jkf(0), define

Kk(z) = {jkg(0) : g ∼
K

f}.

For a sufficiently large k, define

Πk(3, 3) = {f ∈ Jk(3, 3) : code(K, f) � 5}.

Consider

Σi = {σ ∈ J1(3, 3) : kernel rank(σ) = i} ⊂ J1(3, 3),

which is a submanifold of codimension i2.

(i) We look at the slice of Πk(3, 3) in Σ1, i.e., f ∈ Πk(3, 3) such that
kernel rank(df(0)) = 1. Then, we are dealing with f ∈ Πk(3, 3) of corank 1.
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Therefore, we can write f(x, y, z) = (x, y, g(x, y, z)), where g(0, 0, z) has a
singularity of Ar type, for some 5 � r � k − 1 and we call them K-singularities
of Ar-type. Note that if we regard the ‘good’ set as the complement of Πk(3, 3)
in Σ1, then its singularities are the K-singularities of A1, A2, A3 and A4-type.
Therefore, the slice Πk(3, 3) ∩ Σ1 is a semialgebraic set of codimension greater
than or equal to 5, so it has a stratification {S1

i }m1
i=1, with codim(S1

i ) � 5.

(ii) As we did in the first case, define Πk(3, 3) ∩ Σ2, i.e., the set of f ∈ Πk(3, 3)
of corank 2. We may assume that f(x, y, z) = (z, g1(x, y, z), g2(x, y, z)),
where gi has zero 1-jet and (g1(x, y, 0), g2(x, y, 0)) has 2-jet in H2(2, 2),
therefore, (g1(x, y, 0), g2(x, y, 0)) has 2-jet given by one of the normal forms
below (see [9] or [19]):

(x2 + y2, xy); (x2 − y2, xy); (x2, xy); (x2, 0); (x2 ± y2, 0); (0, 0).

Hence, by looking at the first two normal forms and its local algebras, f is
K-equivalent to one of the forms below:
• W1 : (z, x2 + y2 + xz, xy)

• W2 : (z, x2 − y2 + xz, xy)
and both of these forms have code(K) = 4. The other K-orbits have code(K) �
5. Note that Σ2 \ (W1 ∪ W2) is a semialgebraic set of codimension greater
than or equal to 5. Πk(3, 3) ∩ Σ2 is a semialgebraic set contained in Σ2 \
(W1 ∪ W2), then its codimension is greater than or equal to 5, thus, there is a
stratification {S2

i }m2
i=1 of it, with codim(S2

i ) � 5. Furthermore, the ‘good’ set
contains only W1 and W2.

(iii) In a similar way, we define Πk(3, 3) ∩ Σ3, i.e., the set of the k-jets f ∈ Πk(3, 3)
whose corank is 3. It is well-known that Σ3 has codimension 9, so Πk(3, 3) ∩
Σ3 is a semialgebraic set of codimension greater than or equal to 9, hence,
there is a stratification {S3

i }m3
i=1, with codim(S3

i ) > 5.
Then, it follows that the ‘good’ set, i.e., the set of the K-orbits of codimension
less than or equal to 4, contains the following K-orbits
• type Ar, for 1 � r � 4;

• type W1;

• type W2.

Applying lemma 4.3 and remark 4.1 to each strata of the above stratification, we
obtain that

Tj =
mj⋂
i=1

T̃4,Sj
i ,(u0,t0)

, j = 1, 2, 3

T3+r = T̃4,Ar,(u0,t0), 1 � r � 4

T7+i = T̃4,Wi,(u0,t0), i = 1, 2.
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are residual subsets of C∞(U, R
4 × (R4 \ {0})). Hence,

O4,(u0,t0) =
9⋂

i=1

Ti

is residual. The same is true for the sets Oj,(u0, t0), j = 1, 2, 3, defined in a similar
way.

Since ξ(u) �= 0 for all u ∈ U , given a point (u0, t0) ∈ U × I, ξj(u0) �= 0, for some j,
there is a residual set O(u0, t0) ⊂ C∞(U, R

4 × (R4 \ {0})), such that

(x, ξ) ∈ O(u0,t0) ⇔ jk
1

(
π̃j ◦ F̃(x,ξ)

)
� Ar, W1, W2, Sj

i , j = 1, 2, 3, r = 1, · · · , 4.

It follows from what we already have done that the germ of F̃(x,ξ) at (u0, 0),
which is equivalent to the germ of F(x,ξ) at (u0, t0), is a 1-dimensional unfolding
of π̃j ◦ F̃ (u, 0) and it follows from lemma 2.2 that F(x,ξ) is A-infinitesimally stable
for all (x, ξ) ∈ O(u0, t0). Since a germ A-infinitesimally stable is A-stable (see [18]),
there is a neighbourhood Uu0 × It0 of (u0, t0) in U × I, such that F(x,ξ)

∣∣
Uu0×It0

is A-stable. This result holds independently of the fixed point (u0, t0), so we can
consider a countable family of points (ui, ti) ∈ U × I and neighbourhoods Uui

× Iti
,

(i = 1, 2, · · · ), such that F(x,ξ)

∣∣
Uui

×Iti

is A-stable and

U × I =
∞⋃

i=1

Uui
× Iti

.

Since O(ui, ti) is a residual subset of C∞(U, R
4 × (R4 \ {0})), it follows that

O2 =
∞⋂

i=1

O(ui,ti)

is residual. Furthermore, the germ of F(x,ξ) at any point (u, t) ∈ U × I is
A-infinitesimally stable, for all (x, ξ) ∈ O2.

Since F : C∞(U, R
4 × (R4 \ {0})) → C∞(U × I, R

4), defined by F(x, ξ) =
F(x,ξ), is continuous and

S = {f ∈ C∞(U × I, R4) : f A− infinitesimally stable}

is open (see [11] p. 111), O = F−1(S) is open. By previous arguments O2 ⊂ O and
O2 is dense, therefore O is an open dense subset.

To prove (b), we refine the K-orbits of type A2 and A3 of the above stratification,
by taking the A-orbits of Ae-codimension � 1 inside these K-orbits. Then, the
relevant strata in this stratification are the A-orbits of stable singularities Ak,
k = 1, 2, 3, and the A-orbits of singularities of Ae-codimension 1 of type A2, A3,
A4 and D4. The complement of their union is a semialgebraic set of codimension
greater than or equal to 5.
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(i) K-orbit of A1 type
f(x, y, z) = (x, y, z2) which is stable, hence, we have just this A-orbit. Its
suspension in R

4 is the stable germ that we are looking for.

(ii) K-orbits of A2 type
It follows from the classification made by Marar and Tari [17], that the
possible normal forms are

f(x, y, z) =
(
x, y, z3 + P (x, y)z

)
,

where P (x, y) is one of the singularities Ak, Dk, E6, E7 or E8 and
code(A, f) = μ(P ).
As we are looking for f which have a versal unfolding of dimension 1 that is
a stable germ, we must have P (x, y) = x or P (x, y) = x2 ± y2. Therefore, we
have the A-orbits

f1(x, y, z) = (x, y, z3 + xz) (Cusp);

f2(x, y, z) = (x, y, z3 + (x2 ± y2)z) (Lips(+) / Beaks(−)),

with code(A, f1) = 0 and code(A, f2) = 1. The stable germs R
4, 0 → R

4, 0
are, respectively

F1(x, y, z, w) = (x, y, z3 + xz,w);

F2(x, y, z, w) = (x, y, z3 + (x2 ± y2)z + wz,w).

These germs are A-equivalent, however they are considered separately,
because they are versal unfoldings of f1 and f2, respectively, which are not
A-equivalent.

(iii) K-orbits of A3 type
In a similar way, the possible normal forms are (see [17], § 1)

(x, y, z4 + xz ± ykz2), k � 1. code (A) = k − 1;

(x, y, z4 + (y2 ± xk)z + xz2), k � 2. code (A) = k.

Hence,the useful cases are those where k = 1 or k = 2 in the first type of
orbit, i.e.,

f1(x, y, z) = (x, y, z4 + xz + yz2) (Swallowtail);

f2(x, y, z) = (x, y, z4 + xz ± y2z2),

with code(A, f1) = 0 e code(A, f2) = 1. The stable germs R
4, 0 → R

4, 0 are,
respectively

F1(x, y, z, w) = (x, y, z4 + xz + yz2, w)

F2(x, y, z, w) = (x, y, z4 + xz ± y2z2 + wz2, w).

(iv) K-orbits of A4 type
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Via [17], the possible normal forms are

(x, y, z5 + xz + yz2), code(A) = 1;

(x, y, z5 + xz + y2z2 + yz3), code(A) = 2;

(x, y, z5 + xz + yz3), code(A) = 3.

Thus, the only case to be considered is

f(x, y, z) = (x, y, z5 + xz + yz2),

whose associated stable germ is

F (x, y, z, w) = (x, y, z5 + xz + yz2 + wz3, w).

(v) K-orbits W1 and W2

The germs

F1(x, y, z, w) = (z, x2 + y2 + zx + wy, xy, w);

F2(x, y, z, w) = (z, x2 − y2 + zx + wy, xy, w).

are, respectively, 1-parameter versal unfoldings of (see [2], § 3)

f1(x, y, z) = (z, x2 + y2 + zx, xy);

f2(x, y, z) =
(
z, x2 − y2 + zx, xy

)
,

where f1 and f2 are of the type W1 e W2, respectively and both have
code(A) = 1. Then, we conclude the proof. �

5. Normal congruences

In this section, our approach is the same as in [14] and we seek to provide a
classification of the generic singularities of 3-parameter normal congruences in R

4.
For this, it is necessary to characterize normal congruences and consider some
aspects of Lagrangian singularities.

Definition 5.1. A 3-parameter line congruence C = {x(u), ξ(u)}, for u ∈ U ⊂ R
3,

is said to be normal if for each point u0 ∈ U there is a neighbourhood Ũ of u0 and
a regular hypersurface, given by y(u) = x(u) + t(u)ξ(u), whose normal vectors are
parallel to ξ(u), for all u ∈ Ũ . The congruence is an exact normal congruence if
ξ(u) is a normal vector at x(u), for all u ∈ U .

The next proposition characterizes 3-parameter normal line congruences in R
4

and corresponds to the proposition 5.1 in [14].

Proposition 5.1. Let C = {x(u), ξ(u)}, u ∈ U ⊂ R
3, be a 3-parameter line con-

gruence in R
4. C is normal if, and only if, hij(u) = hji(u), i, j ∈ {1, 2, 3}, for all

u ∈ U, where hij =
〈

xui
, (

ξ

‖ξ‖ )uj

〉
.
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Proof. Let C be a normal congruence and S′ a hypersurface parameterized locally
by y(u) = x(u) + t(u)ξ(u), whose normal vectors are parallel to ξ(u). Let us sup-
pose that ‖ξ(u)‖ = 1. Then, yui

(u), i = 1, 2, 3 are orthogonal to ξ(u), therefore,
〈ξ, yui

〉 = 0. From these expressions, we obtain

tui
= −〈xui

, ξ〉, i = 1, 2, 3. (5.1)

Since t is smooth, tu1u2 = tu2u1 , tu1u3 = tu3u1 and tu2u3 = tu3u2 . From tu1u2 = tu2u1 ,
we obtain

−〈xu1u2 , ξ〉 − 〈xu1 , ξu2
〉 = −〈xu1u2 , ξ〉 − 〈xu2 , ξu1

〉
Therefore, h12 = 〈xu1 , ξu2

〉 = 〈xu2 , ξu1
〉 = h21. The other cases are analogous.

Reciprocally, suppose hij = hji, for i, j = 1, 2, 3. Taking into account the differ-
ential equations in (5.1), it follows from hij = hji that tu1u2 = tu2u1 , tu1u3 = tu3u1

and tu2u3 = tu3u2 . Therefore, the above system has a solution t. Write y(u) =
x(u) + t(u)ξ(u). Note that

〈ξ,yui
〉 = 〈ξ,xui

〉 + tui

= 〈ξ,xui
〉 − 〈ξ,xui

〉 = 0.

If y is not an immersion, there is a positive real number λ such that ỹ(u) = x(u) +
(t(u) + λ)ξ(u) is an immersion. For the last part, it is sufficient to look at the case
when y(u) belongs to the focal set of the congruence. �

Denote by

Emb(U, R4) = {x : U → R
4 : x is an embedding}

the space of the regular hypersurfaces in R
4 with the Whitney C∞-topology, and

by

EN
(
U, R4 ×

(
R

4 \ {0}
))

=
{
(x, ξ) : x ∈ Emb(U, R4), ξ(u) is normal to x at x(u)

}
the space of the exact normal congruences. So, we have the following well-known
theorem.

Theorem 5.1. There is an open dense subset O ⊂ Emb(U, R
4), such that the germ

of an exact normal congruence F(x,ξ) at any point (u0, t0) ∈ U × I is a Lagrangian
stable map germ for any x ∈ O, i.e., ∀x ∈ O, F(x,ξ) is an immersive germ, or
A-equivalent to one of the normal forms in table 1.

Proof. See theorem 5.2 in [14] or chapters 4 and 5 in [12]. �

Now, we define a natural projection P : EN(U, R
4 × (R4 \ {0})) → Emb(U, R

4),
given by P (x, ξ) = x. Then, we have the following corollary, which provides a
classification of the generic singularities of 3-parameter exact normal congruences.

Corollary 5.1. There is an open dense subset O ⊂ EN(U, R
4 × (R4 \ {0})), such

that the germ of an exact normal congruence F(x,ξ) at any point (u0, t0) ∈ U × I
is a Lagrangian stable map germ, for all (x, ξ) ∈ O.
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Table 1. Generic singularities of exact normal congruences

Singularity Normal form

Fold (x, y, w, z2)

Cusp (x, y, w, z3 + xz)

Swallowtail (x, y, w, z4 + xz + yz2)

Butterfly (x, y, w, z5 + xz + yz2 + wz3)

Elliptic Umbilic (z, w, x2 − y2 + zx + wy, xy)

Hyperbolic Umbilic (z, w, x2 + y2 + zx + wy, xy)

Parabolic Umbilic (z, w, xy + xz, x2 + y3 + yw)

Proof. It follows from the fact that P : EN(U, R
4 × (R4 \ {0})) → Emb(U, R

4) is
an open continuous map and from theorem 5.1. �

Let us consider some aspects of Lagrangian singularities (see chapter 5 in [12]).
Take the cotangent bundle π : T ∗

R
4 → R

4, whose symplectic structure is given
locally by the 2-form ω = −dλ, where λ is the Liouville 1-form, given locally by
λ =

∑4
i=1 pidzi, where (z1, z2, z3, z4, p1, p2, p3, p4) are the cotangent coordinates.

For a given congruence F(x,ξ), we define a smooth map L(x,ξ) : U × I → T ∗
R

4 �
R

4 × (R4)∗, given by

L(x,ξ)(u, t) =
(

x(u) + t
ξ

‖ξ‖ (u),
ξ

‖ξ‖ (u)
)

.

Definition 5.2. We say that F(x,ξ) is a Lagrangian Line Congruence if L(x,ξ) is a
Lagrangian immersion.

Proposition 5.2. Suppose that L(x,ξ) is an immersion. Then F(x,ξ) is a
Lagrangian congruence if, and only if, it is a normal congruence

Proof. Locally, the Liouville 1-form of T ∗
R

4 is given by λ =
∑4

i=1 pidzi. So,

L∗
(x,ξ)(λ) =

4∑
i=1

(
ξi

‖ξ‖ (u)dxi(u) + t
ξi

‖ξ‖ (u)d
ξi

‖ξ‖ (u)
)

+ dt,

Therefore, being ω = −dλ, we have

−L∗
(x,ξ)(ω) = dL∗

(x,ξ)(λ) =
4∑

i=1

(
d

ξi

‖ξ‖ (u) ∧ dxi(u) +
ξi

‖ξ‖ (u)dt ∧ d
ξi

‖ξ‖ (u)
)

=

(〈(
ξ

‖ξ‖

)
u1

,xu2

〉
−
〈(

ξ

‖ξ‖

)
u2

,xu1

〉)
du1 ∧ du2
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+

(〈(
ξ

‖ξ‖

)
u1

,xu3

〉
−
〈(

ξ

‖ξ‖

)
u3

,xu1

〉)
du1 ∧ du3

+

(〈(
ξ

‖ξ‖

)
u2

,xu3

〉
−
〈(

ξ

‖ξ‖

)
u3

,xu2

〉)
du2 ∧ du3

+
3∑

i=1

〈
ξ

‖ξ‖ ,

(
ξ

‖ξ‖

)
ui

〉
dt ∧ dui,

where x(u) = (x1(u), x2(u), x3(u), x4(u)) and ξ(u) = (ξ1(u), ξ2(u), ξ3(u), ξ4(u)).
Thus

−L∗
(x,ξ)(ω) =

(〈(
ξ

‖ξ‖

)
u1

,xu2

〉
−
〈(

ξ

‖ξ‖

)
u2

,xu1

〉)
du1 ∧ du2

+

(〈(
ξ

‖ξ‖

)
u1

,xu3

〉
−
〈(

ξ

‖ξ‖

)
u3

,xu1

〉)
du1 ∧ du3

+

(〈(
ξ

‖ξ‖

)
u2

,xu3

〉
−
〈(

ξ

‖ξ‖

)
u3

,xu2

〉)
du2 ∧ du3.

Therefore, L∗
(x,e)(ω) = 0 if, and only if,

h21 =

〈(
ξ

‖ξ‖

)
u1

,xu2

〉
=

〈(
ξ

‖ξ‖

)
u2

,xu1

〉
= h12

h31 =

〈(
ξ

‖ξ‖

)
u1

,xu3

〉
=

〈(
ξ

‖ξ‖

)
u3

,xu1

〉
= h13

h32 =

〈(
ξ

‖ξ‖

)
u2

,xu3

〉
=

〈(
ξ

‖ξ‖

)
u3

,xu2

〉
= h23. �

By proposition 5.1, we can regard the space of the Lagrangian congruences as
follows. A line congruence F(x,ξ) is a Lagrangian congruence if, and only if, there
is a smooth function t : U → R, such that x(u) + t(u)ξ(u) is an immersion and the
following conditions hold⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tu1(u) +
〈

ξ

‖ξ‖ (u),xu1(u)
〉

= 0

tu2(u) +
〈

ξ

‖ξ‖ (u),xu2(u)
〉

= 0

tu3(u) +
〈

ξ

‖ξ‖ (u),xu3(u)
〉

= 0.

(5.2)

So, we can define the space of the Lagrangian congruences

L(U, R4 ×
(
R

4\{0}
)
)= {(x, t, ξ) : x(u) + t(u)ξ(u) is an immersion and (5.2) holds}

with the Whitney C∞-topology. Our idea now is to show that the generic singulari-
ties of normal congruences are the same as the generic singularities of exact normal
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congruences, so, let us define the map

Trp : C∞(U, R4 × R ×
(
R

4 \ {0}
)
) → C∞(U, R4 ×

(
R

4 \ {0}
)
)

(x(u), t(u), ξ(u)) �→ (x(u) + t(u)ξ(u), ξ(u)).

By using the method of the proof of proposition 5.6 in [14] one can get the following
result:

Proposition 5.3. Trp is an open continuous map under the Whitney C∞-topology.

Now, take

N(U, R4 ×
(
R

4 \ {0}
)
) = Trp

(
L
(
U, R4 ×

(
R

4 \ {0}
)))

⊂ C∞ (
U, R4 ×

(
R

4 \ {0}
))

,

with the Whitney C∞-topology induced from C∞(U, R
4 × (R4 \ {0})). Note that

we can regard N(U, R
4 × (R4 \ {0})) as the space of the normal congruences. Then,

we have the following theorem.

Theorem 5.2. There is an open dense set O′ ⊂ N(U, R
4 × (R4 \ {0})), such that

the germ of normal congruence F(x,ξ) at any point (u0, t0) is a Lagrangian stable
germ, for any (x, ξ) ∈ O′.

Proof. From corollary 5.1, there exists an open dense subset O ⊂ EN(U, R
4 × (R4 \

{0})), such that the germ of exact normal congruence F(x,ξ) is a Lagrangian stable
germ for all (x, ξ) ∈ O at any point (u0, t0) ∈ U × I. As we know, Trp is an open
map, so we just need to take O′ = Trp(O). �

6. Blaschke normal congruences

In this section we deal with one of the most important classes of equiaffine line
congruences, which is the class of Blaschke normal congruences. Our goal is to
provide a positive answer to the following conjecture, presented in [14]:

Conjecture. Germs of generic Blaschke affine normal congruences at any point
are Lagrangian stable.

Taking this into account, let us regard R
4 as a four-dimensional affine

space with volume element given by ω(e1, e2, e3, e4) = det(e1, e2, e3, e4), where
{e1, e2, e3, e4} is the standard basis of R

4. Let D be the standard flat connection
on R

4, thus ω is a parallel volume element. Let x : U → R
4 be a regular hypersur-

face with x(U) = M and ξ : U → R
4 \ {0} a vector field which is transversal to M .

Thus, decompose the tangent space

TpR
4 = TpM ⊕ 〈ξ(u)〉R,

where x(u) = p. So, it follows that given X and Y vector fields on M , we have the
decomposition

DXY = ∇XY + h(X,Y )ξ,

where ∇ is the induced affine connection and h is the affine fundamental form
induced by ξ, which defines a symmetric bilinear form on each tangent space of M .
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We say that M is non-degenerate if h is non-degenerate which is equivalent to say
that the Gaussian curvature of M never vanishes (see chapter 3 in [22]). Using the
same idea, we decompose

DXξ = −S(X) + τ(X)ξ,

where S is the shape operator and τ is the transversal connection form. We say
that ξ is an equiaffine transversal vector field if τ = 0, i.e DXξ is tangent to M .

Using the volume element ω and the transversal vector field ξ, we induce a volume
element θ on M as follows

θ(X,Y,Z) = ω(X,Y,Z, ξ),

where X, Y and Z are tangent to M .
Given a non-degenerate hypersurface x : U → R

4 and a vector field ξ : U → R
4 \

{0} which is transversal to M = x(U), we take the line congruence generated by
(x, ξ) and the map

F(x,ξ) : U × I → R
4

(u, t) �→ x(u) + tξ(u),

where I is an open interval.

Definition 6.1. A point p = F (u, t) is called a focal point of multiplicity m > 0
if the differential dF has nullity m at (u, t), where nullity indicates the dimension
of the kernel of dF .

The next proposition relates the shape operator S and the above definition.

Proposition 6.1 [3], proposition 1. Let x : U → R
4 be a non-degenerate hypersur-

face with transversal equiaffine vector field ξ. Let S be the shape operator related
to M and ξ. A point p = F (u, t) is a focal point of M of multiplicity m > 0 if and
only if 1/t is an eigenvalue of S with eigenspace of dimension m at u.

For each u ∈ U and p ∈ R
4, we decompose p − x(u) into tangential and transver-

sal components as follows

p − x(u) = v(u) + ρp(u)ξ(u), (6.1)

where v(u) ∈ Tx(u)M . The real function ρp is called an affine support function
associated to M and ξ. If we fix an Euclidean inner product 〈. , .〉 in R

4, the support
function is given by

ρp(u) =
〈

p − x(u),
ξ

‖ξ‖2
(u)

〉
−
〈

v(u),
ξ

‖ξ‖2
(u)

〉
, (6.2)

thus

∂ρ

∂pi
(u) =

ξi

‖ξ‖2
(u).
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Proposition 6.2 [3], proposition 2. Let x : U → R
4 be a non-degenerate hypersur-

face and ξ an equiaffine transversal vector field. Then

(a) The affine support function ρp has a critical point at u if and only if p − x(u)
is a multiple of ξ(u).

(b) If u is a critical point of ρp, then the Hessian of ρp at u has the form

H(X,Y ) = h(X, (I − ρp(u)S)Y ), X, Y ∈ Tx(u)M.

(c) A critical point u of the function ρp is degenerate if and only if p is a focal
point of M .

Remark 6.1. It follows from item (a) that the catastrophe set of ρ, which is also
called the Criminant set of ρ, is

Cρ = {(u, p) : p = x(u) + tξ(u), for some t ∈ R}.

Proposition 6.3. Let x : U → R
4 be a non-degenerate hypersurface with transver-

sal equiaffine vector field ξ. Then the family of germs of functions ρ : (U × R
4,

(u0, p0)) → (R, t0), where t0 = ρ(u0, p0) and u0 is a critical point of ρp0 is a Morse
family of functions.

Proof. Let us denote (u, p) = (u1, u2, u3, p1, p2, p3, p4). In order to prove that ρ is
a Morse family we need to prove that the map germ Δρ : (U × R

4, (u0, p0)) → R
3,

given by

Δρ(u, p) =
(

∂ρ

∂u1
,

∂ρ

∂u2
,

∂ρ

∂u3

)
(u, p)

is not singular. Its Jacobian matrix is given by

J(Δρ)(u0, p0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂2ρp0

∂u1∂u1

∂2ρp0

∂u1∂u2

∂2ρp0

∂u1∂u3

1
‖ξ‖2

ξu1
−

2〈ξ, ξu1
〉

‖ξ‖4
ξ

∂2ρp0

∂u1∂u2

∂2ρp0

∂u2∂u2

∂2ρp0

∂u2∂u3

1
‖ξ‖2

ξu2
−

2〈ξ, ξu2
〉

‖ξ‖4
ξ

∂2ρp0

∂u1∂u3

∂2ρp0

∂u2∂u3

∂2ρp0

∂u3∂u3

1
‖ξ‖2

ξu3
−

2〈ξ, ξu3
〉

‖ξ‖4
ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
3×7

.

(6.3)

If u0 is a non-degenerate critical point of ρp0 , then rank(Hess(ρp0)(u0)) = 3 and
the map germ Δρ is not singular. Thus, we just need to check the case in which u0

is a degenerate critical point.

(i) rank Hess(ρp0)(u0) = 0
In this case, using proposition 6.2, we obtain that the eigenspace associated to
the eigenvalue 1

ρp0
has dimension 3, hence, the matrix of the shape operator

has rank 3 and considering that the ξ is equiaffine, J(Δρ)(u0, p0) has rank 3.

(ii) rank Hess(ρp0)(u0) = 1
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In this case, there are two linearly independent vectors Y, Z ∈ Tx(u0)M , such
that H(X, Y ) = H(X, Z) = 0, for all X ∈ Tx(u0)M . Hence, as seen in propo-
sition 6.2, the vectors Y and Z are eigenvectors of the shape operator S,
with eigenvalue 1

ρp0 (u0)
. Notice that {xu1(u0), xu2(u0), xu3(u0)} is a set of

linearly independent vectors and one of these vectors form a basis of Tx(u0)M
together with Y and Z. Let us say that β = {xu1(u0), Y, Z} is a basis of
Tx(u0)M (the other cases are analogues). Thus, we can write

xu2(u0) = a1xu1 + a2Y + a3Z (6.4)

xu3(u0) = b1xu1 + b2Y + b3Z (6.5)

which implies that J(Δρ) is given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

H(xu1 , xu1) a1H(xu1 , xu1) b1H(xu1 , xu1)
1

‖ξ‖2
ξu1

− 2〈ξ, ξu1
〉

‖ξ‖4
ξ

a1H(xu1 , xu1) a2
1H(xu1 , xu1) a1b1H(xu1 , xu1)

1

‖ξ‖2
ξu2

− 2〈ξ, ξu2
〉

‖ξ‖4
ξ

b1H(xu1 , xu1) a1b1H(xu1 , xu1) b21H(xu1 , xu1)
1

‖ξ‖2
ξu3

− 2〈ξ, ξu3
〉

‖ξ‖4
ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.6)

where H(xu1 , xu1) �= 0, since the Hessian matrix has rank 1. It follows from
the fact that the shape operator S has two linearly independent eigenvectors
with nonzero eigenvalue that its rank is at least 2, so in the set {ξu1

, ξu2
, ξu3

}
two of these vectors need to be linearly independent. It is sufficient to analyse
the case when ξu1

and ξu2
are linearly independent, the other subcases are

similar.
Subcase: {ξu1

, ξu2
} linearly independent

First of all, if ξu1
and ξu2

are linearly independent and ξ is equiaffine, then

ξu1
− 2〈ξ, ξu1

〉
‖ξ‖4 ξ and ξu2

− 2〈ξ, ξu2
〉

‖ξ‖4 ξ are linearly independent. Thus, the only
case when J(Δρ)(u0, p0) has rank less than 3 is when its third row is a linear
combination of the first and the second rows. Then the same occurs with the
Hessian matrix of ρp0 and if we call L1, L2 and L3 the rows of this matrix,
we have

L3 = λL1 + γL2, where λ, γ ∈ R.

But we know that L2 = a1L1 and L3 = b1L1 and using the above equation

b1 = λ + γa1. (6.7)

By considering the same combination on the block 3 × 4 on the right, we have

1

‖ξ‖2
ξu3

− 2〈ξ, ξu3
〉

‖ξ‖4
ξ = λ

(
1

‖ξ‖2
ξu1

− 2〈ξ, ξu1
〉

‖ξ‖4
ξ

)
+ γ

(
1

‖ξ‖2
ξu2

− 2〈ξ, ξu2
〉

‖ξ‖4
ξ

)
.

Using (6.7), λ = b1 − a1γ. Consequently

1
‖ξ‖2

ξu3
− (b1 − a1γ)

1
‖ξ‖2

ξu1
− γ

1
‖ξ‖2

ξu2
∈ TM ∩ <ξ > ={0},
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thus ξu3
= (b1 − a1γ)ξu1

+ γξu2
. We know that ξui

= −S(xui
) and from

(6.5)

b1ξu1
− b2

ρp0

Y − b3

ρp0

Z = (b1 − a1γ)ξu1
+ γ

(
a1ξu1

− a2

ρp0

Y − a3

ρp0

Z

)
,

therefore,

− b2

ρp0

Y − b3

ρp0

Z = −γ
a2

ρp0

Y − γ
a3

ρp0

Z. (6.8)

Then,

a2γ = b2

a3γ = b3.

Finally

γxu2 = a1γxu1 + a2γY + a3γZ

= (−λ + b1) xu1 + b2Y + b3Z

= −λxu1 + xu3 .

But this contradicts the fact that {xu1 , xu2 , xu3} are linearly independent.

(iii) rank Hess(ρp0)(u0) = 2 In this case, there is Y ∈ Tx(u0)M eigenvec-
tor of the shape operator S with eigenvalue 1

ρp0 (u0)
, by proposition

6.2. Since rankHess(ρp0)(u0) = 2, it follows that at least two of the
vectors xui

, i = 1, 2, 3 do not belong to the eigenspace of 1
ρp0 (u0)

,
otherwise rankHess(ρp0)(u0) < 2, by proposition 6.2. If we look at
{xu1(u0), xu2(u0), Y } as a basis of Tx(u0)M (the other cases are analogous)
and write (in u0)

xu3 = a1xu1 + a2xu2 + a3Y,

this case follows in a similar way to the last one. �

Remark 6.2. It follows from the above proposition that the 4-parameter family of
germs of functions ρ : (U × R

4, (u0, p0)) → (R, t0), where u0 is a critical point of
ρp0 , is a Morse family. Furthermore, if p0 = x(u0) + t0ξ(u0) (where t0 = ρp0(u0)),
the Lagrangian immersion associated to this Morse family is L : (U × R, (u0, t0)) →
T ∗

R
4, given by

L(u, t) =
(

x(u) + tξ(u),
ξ

‖ξ‖2
(u)

)
,

whose Lagrangian map associated is F(x, ξ) = π ◦ L(u, t) = x(u) + tξ(u), where π :
T ∗

R
4 → R

4.

Definition 6.2. Let x : U → R
4, with x(U) = M , be a non-degenerate hyper-

surface and take ξ : U → (R4 \ {0}) an equiaffine transversal vector field. Define
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ν : U → (R4 \ {0}), such that for each x(u) = p ∈ M and v ∈ Tp(M)

〈ν(u), ξ(u)〉 = 1 and 〈ν(u), v〉 = 0. (6.9)

Each ν(u) is called the conormal vector of x relative to ξ at p. The map ν is called
the conormal map.

Remark 6.3. Using (6.1) and (6.9), we obtain

ρp(u) = 〈p − x(u),ν(u)〉,

where ρp is the affine support function.

6.1. Blaschke exact normal congruences

Given a non-degenerate hypersurface x(U) = M , we know that the affine funda-
mental form h is non-degenerate, then it can be treated as a non-degenerate metric
(not necessarily positive-definite) on M .

Definition 6.3. Let x : U → R
4 be a non-degenerate hypersurface. A transversal

vector field ξ : U → R
4 \ {0} satisfying

(i) ξ is equiaffine.

(ii) The induced volume element θ coincides with the volume element ωh of the
non-degenerate metric h.

is called the Blaschke normal vector field of M .

Let Embng(U, R
4) = {x : U → R

4 : x is a non-degenerate embedding} be the
space of non-degenerate regular hypersurfaces with the Whitney C∞- topology.
Define the space of the Blaschke exact normal congruences as

BEN(U, R4 × (R4 \ {0})) =
{
(x, ξ) : x ∈ Embng(U, R4), ξ is the

Blaschke normal vector field of x} .

Remark 6.4. Given a non-degenerate hypersurface x(U) = M , its Blaschke vector
field is unique up to sign and is given by

ξ(u) = |K(u)|1/5
N(u) + Z(u), (6.10)

where K is the Gaussian curvature of M , N its unit normal and Z is a vector field
on M , such that

II(Z,X) = −X(|K|1/5),∀X ∈ TM

where II denotes the second fundamental form of M (for details, see page 45
item (5) in [22]). We can write the vector field Z in terms of the coefficients of the
second fundamental form and the partial derivatives of |K|1/5. From (6.10) it follows
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that the conormal vector relative to the Blaschke vector field of a non-degenerate
hypersurface in R

4 is given by

ν(u) = |K(u)|−1/5
N(u) (6.11)

Then, we identify (with the Whitney C∞-topology) the spaces Embng(U, R
4) and

Scon(U, R4 × R
4 \ {0}) =

{
(x, ν) ∈ C∞(U, R4 × R

4 \ {0}) : x ∈ Embng(U, R4)

and ν is the conormal of x relative to the Blaschke vector field}

Definition 6.4. Let x : U → R
4, with x(U) = M , be a non-degenerate hypersur-

face. We define the conormal bundle of M by

N∗
x = {(p, v) : p ∈ M, 〈v, w〉 = 0, ∀ w ∈ TpM} ⊂ T ∗

R
4.

Remark 6.5. Note that we can look at Scon(U, R
4 × R

4 \ {0}) as a section of the
conormal bundle of M .

Let us define the following maps

H :
(
R

4 × R
4 \ {0}

)
× R

4 → R (6.12)

(A,B,C) �→ 〈B,C − A〉

g : U → R
4 × R

4 \ {0} (6.13)

u �→ (x(u),ν(u)),

where g ∈ Scon(U, R
4 × R

4\{0}). If we fix a parameter C, HC : R
4 × R

4\{0} → R

is a submersion, therefore, HC ◦ g is a contact map. Finally, note that

ρ(u, p) = H ◦
(
g, Id

∣∣
R4

)
(u, p).

Proposition 6.4. For a residual subset of Embng(U, R
4 × R

4 \ {0}) the family ρ
is locally P-R+-versal.

Proof. Following the identification in remark 6.4 and the notation in remark 6.5
we can apply theorem 2.1 in order to show that there is a residual subset of
Embng(U, R

4 × R
4 \ {0}) for which ρ is locally P- R+-versal. �

Theorem 6.1. There is a residual subset O ⊂ Embng(U, R
4) such that the germ

of the Blaschke exact normal congruence F(x,ξ) at any point (u0, t0) ∈ U × I is a
Lagrangian stable map germ for any x ∈ O, i.e., ∀x ∈ O, F(x,ξ) is an immersive
germ, or A-equivalent to one of the normal forms in table 1.

Proof. Let us take the map germ F(x, ξ) : (U × R, (u0, t0)) → (R4, p0). Thus u0 is
a critical point of ρp0 , by proposition 6.2. Then, ρ : (U × R

3, (u0, p0)) → (R, t0)
is a Morse family of functions. Furthermore, by remark 6.1, the Lagrangian
map related to this family is F(x, ξ). It is known that if ρ is P-R+-versal, then
F(x, ξ) is Lagrangian stable (see theorem 5.4 in [12]), so the result follows from
proposition 6.4. �
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The map

Π : BEN
(
U, R4 ×

(
R

4 \ {0}
))

→ Embng(U, R4), (6.14)

given by Π(x, ξ) = x, is open and continuous. Using this, we obtain the following
corollary.

Corollary 6.1. There is a residual subset O ⊂ BEN(U, R
4 × (R4 \ {0})), such

that the germ of the Blaschke exact normal congruence F(x,ξ) at any point (u0, t0) ∈
U × I is a Lagrangian stable map germ for any (x, ξ) ∈ O, i.e., ∀ (x, ξ) ∈ O, F(x,ξ)

is an immersive germ, or A-equivalent to one of the normal forms in table 1.

6.2. Blaschke normal congruences

Let

BN(U, R4 × (R4 \ {0})) = {(x, ξ) : ∃ t ∈ C∞(U, R), s.t. ξ is the Blaschke normal

vector field ofy(u) = x(u) + t(u)ξ(u) and y ∈ Embng(U, R4)
}

be the space of the Blaschke normal congruences. Alternatively, we look at this
space as a subspace of C∞(U, R

4 × R × (R4 \ {0}))

BN(U, R4 × R × (R4 \ {0})) = {(x(u), t(u), ξ(u)) : ξ is the Blaschke normal vector

field ofy(u) = x(u) + t(u)ξ(u) and y ∈ Embng(U, R4)
}

In both cases, with the Whitney C∞-topology.
The map

Trp : C∞(U, R4 × R ×
(
R

4 \ {0}
)
) → C∞(U, R4 ×

(
R

4 \ {0}
)
)

(x(u), t(u), ξ(u)) �→ (x(u) + t(u)ξ(u), ξ(u)),

is open and continuous (see proposition 5.3) in the Whitney C∞-topology. Notice
that

BEN
(
U, R4 ×

(
R

4 \ {0}
))

⊂ C∞(U, R4 × R ×
(
R

4 \ {0}
)
)

with the following identification

BEN
(
U, R4 ×

(
R

4 \ {0}
))

� (x, ξ) ∼ (x, 0, ξ),

where x ∈ Embng(U, R
4) and ξ is its Blaschke normal vector field. Furthermore,

we can look at the space of the Blaschke normal congruences as the space

B̃N(U, R4 × (R4 \ {0})) = Trp

(
BN(U, R4 × R × (R4 \ {0}))

)
. (6.15)

Thus, Trp(BEN(U, R
4 × (R4 \ {0}))) = B̃N(U, R

4 × (R4 \ {0})). Hence, we obtain
the following theorem.

Theorem 6.2. There is a residual subset O′ ⊂ B̃N(U, R
4 × (R4 \ {0})), such that

the germ of Blaschke normal congruence F(x, e) at any point (u0, t0) ∈ U × I is a
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Lagrangian stable map germ for any (x, ξ) ∈ O′, i.e., ∀ (x, ξ) ∈ O′, F(x,ξ) is an
immersive germ, or A-equivalent to one of the normal forms in table 1.

Proof. It is known that map Trp is open and continuous and

Trp(BEN
(
U, R4 ×

(
R

4 \ {0}
))

) = B̃N
(
U, R4 ×

(
R

4 \ {0}
))

.

If U ⊂ BEN(U, R
4 × (R4 \ {0})) is open and dense, then its image by Trp is an

open dense subset of B̃N(U, R
4 × (R4 \ {0})). Take O =

⋂
i∈N

Oi the residual subset

of BEN(U, R
4 × (R4 \ {0})) given in corollary 6.1. We can show that Trp(O) =

O′ =
⋂

i∈N

O′
i, where Trp(Oi) = O′

i, therefore O′ is residual. �

Example 6.1. Taking into account [15](section 2) and [16](section 2.2.4) it is pos-
sible to parametrize a non-degenerate hypersurface M around an elliptic point, by
considering not only R-equivalence but also affine transformations of R

4, as a graph
of a function h : U → R, such that

h(u) = 1/2(u2
1 + u2

2 + u2
3) + a111u1u2u3 + 1/6 (−a120 − a102) u3

1 + 1/2a210u
2
1u2

+ 1/2a201u
2
1u3 + 1/6 (−a210 − a012) u3

2 + 1/2a120u1u
2
2 + 1/2a021u

2
2u3

+ 1/6 (−a201 − a021) u3
3 + 1/2a102u1u

2
3 + 1/2a012u2u

2
3 + O(3). (6.16)

Here O(3) means functions of order higher than 3. Since the group of affine
transformations is different from the group of Euclidean motions (translations and
rotations) it follows that this is not necessarily a local parametrization of M around
an Euclidean umbilic point. Using this parametrization, the Blaschke normal vector
of M at the origin is given by (0, 0, 0, 1). If we choose a111 = a210 = a012 = a201 =
0, a120 = a102 = 1 and a021 = 2, it follows that

h(u) = 1/2(u2
1 + u2

2 + u2
3) − 1/3u3

1 + 1/2u1u
2
2 + 1/2u1u

2
3 + u2

2u3 − 1/3u3
3.

Using (6.10) we can compute the Blaschke normal vector field of M

ξ(u) = (6/5u1 + 18/5u2
1 − 17/5(u2

2 + u2
3) + O(3), 2u2 − 6u1u2 − 52/5u2u3 + O(3),

2u3 − 6u1u3 − 26/5(u2
2 − u2

3) + O(3), 1 + 3/5u2
1 + u2

2 + u2
3 + O(3)).

Furthermore, the congruence map F(x,ξ)(u, t) = x(u1, u2, u3) + tξ(u1, u2, u3) has
a singular point at (0, 0, 0, −1/2) and its 2-jet at this point is given by

F(x,ξ)(u, t) = (2/5u1 − 9/5u2
1 + 17/10(u2

2 + u2
3) + 6/5 (t + 1/2) u1, 3u1u2 + 26/5u2u3

+ 2 (t + 1/2) u2, 3u1u3 + 13/5u2
2 − 13/5u2

3 + 2 (t + 1/2) u3, t + 1/5u2
1).

If we take λ = s + 1
2 = t + 1

5u2
1, then it is possible to verify that F(x,ξ)(u, λ)

is a versal deformation of f0(u) = (2/5u1 − 9/5u1
2 + 17/10u2

2 + 17/10u2
3, 3u1u2 +

26/5u2u3, 3u1 u3 + 13/5u2
2 − 13/5u2

3), which is an elliptic umbilic singularity.
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Example 6.2. Let us take a non-degenerate hypersurface given by the graph of

h(u) = −1/2u2
1 − 1/2u2

2 + 1/2u2
3 + 1/6u3

1 − 1/2u2
1u2

+ 1/2u1u
2
3 + 1/3u3

2 + 1/2u2u
2
3. (6.17)

Then, in a similar way to the last example, it is possible to verify that the
map F(x,ξ), where x(u1, u2, u3) = (u1, u2, u3, h(u1, u2, u3)) and ξ is the Blaschke
normal vector field of x, has a hyperbolic umbilic singularity at (0, 0, 0, 5/4).

Example 6.3. By taking a non-degenerate hypersurface given by the graph of

h(u) = 1/2(−u2
1 − u2

2 + u2
3) + 2u1u2u3 + 1/2u1u

2
2 + 1/2u1u

2
3 + 1/4u4

2 (6.18)

it follows, in a similar way to the first example, that the map F(x,ξ), associated
to the Blaschke exact normal congruence, has a parabolic umbilic singularity at
(0, 0, 0, −5/6).
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