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Università di Parma, Italy

(e-mail: gianfranco.rossi@unipr.it)

submitted 9 February 2021 revised 5 October 2021; accepted 26 October 2021

Abstract

Formal reasoning about finite sets and cardinality is important for many applications, including
software verification, where very often one needs to reason about the size of a given data struc-
ture. The Constraint Logic Programming tool {log} provides a decision procedure for deciding
the satisfiability of formulas involving very general forms of finite sets, although it does not
provide cardinality constraints. In this paper we adapt and integrate a decision procedure for a
theory of finite sets with cardinality into {log}. The proposed solver is proved to be a decision
procedure for its formulas. Besides, the new CLP instance is implemented as part of the {log}
tool. In turn, the implementation uses Howe and King’s Prolog SAT solver and Prolog’s CLP(Q)
library, as an integer linear programming solver. The empirical evaluation of this implementation
based on +250 real verification conditions shows that it can be useful in practice.

Under consideration in Theory and Practice of Logic Programming (TPLP)
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1 Introduction

Set theory is a well-established vehicle for formal modeling, specification, analysis, and

verification of software systems. Formal notations such as B (Abrial 1996) and Z (Spivey

1992) and tools such as ProB (Leuschel and Butler 2003), Atelier-B (Clearsy) and

Z/EVES (Saaltink 1997) are good examples of that claim. Hence, it is important to

extend the capabilities of existing tools and develop new ones for set theory as applied

in the context of verification. Besides, when these methods and tools are used for formal

verification and analysis, it is necessary to discharge a number of verification conditions

or proof obligations. Then, tools capable of automating such proofs are essential to ren-

der the development process cost-effective. Decision procedures play a key role in proof

automation. Indeed, if a decision procedure exists for a fragment of set theory, then it

would be possible to automate the proofs of verification conditions lying in this fragment.

{log} (read “setlog”) (Dovier et al . 1996; Rossi 2008) is a Constraint Logic Program-

ming (CLP) language and satisfiability solver implemented in Prolog providing: (i) a

decision procedure for the algebra of hereditarily finite sets, that is, finitely nested sets
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that are finite at each level of nesting (Dovier et al . 2000); (ii) a decision procedure for

a very expressive fragment of the class of finite set relation algebras (Cristiá and Rossi

2020; 2018); and (iii) a decision procedure for restricted intensional sets (RIS) (Cristiá

and Rossi 2021b; 2017). Several in-depth empirical evaluations provide evidence that

{log} is able to solve nontrivial problems (Cristiá and Rossi 2021b; 2020; 2018; 2017;

2013), in particular as an automated verifier of security properties (Cristiá and Rossi

2021a; 2021). All of these decision procedures are based on the notion of set unification

(Dovier et al . 2006).

In this paper we add to {log} a decision procedure for the algebra of finite sets extended

with cardinality constraints. This extension is important in terms of formal software

verification because there are situations where we need to reason about the size of a given

data structure and not only about what its elements are. For example, within the algebra

of finite sets one can partition a given set into two disjoint subsets, C = A∪B ∧ A∩B = ∅,
but there is no way to state that A and B must be of the same cardinality. In practice

these constraints might appear, for instance, when part of a data container must be put

into a cache—a simple {log} program is shown in Appendix C. Specifically, cardinality

constraints appear in the verification of some distributed algorithms (Berkovits et al .

2019; Alberti et al . 2017) and are at the base of the notions of integer interval, array,

and list.

At an abstract level, the new decision procedure combines the decision procedure for

the algebra of finite sets already existing in {log} with a decision procedure for sets with

cardinality constraints proposed by Zarba (2002b). Zarba proves that a theory of finite

sets equipped with the classic set-theoretic operators, including cardinality, combined

with linear integer constraints is decidable. In his work, Zarba is interested in proving

a decidability result; as far as we know Zarba’s algorithm has never been implemented

before. In fact, the new decision procedure first uses all the power of {log} to produce

a simplified, equivalent formula that can be passed to Zarba’s algorithm which makes a

final judgment about its satisfiability, in case it contains cardinality constraints. In this

way, {log} performs as well as before on the class of formulas it was able to deal with

previously.

As a consequence of the fact that the new decision procedure is still based on set

unification, it can deal with sets of sets nested at any depth. For example, the decision

procedure is able to give all possible solutions for a goal such as |{{x}, {y , z}}| = n,

where x , y , z , and n are variables.

Zarba’s algorithm is implemented by integrating the Prolog Boolean SAT solver de-

veloped by Howe and King (2012) with SWI-Prolog’s implementation of the CLP(Q)

system (Holzbaur 1995). As a result the implementation integrates three Prolog-based

systems: Howe and King’s SAT solver, CLP(Q) and {log}.
Solving formulas over a theory of sets and cardinality is not new (Ferro et al . 1980;

Gervet 1994). However, our proposal clearly distinguishes itself from all previous works in

some aspects that constitute the main contributions of this paper: a) our implementation

is deeply rooted in the CLP framework and thus inherits all its properties; in particular,

{log} preserves its features as a CLP language and as a satisfiability solver; b) our CLP

system produces a finite representation of all possible solutions of any satisfiable formula

of its input language; c) as the decision procedure is based on set unification it handles

set elements of any kind including nested sets; and d) this is the first implementation of

Zarba’s algorithm and it is shown to perform better than some other systems.
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Structure of the paper. Section 2 presents the syntax and semantics of the constraint lan-

guage for finite sets with cardinality constraints. The overall structure of the constraint

solver for that language is introduced in Section 3. The main routine dealing with cardi-

nality constraints is presented in Section 4, where we also include a description of Zarba’s

algorithm. In Section 5 we prove that the resulting solver is indeed a decision procedure

for our language. Besides deciding the satisfiability of cardinality formulas, the solver is

able to find a particular form of their solutions, as we explain in Section 6. Section 7

shows how {log} works with cardinality constraints, in particular in the context of for-

mal verification (Section 7.1); an empirical evaluation is also reported (Section 7.3). We

compare our approach with others in Section 8. Some concluding remarks are provided

in Section 9.

2 L|·|: A language for finite sets and cardinality

In this section we describe the syntax and semantics of our set-based language L|·| (read
“l-card”). This is a quantifier-free first-order predicate language with three distinct sorts:

the sort Set of all terms denoting sets, the sort Int of terms denoting integer numbers, and

the sort Ur of all other terms. Terms of each sort are allowed to enter in the formation

of set terms (in this sense, the designated sets are hybrid), no nesting restrictions being

enforced (in particular, membership chains of any finite length can be modeled). A hand-

ful of reserved predicate symbols endowed with a pre-designated set-theoretic meaning

is available. The usual linear integer arithmetic operators are available as well. Formulas

are built in the usual way by using conjunction and disjunction. A few more complex

operators (in the form of predicates) are defined as L|·| formulas, thus making it simpler

for the user to write complex formulas.

2.1 Syntax

The syntax of the language is defined primarily by giving the signature upon which terms

and formulas are built.

Definition 1 (Signature)

The signature Σ|·| of L|·| is a triple 〈F ,Π,V〉 where:

• F is the set of constants and function symbols along with their sorts, partitioned as

F =̂ FS � FZ � FU, where FS =̂ {∅, �}, FZ = {0,−1, 1,−2, 2, . . . } ∪ {+,−, ∗}, and
FU is a set of uninterpreted constant and function symbols.

• Π is the set of predicate symbols along with their sorts, partitioned as Π =̂ Π=∪ΠS∪
Πsize ∪ΠZ, where Π= =̂ {=, 
=}, ΠS =̂ {∈, /∈, un, ‖}, Πsize =̂ {size}, and ΠZ =̂ {≤}.
• V is a denumerable set of variables partitioned as V =̂ VS ∪ VZ ∪ VU. �

Intuitively, ∅ represents the empty set; {x � A} represents the set1-2 {x} ∪ A; and

VS, VZ, and VU represent sets of variables ranging over sets, integers, and ur-elements3,

respectively.

1 � is akin to Prolog’s list constructor “|”.
2 In {log}, ∅ is written as {} and � as /, see Section 7.
3 Ur-elements (also known as atoms or individuals) are objects which have no elements but are distinct
from the empty set.
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Sorts of function and predicate symbols are specified as follows: if f (resp., π) is a

function (resp., a predicate) symbol of arity n, then its sort is an n+1-tuple 〈s1, . . . , sn+1〉
(resp., an n-tuple 〈s1, . . . , sn〉) of non-empty subsets of the set {Set, Int,Ur} of sorts. This
notion is denoted by f : 〈s1, . . . , sn+1〉 (resp., by π : 〈s1, . . . , sn〉). Specifically, the sorts

of the elements of F and V are the following.

Definition 2 (Sorts of function symbols and variables)

The sorts of the symbols in F are as follows:

∅ : 〈{Set}〉
{· � ·} : 〈{Set, Int,Ur}, {Set}, {Set}〉
c : 〈{Int}〉, for any c ∈ {0,−1, 1,−2, 2, . . . }
·+·, · − ·, · ∗ · : 〈{Int}, {Int}, {Int}〉
f : 〈{Set, Int,Ur}, . . . , {Set, Int,Ur}︸ ︷︷ ︸

n

, {Ur}〉, if f ∈ FU is of arity n ≥ 0.

The sorts of variables are as follows:

v : 〈{Set}〉, if v ∈ VS
v : 〈{Int}〉, if v ∈ VZ
v : 〈{Ur}〉, if v ∈ VU �

Definition 3 (Sorts of predicate symbols)

The sorts of the predicate symbols in Π are as follows (symbols un and size are prefix;

all other symbols in Π are infix):

=, 
=: 〈{Set, Int,Ur}, {Set, Int,Ur}〉
∈, /∈: 〈{Set, Int,Ur}, {Set}〉
un : 〈{Set}, {Set}, {Set}〉
‖: 〈{Set}, {Set}〉
size : 〈{Set}, {Int}〉
≤: 〈{Int}, {Int}〉 �

Note that arguments of = and 
= can be of any of the three considered sorts. We

do not have distinct symbols for different sorts, but the interpretation of = and 
= (see

Section 2.2) depends on the sorts of their arguments.

The set of admissible (i.e. well-sorted) L|·| terms is defined as follows.

Definition 4 (|·|-terms)

The set of |·|-terms, denoted by T|·|, is the minimal subset of the set of Σ|·|-terms generated

by the following grammar complying with the sorts as given in Definition 2:

C ::= 0 | −1 | 1 | −2 | 2 | . . .
TZ ::= C | VZ | C ∗ VZ | VZ ∗ C | TZ + TZ | TZ − TZ
T|·| ::= TZ | TU | VU | Set
Set ::= ´∅´ | VS | ´{´ T|·| ´�´ Set ´}´

where TZ (resp., TU) represents any non-variable FZ-term (resp., FU-term). �
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As can be seen, through rules C and TZ, the grammar allows only integer linear terms.

If t is a term f (t1, . . . , tn), f ∈ F ,n ≥ 0, and 〈s1, . . . , sn+1〉 is the sort of f , then we say

that t is of sort 〈sn+1〉. The sort of any |·|-term t is always 〈{Set}〉 or 〈{Int}〉 or 〈{Ur}〉.
For the sake of simplicity, we simply say that t is of sort Set or Int or Ur, respectively.

In particular, we say that a |·|-term of sort Set is a set term, and that set terms of the

form {t1 � t2} are extensional set terms. The first parameter of an extensional set term is

called element part and the second is called set part. Observe that one can write terms

representing sets which are nested at any level.

Hereafter, we will use the following notation for extensional set terms: {t1, t2, . . . , tn�t},
n ≥ 1, is a shorthand for {t1 � {t2 � · · · {tn � t} · · · }}, while {t1, t2, . . . , tn} is a shorthand

for {t1, t2, . . . , tn �∅}. Moreover, we will use the following naming conventions: A,B ,C ,D

stand for terms of sort Set; i , j , k ,m stand for terms of sort Int; a, b, c, d stand for terms

of sort Ur; and x , y , z stand for terms of any of the three sorts.

Example 1 (Set terms)

The following Σ|·|-terms are set terms:

∅
{x � A}
{4 + k , f (a, b)}, that is, {4 + k � {f (a, b) � ∅}}, where f is a (uninterpreted)

symbol in FU.

On the opposite, {x � 17} is not a set term. �

The sets of well-sorted L|·| constraints and formulas are defined as follows.

Definition 5 (|·|-constraints)
If π ∈ Π is a predicate symbol of sort 〈s1, . . . , sn〉, and for each i = 1, . . . ,n, ti is a |·|-term
of sort 〈s ′i〉 with s ′i ⊆ si , then π(t1, . . . , tn) is a |·|-constraint. The set of |·|-constraints is
denoted by C|·|. �

|·|-constraints whose arguments are of sort Set (including size constraints) will be

called set constraints ; |·|-constraints whose arguments are of sort Int will be called integer

constraints.

Definition 6 (|·|-formulas)

The set of |·|-formulas, denoted by Φ|·|, is given by the following grammar:

Φ|·| ::= true | false | C|·| | Φ|·| ∧ Φ|·| | Φ|·| ∨ Φ|·|

where C|·| represents any element belonging to the set of |·|-constraints. �

Example 2 (|·|-formulas)

The following are |·|-formulas:

a ∈ A ∧ a /∈ B ∧ un(A,B ,C ) ∧ C = {x � D}
un(A,B ,C ) ∧ n + k > 5 ∧ size(C ,n) ∧ B 
= ∅
x ∈ A ∧ B ∈ A ∧ size(A, x ) ∧ size(B , y) ∧ x < y

On the contrary, un(A,B , 23) is not a |·|-formula because un(A,B , 23) is not a |·|-
constraint (23 is not of sort Set as required by the sort of un). �
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As we will show in Section 2.3, the language does not need a primitive negation con-

nective, thanks to the presence of negative constraints.

2.2 Semantics

Sorts and symbols in Σ|·| are interpreted according to the interpretation structure R =̂

〈D , (·)R〉, where D and (·)R are defined as follows.

Definition 7 (Interpretation domain)

The interpretation domain D is partitioned as D =̂ DSet ∪DInt ∪DUr where:

• DSet is the set of all hereditarily finite hybrid sets built from elements in D . Heredi-

tarily finite sets are those sets that admit (hereditarily finite) sets as their elements,

that is sets of sets.

• DInt is the set of integer numbers, Z.

• DUr is a collection of other objects. �

Definition 8 (Interpretation function)

The interpretation function (·)R is defined as follows:

• Each sort X ∈ {Set, Int,Ur} is mapped to the domain DX.

• For each sort X, each variable x of sort X is mapped to an element xR in DX.

• The constant and function symbols in FS are interpreted as follows:

— ∅ is interpreted as the empty set, namely ∅R = ∅
— {x � A} is interpreted as the set {xR} ∪AR.

• The constant and function symbols in FZ are interpreted as follows:

— Each element of {0,-1,1,-2,2,. . . } is interpreted as the corresponding integer num-

ber

— i + j is interpreted as iR + jR

— i − j is interpreted as iR − jR

— i ∗ j is interpreted as iR ∗ jR

• The predicate symbols in Π are interpreted as follows:

— x = y , where x and y have the same sort X, is interpreted as the identity between

xR and yR in DX; otherwise, x = y is interpreted as being false

— x ∈ A is interpreted as xR ∈ AR

— un(A,B ,C ) is interpreted as CR = AR ∪ BR

— A ‖ B is interpreted as AR ∩ BR = ∅
— size(A, k) is interpreted as |AR| = kR

— i ≤ j is interpreted as iR ≤ jR

— x 
= y and x /∈ A are interpreted as ¬ x = y and ¬ x ∈ A, respectively. �

It is worth noting that size(A, k) is interpreted as the cardinality, that is, the number

of elements, of the set denoted by A, and it is not to be confused with the term size, that

is, the number of function symbols appearing in the term A.

The interpretation structure R is used to evaluate each |·|-formula Φ into a truth value

ΦR = {true, false} in the following way: set constraints (resp., integer constraints) are
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evaluated by (·)R according to the meaning of the corresponding predicates in set theory

(resp., in number theory) as defined above; |·|-formulas are evaluated by (·)R according to

the rules of propositional logic. A L|·|-formula Φ is satisfiable iff there exists an assignment

σ of values from D to the variables of Φ, respecting the sorts of the variables, such that

Φ[σ] is true in R, that is, R |= Φ[σ]. In this case, we say that σ is a successful valuation

(or, simply, a solution) of Φ.

In particular, observe that equality between two set terms is interpreted as the equality

in DSet; that is, as set equality between hereditarily finite hybrid sets. Such equality is

regulated by the standard extensionality axiom, which has been proved to be equivalent,

for hereditarily finite sets, to the following equational axioms (Dovier et al . 2000):

{x , x � A} = {x � A} (Ab)

{x , y � A} = {y , x � A} (C �)

Axiom (Ab) states that duplicates in a set term do not matter (Absorption property).

Axiom (C �) states that the order of elements in a set term is irrelevant (Commutativity

on the left). These two properties capture the intuitive idea that, for instance, the set

terms {1, 2}, {2, 1}, and {1, 2, 1} all denote the same set.

2.3 Derived Constraints

L|·| can be extended to support other set and integer operators definable by means of

suitable L|·| formulas.

Dovier et al . (2000) proved that the collection of predicate symbols in Π= ∪ ΠS is

sufficient to define constraints implementing the set operators ∩, ⊆ and \. For example,

A ⊆ B can be defined by the L|·| formula un(A,B ,B). Likewise, {=, 
=}∪ΠZ is sufficient

to define <, > and ≥. With a slight abuse of terminology, we say that the set and integer

predicates that are specified by |·|-formulas are derived constraints.

Whenever a formula contains a derived constraint, the constraint is replaced by its

definition turning the given formula into an L|·| formula. Precisely, if formula Φ is the

definition of constraint c, then c is replaced by Φ and the solver checks satisfiability of Φ

to determine satisfiability of c. Thus, we can completely ignore the presence of derived

constraints in the subsequent discussion about constraint solving and formal properties

of our solver.

The negated versions of set and integer operators can be introduced as derived con-

straints, as well. The derived constraint for ¬ ∪ and ¬ ‖ (called nun and 
‖, respectively)
are shown in (Dovier et al . 2000). For example, ¬ (A ∪ B = C ) is introduced as:

nun(A,B ,C ) =̂ (n ∈ C ∧ n /∈ A ∧ n /∈ B) ∨ (n ∈ A ∧ n /∈ C ) ∨ (n ∈ B ∧ n /∈ C ) (1)

With a little abuse of terminology, we will refer to these predicates as negative constraints.

Thanks to the availability of negative constraints, (general) logical negation is not

strictly necessary in L|·|.
Now that we have derived and negative constraints it is easy to see that L|·| expresses

the Boolean algebra of sets with cardinality.

Remark 1 (CLP(SET ))

{log} provides an implementation of the CLP instance CLP(SET ) (Dovier et al . 2000).

In turn, CLP(SET ) is based on a constraint language including FS and ΠS, with the
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Algorithm 1 The solver SAT |·|. Φ is the input formula.

Φ← gen size leq(Φ);

repeat

Φ′ ← Φ;

repeat

Φ′′ ← Φ;

Φ← STEPS(Φ) [STEPS returns false when Φ is unsat]

until Φ = Φ′′

Φ← remove neq(Φ)

until Φ = Φ′ [end of main loop]

let Φ be Φ1 ∧ Φ2 [Φ1 contains size relevant constraints, see Section 4.2]

Φ1 ← solve size(Φ1) [solve size returns false when Φ1 is unsat]

return Φ1 ∧ Φ2 [returns false (unsat); or a disjunction of formulas representing all solutions]

same sorts; formulas in CLP(SET ) are built as in L|·|. Hence, L|·| effectively extends

CLP(SET ) by introducing size constraints and integer arithmetic. An L|·| formula not

including size constraints nor integer constraints is a CLP(SET ) formula. Hereafter,

we will simply use the name CLP(SET ) to refer to the constraint language offered

by {log}. �

3 SAT |·|: A constraint solving procedure for L|·|

A complete solver for CLP(SET ) is proposed in (Dovier et al . 2000). In this section, we

show how that solver can be combined with Zarba’s decision procedure (Zarba 2002b)—

hereafter simply called SATZa—to support cardinality constraints. The resulting con-

straint solving procedure, called SAT |·| (read “sat-card”), is a decision procedure for L|·|
formulas. Furthermore, it produces a finite representation of all possible solutions of any

satisifiable L|·| formula (see Section 5).

3.1 The solver

The overall organization of SAT |·| is shown in Algorithm 1. Basically, SAT |·| uses four

routines: gen size leq, STEPS, remove neq and solve size. solve size, which is crucial for

the integration of cardinality constraints into CLP(SET ), will be presented separately

in Section 4.

gen size leq simply adds integer constraints to the input formula Φ to force the sec-

ond argument of each size constraint in Φ to be a nonnegative integer. STEPS includes

the constraint solving procedure for the CLP(SET ) fragment as well as the constraint

solving procedures for cardinality constraints (see Section 3.2). STEPS applies specialized

rewriting procedures to the current formula Φ and returns either false or the modified

formula. Each rewriting procedure applies a few nondeterministic rewrite rules which

reduce the syntactic complexity of |·|-constraints of one kind. remove neq deals with the

elimination of 
= constraints involving set variables. Its purpose and definition is made

evident in Appendix E.
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The execution of STEPS and remove neq is iterated until a fixpoint is reached, that

is, the formula is irreducible. These routines return false whenever (at least) one of the

involved procedures rewrites Φ to false. In this case, a fixpoint is immediately detected.

As we will show in Section 5, when all the nondeterministic computations of SAT |·|(Φ)
return false, then we can conclude that Φ is unsatisfiable; otherwise, we can conclude

that Φ is satisfiable and each solution of the formulas returned by SAT |·| is a solution of

Φ, and vice versa.

The rewrite rules used by SAT |·| are defined as follows.

Definition 9 (Rewrite rules)

If π is a symbol in Π and φ is a |·|-constraint based on π, then a rewrite rule for π-

constraints is a rule of the form φ −→ Φ1 ∨ · · · ∨ Φn , where Φi , i ≥ 1, are |·|-formulas.

Each Σ|·|-predicate matching φ is nondeterministically rewritten to one of the Φi s.

Variables appearing in the right-hand side but not in the left-hand side are assumed to

be fresh variables, implicitly existentially quantified over each Φi . �

A rewriting procedure for π-constraints consists of the collection of all the rewrite rules

for π-constraints. For each rewriting procedure, STEPS checks rules in the order they

are listed in the figures below. The first rule whose left-hand side matches the input

π-constraint is used to rewrite it. Constraints that no rule rewrites are called irreducible.

Irreducible constraints are part of the final answer of STEPS (see Definition 10).

The following conventions are used throughout the rules. ẋ , for any name x , is a short-

hand for x ∈ V, that is, ẋ represents a variable. In particular, variable names ṅ, ṅi ,

Ṅ , and Ṅi denote fresh variables of sort Int and Set, respectively. Moreover, conjunc-

tions occurring at the right-hand side of any given rule have higher precedence than

disjunctions.

3.2 Set solving (STEPS)

STEPS can be divided into two collections of rewriting procedures: those given as part

of the CLP(SET ) system and those concerning size constraints.

The rewriting procedures of CLP(SET ) cover constraints based on = when arguments

are either of sort Set or Ur, ∈, un, and ‖. Figure 1 lists some representative rewrite rules

of CLP(SET ) which, informally, work as follows:

• Rule (2) is the main rule of set unification. It states when two non-empty, non-

variable sets are equal by nondeterministically and recursively computing four

cases. These cases implement the (Ab) and (C �) axioms shown in Section 2.2.

As an example, by applying rule (2) to {1} = {1, 1} we get: (1 = 1 ∧ ∅ = {1}) ∨
(1 = 1 ∧ {1} = {1}) ∨ (1 = 1 ∧ ∅ = {1, 1}) ∨ (∅ = {1 � Ṅ } ∧ {1 � Ṅ } = {1}),
which turns out to be true (due to the second disjunct).

• Rule (3) rewrites a set membership constraint into an equality constraint. This

means that a formula such as x ∈ Ȧ ∧ y ∈ Ȧ will eventually be transformed into

{x � Ṅ1} = {y � Ṅ2} which will be processed by rule (2).

• Rule (4) deals with not membership constraints. When the r.h.s. of a /∈ constraint

is an extensional set term, rule (4) operates recursively to check that x is not an

element of the set. Conversely, when the r.h.s. is a variable, /∈ constraint are left

unchanged (see Definition 10).
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{x � A} = {y � B} −→
x = y ∧ A = B

∨ x = y ∧ {x � A} = B (2)

∨ x = y ∧ A = {y � B}
∨ A = {y � Ṅ } ∧ {x � Ṅ } = B

x ∈ Ȧ −→ Ȧ = {x � Ṅ } (3)

x /∈ {y � A} −→ x �= y ∧ x /∈ A (4)

un({x � C},A, Ḃ) →
{x � C} = {x � Ṅ1} ∧ x /∈ Ṅ1 ∧ Ḃ = {x � Ṅ } (5)

∧ (x /∈ A ∧ un(Ṅ1,A, Ṅ )

∨ A = {x � Ṅ2} ∧ x /∈ Ṅ2 ∧ un(Ṅ1, Ṅ2, Ṅ ))

Ẋ ‖ Ẋ → Ẋ = ∅ (6)

Fig. 1. Some rewrite rules of CLP(SET ).

• Rule (5) is one of the main rules for un constraints. Observe that this rule is based

on set unification. It computes two cases: x does not belong to A and x belongs

to A (in which case A is of the form {x � Ṅ2} for some set Ṅ2). In the latter case

x /∈ Ṅ2 prevents Algorithm 1 from generating infinite terms denoting the same set.

• Finally, rule (6) deals with a particular form of a disjointness constraint.

The rest of the rewrite rules of CLP(SET ) can be found in (Dovier et al . 2000) and

online (Cristiá and Rossi 2019).

The rewrite rules concerning size constraints implemented in STEPS are listed in Fig-

ure 2. Rules (7)-(9) are straightforward. Rule (10) computes the size of any extensional

set by counting the elements that belong to it while taking care of avoiding duplicates.

This means that, for instance, the first nondeterministic choice for a formula such as

size({1, 2, 3, 1, 4},m) will be:

1 /∈ {2, 3, 1, 4} ∧ m = 1 + ṅ ∧ size({2, 3, 1, 4}, ṅ) ∧ 0 ≤ ṅ

which will eventually lead to a failure due to the presence of 1 /∈ {2, 3, 1, 4} and rule (4).

This implies that 1 will be counted in its second occurrence. Besides, the second choice

becomes size({2, 3, 1, 4},m) which is correct given that |{1, 2, 3, 1, 4}| = |{2, 3, 1, 4}|.
Integer constraints, that is, atomic constraints whose arguments are of sort Int (includ-

ing those based on = and 
=), are simply dealt with as irreducible by STEPS; hence, they

are passed ahead to be checked by the routine solve size after the main loop of SAT |·|
terminates successfully.

3.3 Irreducible constraints

When no rewrite rule is applicable to the current |·|-formula Φ and Φ is not false, the main

loop of SAT |·| terminates returning Φ as its result. This formula can be seen, without
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size(∅,m) −→ m = 0 (7)

size(A, 0) −→ A = ∅ (8)

If e is a compound arithmetic expression:

size(A, e) −→ size(A, ṅ) ∧ ṅ = e ∧ 0 ≤ ṅ (9)

size({x � A},m) −→
x /∈ A ∧ m = 1 + ṅ ∧ size(A, ṅ) ∧ 0 ≤ ṅ (10)

∨ A = {x � Ṅ } ∧ x /∈ Ṅ ∧ size(Ṅ ,m)

Fig. 2. Rewrite rules for the size constraint.

loss of generality, as ΦS ∧ ΦZ, where ΦZ contains all (and only) integer constraints and

ΦS contains all other constraints occurring in Φ.

The following definition precisely characterizes the form of atomic constraints in ΦS.

Definition 10 (Irreducible formula)

Let Φ be a |·|-formula, A and Ai |·|-terms of sort Set, t and Ẋ |·|-terms of sort 〈{Set,Ur}〉,
x a |·|-term of any sort, and c a variable or a constant integer number. A |·|-constraint
φ occurring in Φ is irreducible if it has one of the following forms:

(i) Ẋ = t , and neither t nor Φ \ {φ} contains Ẋ ;

(ii) Ẋ 
= t , and Ẋ does not occur either in t or as an argument of any constraint π(. . . ),

π ∈ {un, size}, in Φ;

(iii) x /∈ Ȧ, and Ȧ does not occur in x ;

(iv) un(Ȧ1, Ȧ2, Ȧ3), where Ȧ1 and Ȧ2 are distinct variables;

(v) Ȧ1 ‖ Ȧ2, where Ȧ1 and Ȧ2 are distinct variables;

(vi) size(Ȧ, c), c 
= 0.

A |·|-formula Φ is irreducible if it is true or if all of its |·|-constraints are irreducible. �

ΦS, as returned by SAT |·| once it finishes its main loop, is an irreducible formula.

This fact can be checked by inspecting the rewrite rules presented in (Dovier et al . 2000)

and those for the size constraints given in Figure 2. This inspection is straightforward

as there are no rewrite rules dealing with irreducible constraints and all non-irreducible

form constraints are dealt with by some rule.

Putting size constraints aside, ΦS is basically the formula returned by the CLP(SET )

solver. (Dovier et al . 2000, Theorem 9.4) show that such formula is always satisfiable,

unless the result is false.

It is important to observe that the atomic constraints occurring in ΦS are indeed

quite simple. In particular, all non-variable set terms occurring in the input formula have

been removed, except those occurring as right-hand sides of = and 
= constraints. Thus,

all (possibly complex) equalities and inequalities between set terms have been solved.

Furthermore, all arguments of un and ‖ constraints are necessarily simple variables.

4 Cardinality solving (solve size)

Due to the presence of size and integer constraints, a non-false formula returned by

STEPS and remove neq is not always satisfiable.
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Example 3

Assuming all the arguments to be variables, the following formula cannot be processed

any further by STEPS but is unsatisfiable:

un(A,B ,C ) ∧ size(A,ma) ∧ size(B ,mb) ∧ size(C ,mc) ∧ ma +mb < mc

as it states that |A|+ |B | < |A ∪ B |. �

Therefore, Algorithm 1 includes a new step, called solve size, whose purpose is to check

satisfiability of the formula returned at the end of the main loop of SAT |·|.
Basically, solve size encodes an adaptation of the SATZa algorithm to our CLP system.

In order to explain how we adapted SATZa we first introduce it briefly; some technical

details are omitted to simplify the presentation.

4.1 An algorithm for deciding set formulas with cardinality

The language considered by Zarba–hereafter simply called LZa—includes the following

function symbols: ∅, ∪, ∩, \, +, −, and |·|; the usual predicate symbols: =, ∈, <, >; and

variables and integer constants as usual. All symbols have standard sorts and semantics;

in particular, sets are finite. The language also includes the singleton set symbol {·}
to form extensional sets. Note that although LZa does not include an integer product

symbol, it still allows the representation of expressions of the form c ∗ x , with either c or

x a constant. Formulas in LZa are built in the usual way.

SATZa is divided into four phases and takes as input a conjunction of LZa literals.

However, we will present the last two phases as a single one.

1. First phase. The input formula, Ψ, is transformed and divided into two subfor-

mulas, Ψ′ and Ψ′′. Ψ′′ contains only literals of the form v = |x | where v and x are

integer and set variables, respectively. Ψ′ contains the integer constraints present in
Ψ plus a transformation of the set constraints in Ψ. This transformation guarantees

that all set constraints are of the following forms: x = y , x 
= y , x = {u}, x = y ∪z ,
x = y ∩ z , and x = y \ z , where x , y , and z are set variables and u is a ur-variable.

Example 4

A constraint such as y ∈ x is transformed into x = {y} ∪ x and then into w =

{y} ∧ x = w ∪ x , where w is a new variable.

A constraint such as {u} ∪ x = h ∩ w is transformed into v = {u} ∧ v ∪ x = h ∩ w
and then into v = {u} ∧ t = v ∪ x ∧ t = h ∩ w , where v and t are new variables.

A constraint such as |x | +m < k is transformed into v = |x | ∧ v +m < k , where

v is a new variable. In this way, v = |x | becomes part of Ψ′′. �

2. Second phase. Ψ′ is divided into three subformulas: ΨU, containing literals of the

form x = {u}, where u is a ur-element; ΨZ, containing the integer literals; and

ΨS, containing the set literals. So now the input formula has been transformed and

divided into four subformulas: ΨU, ΨZ, ΨS, and Ψ′′. In the next phase, Ψ =̂ ΨU ∧
ΨZ ∧ ΨS ∧ Ψ′′.

3. Third phase. This phase consists in executing the following three steps for each

arrangement of Ψ. Whenever there are no more arrangements the input formula is

unsatisfiable.

https://doi.org/10.1017/S1471068421000521 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000521


480 M. Cristiá and G. Rossi

An arrangement of Ψ is a tuple 〈R,Π, at〉 where: R ⊆ VΨ
U × VΨ

U is an equivalence

relation where VΨ
U is the collection of ur-variables in ΨU; Π is a finite collection

of non-false Boolean functions π : VΨ
S → {0, 1} where VΨ

S is the collection of set

variables in ΨS ∧ Ψ′′; and at : VΨ
U → Π. π is a non-false Boolean function if

1 ∈ ranπ.

From now on ρ = 〈R,Π, at〉 denotes the current arrangement.

(a) In this step the algorithm checks whether or not ρ verifies seven conditions. If

ρ does not verify these conditions the next arrangement is chosen; if it does

the next step is executed. We show only the conditions that are used in our

implementation.

i If x = y ∪ z is in ΨS then π(x ) = 1 if and only if π(y) = 1 or π(z ) = 1,

for each π ∈ Π.

ii If ∅ = y ∩ z is in ΨS then π(y) = 0 or π(z ) = 0.

The remaining conditions are not used because SATZa is called after STEPS;

see Section 4.2 for more details.

(b) In this step the algorithm checks whether or not ΨZ ∧ resZ(ρ) is satisfiable,

where:

resZ(ρ) =̂∧
π∈Π

0 < vπ
∧

π∈ran at

vπ = 1
∧

v=|x |∈Ψ′′
v =

∑
π∈Π

π(x ) ∗ vπ (11)

If ΨZ ∧ resZ(ρ) is unsatisfiable the next arrangement is chosen and step (a) is

executed.

(c) In this last step the algorithm checks whether or not there are enough ur-

elements as to satisfy ΨU considering the equivalence relation R of ρ and the

minimum of
∑

π∈Π vπ subject to ΨZ ∧ resZ(ρ). If this is satisfiable, the input

formula is satisfiable; if not, the next arrangement is chosen and step (a) is

executed.

Informally, in this phase the algorithm assigns a positive cardinality (vπ) to each

non-empty Venn region involved in the formula and tries, one after the other, all

possible combinations of these assignments—each combination is encoded in each

arrangement. With each combination it builds formula (11) and checks whether the

cardinality constrains are satisfiable or not.

4.2 Integrating SATZa into SAT |·|

The repeated execution of STEPS and remove neq in SAT |·| implements up to the second

phase of SATZa . The third phase of SATZa is implemented by solve size. Formulas

returned at the end of the main loop of SAT |·| (i.e. |·|-formulas in irreducible form) can

be easily transformed into the formulas obtained after executing the second phase of

SATZa . A detailed definition of a mapping of such formulas into the corresponding LZa

formulas is given in Appendix B. Hereafter, we provide an intuitive description of which

formulas are passed to solve size.

Let Φ =̂ Φ1 ∧ Φ2 be the formula in irreducible form right after the main loop of

Algorithm 1, where Φ1 contains all integer constraints and all of the un, ‖, and size

https://doi.org/10.1017/S1471068421000521 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000521


Integrating Cardinality Constraints into CLP with Sets 481

constraints, and Φ2 is the rest of Φ (i.e. /∈ constraints, and = and 
= constraints not

involving integer terms). Hence, solve size is called on Φ1 as follows:

• All integer constraints are passed basically unaltered to solve size.

• |·|-constraints of the form un(A,B ,C ), A ‖ B , size(A,m), where A,B ,C are vari-

ables and m is either a variable or an integer constant, are mapped to literals of

the form C = A ∪ B , A ∩ B = ∅, |A| = m, respectively, in LZa .

On the other hand, constraints in Φ2 are not passed to solve size:

• equality constraints are ignored because these variables do not appear in the rest

of Φ.

• 
= constraints not involving integer terms and /∈ constraints are ignored because

they do not affect the cardinality of the set variables involved in the formula. Indeed,

in L|·| we assume that the universe of objects which can be used as set elements is

infinite—as it includes integer numbers and (nested) sets. Hence, constraints of the

form X 
= t and t /∈ X (with X variable and t any term) do not forbid any value

of the cardinality of X . For instance, if Φ contains 1 /∈ S ∧ 2 /∈ S ∧ ... ∧ 20 /∈ S ∧
size(S ,m), with S variable, then we can find anyway m constants different from

1, . . . , 20 to fill the set S .

Note that non-variable set terms occur only in those constraints of Φ2 that are not

passed to solve size. Thus, the translation function Z shown in Appendix B, which only

deals with variables, is indeed capable of translating any L|·| formula that is passed to

it.

solve size implements the first two steps of the third phase by casting step (a) in

terms of a Boolean satisfiability problem and step (b) in terms of an integer linear

programming (ILP) problem (Williams 2009). All the solutions returned by solving the

Boolean formula are collected in a set S and then all possible arrangements are the

elements of 2S . A description of a concrete implementation of these two steps is given in

the next subsection.

The last step of the third phase is not implemented again because of the assumption

about the infinity of the universe of objects which can be used as set elements in L|·|.
It is worth noting that, in the integrated system, unsatisfiability caused by set con-

straints, excluding size, can be caught directly by STEPS and remove neq, without exe-

cuting solve size.

Example 5

Consider the following formula:

un(A,B ,C ) ∧ A ‖ C ∧ A 
= ∅ ∧ size(C , k) ∧ k < 2.

where A, B , C , and k are variables. The subformula un(A,B ,C ) ∧ A ‖ C ∧ A 
= ∅ is not
in irreducible form and it is further processed first by remove neq and then by STEPS,

that finally rewrites it to false. That is, the input formula is found to be unsatisfiable

disregarding the cardinality and integer constraints occurring in it. �

On the other hand, the presence of solve size in SAT |·| allows us to solve linear integer

constraints even if the given formula does not contain any size constraint. For example, a

formula such as x > y ∧ x < y+1 is found to be false by exploiting the integer constraint

solver included in solve size.
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4.3 A concrete implementation of solve size

In this section we briefly outline a concrete Prolog implementation of solve size. This

implementation is obtained by integrating into the solve size procedure described above

a Prolog Boolean SAT solver, namely the very concise solver developed by Howe and

King (2012), and the implementation of the CLP(Q) system of SWI-Prolog (Holzbaur

1995).

CLP(Q) implements a solver for linear equations, a Simplex algorithm to decide linear

inequalities and a branch and bound method to provide a decision algorithm for ILP.

This library provides bb inf(Vars ,Expr ,Min,Vert), which finds the vertex (Vert) of the

minimum (Min) of the expression Expr subjected to the integer constraints present in

the constraint store and assuming all the variables in Vars take integers values. In its

way to find the minimum value, bb inf first determines whether or not the constraints

are satisfiable (in Z). bb inf is complete provided all integer constraints are linear. With

respect to the completeness of bb inf, observe that: a) L|·| restricts integer constraints
to be linear (Definition 4); and b) the integer constraints generated by any rule for size

are linear.

Consider a formula Φ received by solve size. Now consider the subformula of Φ that is a

conjunction of constraints of the following forms: un(A,B ,C ) and A ‖ B , with A,B , and

C variables. As SATZa must find all the non-false Boolean functions π : VΦ
S → {0, 1}

verifying some Boolean conditions (see Section 4 for some examples and (Zarba 2002b,

conditions (C1)-(C7) in 3.4)), we encode the conjunction of these constraints as a Boolean

formula as follows:

• un(A,B ,C ) −→ (¬ C ∨ B ∨ A) ∧ (¬ A ∨ C ) ∧ (C ∨ ¬ A), due to condition 3(a)i.

• A ‖ B −→ ¬ A ∨ ¬ B , due to condition 3(a)ii.

Next, we call Howe and King’s SAT solver on the resulting Boolean formula and collect

in a set S all the Boolean solutions where at least one variable is bound to true. Hence,

S contains all possible non-false Boolean functions π : VΦ
S → {0, 1} satisfying SATZa ’s

conditions 3(a)i and 3(a)ii.

If {π1, . . . , πn} verifies the above condition, then we use it to execute the second step

of the third phase. Then we build formula (11) as a conjunction of CLP(Q) constraints,

which is easy to implement. All the integer constraints present in Φ and all those in

(11) are passed in to the CLP(Q) constraint store. Finally, we call CLP(Q)’s bb_inf/4

predicate4 as follows:

bb inf(VZ,
k∑

i=1

mi , ,Vertex ) (12)

where m1, . . . ,mk are the second arguments of the size constraints in Φ. That is, we ask

CLP(Q) to check the satisfiability of its constraint store assuming that all the variables

there are integers, and if so, to compute the vertex (Vertex ) of the minimum of the sum

of the cardinalities of the sets in Φ. If this call does not fail we know Φ is satisfiable and

solve size terminates; if not, we pick the next subset of S . If solve size fails for all subsets

of S it returns false.

4 bb inf/4: https://www.swi-prolog.org/pldoc/doc_for?object=bb_inf/4
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5 SAT |·| is a decision procedure for L|·|

In this section we analyze the soundness, completeness and termination properties of

SAT |·|.
The following theorem ensures that, after termination, the rewriting process imple-

mented by SAT |·| preserves the set of solutions of the input formula.

Theorem 1 (Equisatisfiability)

Let Φ be a |·|-formula and Φ1,Φ2, . . . ,Φn be the collection of |·|-formulas returned by

SAT |·|(Φ). Then Φ1 ∨ Φ2 ∨ · · · ∨ Φn is equisatisfiable to Φ, that is, every possible

solution5 of Φ is a solution of one of the Φis and, vice versa, every solution of one of

these formulas is a solution for Φ.

Proof

According to Definition 3.3, each formula Φi returned at the end of SAT |·|’s main loop

is of the form Φi
S ∧ Φi

Z, where Φi
S is a |·|-formula in irreducible form and Φi

Z contains

all integer constraints encountered during the processing of the input formula. As con-

cerns constraints in ΦS
i , the proof is based on showing that for each rewrite rule the

set of solutions of left- and right-hand sides is the same. For those rules dealing with

constraints different from size the proofs can be found in Dovier et al. 2000. The proofs

of equisatisfiability for the rules for size can be found in Appendix A. As concerns Φi
Z,

no rewriting is actually performed on the constraints occurring in it. Thus the set of

solutions is trivially preserved. Considering also the last step of SAT |·|, that is, calling

solve size, we observe that this step is just a check which either returns false or has no

influence on its input formula.

Theorem 2 (Satisfiability of the output formula)

Any |·|-formula different from false returned by SAT |·| is satisfiable w.r.t. the underlying
interpretation structure R.

Proof

Basically, the proof of this theorem relies on the fact that solve size implements SATZa .

Let Φ be the input formula and Φ′ its irreducible form right before solve size. Consider

that Φ′ is divided as Φ′
1 ∧ Φ′

2 where Φ′
1 contains the integer constraints and the un, ‖,

and size constraints; and Φ′
2 all the other constraints. Then, Φ′

1 can be easily mapped to

formulas which are accepted by SATZa (see Appendix B). As observed in Section 4.2,

Φ′
2 is not passed to SATZa because is irrelevant as regards the satisfiability of Φ′

1. Then,

the satisfiability of Φ depends only on the satisfibility of Φ′
1. Hence, if solve size de-

cides that Φ′
1 is satisfiable, we can conclude that Φ is satisfiable. In this case SAT |·|

returns Φ.

Thanks to Theorems 1 and 2 we can conclude that, given a |·|-formula Φ, then Φ is

satisfiable with respect to the intended interpretation structure R if and only if there

is a nondeterministic choice in SAT |·|(Φ) that returns a |·|-formula different from false.

5 More precisely, each solution of Φ expanded to the variables occurring in Φi but not in Φ, so as to
account for the possible fresh variables introduced into Φi .
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Conversely, if all the nondeterministic computations of SAT |·|(Φ) terminate with false,

then Φ is surely unsatisfiable.

The following is an example of a formula that SAT |·| is able to detect to be

unsatisfiable.

Example 6

The formula

un(A,B ,C ) ∧ size(A,m1) ∧ size(B ,m2) ∧ size(B ,m3) ∧ m3 > m1 +m2

where all arguments are variables, is rewritten by SAT |·| to false; hence, the formula is

unsatisfiable. �

Note that many of the rewriting procedures given in the previous section will stop even

when returning relatively complex formulas.

Example 7

Assuming all the arguments are variables, the formula:

un(A,B ,C ) ∧ size(A,m1) ∧ size(B ,m2) ∧ size(B ,m3) ∧ m3 ≤ m1 +m2

is returned unchanged by SAT |·| because there is no rewrite rule for constraints such as

un(A,B ,C ) and size(A,m) when all arguments of sort Set are variables. Actually, this

formula is proved to be satisfiable by applying solve size. �

Finally, we can state the termination property for SAT |·|.

Theorem 3 (Termination)

The SAT |·| procedure can be implemented as to ensure termination for every input L|·|
formula.

Proof

Termination of the SAT |·| is a consequence of the termination proved in Theorem 10.10

in Dovier et al. 2000 and Zarba’s algorithm (Zarba 2002b, Theorem 3). The only new

observations to be done concern the treatment of size constraints. Looking at the rewrite

rules for this kind of constraints shown in Figure 2, we can observe that: they gener-

ate equality and inequality constraints (in fact, 
∈ constraints are rewritten to 
= con-

straints), which in turn do not generate any new size constraint; besides, they generate

new size constraints which, however, are in irreducible form, since their first argument is

a (fresh) variable. Therefore, the processing of size constraints cannot trigger any infinite

loop.

6 Minimal solutions

The formulas Φ1, . . . ,Φn ,n ≥ 1, returned by SAT |·| represent all the concrete (or ground)
solutions of the input formula Φ. If these formulas do not contain any size or integer

constraints, then it is quite easy to get concrete solutions from them. Indeed, a successful

assignment of values to variables (i.e. a concrete solution) for such formulas is obtained

by substituting each set variable occurring in them by the empty set, with the exception

of the variables X in atoms of the form X = t .
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Unfortunately, when it comes to the size and integer constraints, providing concrete

solutions for certain L|·|-formulas may be difficult.

Example 8

If SAT |·| is called on the following formula:

size(A,m) ∧ 1 ≤ m ∧ B ⊆ A ∧ size(B ,n) ∧ 5 ≤ n

it will return the same formula meaning that it is satisfiable. However, a solution is not

evident. �

For some applications such as model-based testing (Cristiá et al . 2013) determining

the satisfiability of a formula is not enough. More explicit solutions are needed. For this

reason we provide a way in which SAT |·| returns formulas for which finding a solution

is always easy. We call such a solution minimal because no cardinality of a set assigned

to a variable appearing in a size constraint can be lowered without making the formula

false. However, in this case we cannot get a finite representation of the set of all possible

solutions.

Let Φ be a satisfiable input formula and let Φ′ the corresponding formula right before

solve size is called. Let size(A1,m1), . . . , size(Ak ,mk ) be all the size constraints in Φ′.
If SAT |·| is required to compute the minimal solution, once Algorithm 1 finishes, it is

called again with the following formula:

Φ′ ∧
k∧

i=1

mi = Vi (13)

where 〈V1, . . . ,Vk 〉 is the Vertex computed in (12). In this way all sets Ai of the size

constraints in Φ′ are bound to bounded sets of least possible cardinality so as to satisfy

Φ. Note that, necessarily, 0 ≤ Vi , for i ∈ [1, k ].

Besides, when SAT |·| runs in this mode it will not call solve size to solve (13). In fact,∧k
i=1 mi = Vi turns all size constraints in Φ′ into atoms of the form size(Ȧ, c) with c a

constant. Then, the following rewrite rule is activated:

size(Ȧ, c), c an integer constant −→ Ȧ = {ṅ1, . . . , ṅc} ∧ ad(ṅ1, . . . , ṅc) (14)

where ad(y1, . . . , yc) is a shorthand for
∧c−1

i=1

∧c
j=i+1 yi 
= yj .

Example 9

If SAT |·| is called on the formula of Example 8 but requiring that all minimal solutions

be computed, then the formula returned at the end of the computation is:

A = {n5,n4,n3,n2,n1},m = 5,B = {n5,n4,n3,n2,n1},n = 5, ad(n5,n4,n3,n2,n1)

This formula is a finite representation of a subset of the possible solutions for the input

formula from which it is trivial to get concrete solutions. �

7 The implementation and its empirical evaluation

SAT |·| is implemented by extending the solver provided by the publicly available tool

{log} (Rossi 2008). {log} is a Prolog program that can be used as a constraint solver, as

a satisfiability solver and as a constraint logic programming language. It also provides
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some programming facilities not described in this paper. In this section we describe and

empirically evaluate this implementation.

The main syntactic differences between the abstract syntax used in previous sections

and the concrete syntax used in {log} are made evident by the following examples.

Example 10

The formulas of Example 2 are written in {log} as follows:

a in A & a nin B & un(A,B,C) & C = {X / D}.

un(A,B,C) & N + K > 5 & size(C,N) & B neq {}.

where names beginning with a capital letter represent variables, and all others repre-

sent constants and function symbols. This is why we renamed some variables w.r.t. the

formulas in Example 2. Note that {_/_} is the concrete syntax for the set term { � }.
If {log} is asked to solve the second formula it returns the following:

B = {_N3/_N2}, C = {_N3/_N1}

Constraint: un(A,_N2,_N1), N + K > 5, _N3 nin _N1,

size(_N1,_N4), _N4 >= 0, N >= 1, _N4 is N - 1

as the first solution (more can be obtained interactively). That is, {log} binds values to
B and C and gives a list of constraints in irreducible form (which is guaranteed to be

satisfiable). Any concrete solution must bind values to the remaining variables in such

a way as to verify the constraints. Variables beginning with the underscore symbol (_)

represent new variables. �

The implementation in {log} of STEPS consists in adding to {log} the rewrite rules

of Figure 2. Due to the design of {log}, adding new constraints and their rewrite rules

is easy, and it does not deserve to be further commented here. On the other hand, the

implementation in {log} of solve size is basically that described in Section 4.3.

Observe that the fact that {log} is based on set unification automatically provides car-

dinality over sets of sets—nested at any level. For instance, running size({{X},{Y}},N)

produces two solutions:

N = 2, X neq Y;

Y = X, N = 1

Concerning formulas with size constraints, by default {log} decides their satisfiability
as described in Section 4. That is, if the formula of Example 8 is executed, {log} will

find it satisfiable and will return it unchanged. If users want more concrete solutions, as

described in Section 6, they must execute command fix_size to activate the algorithm

that computes minimal solutions. In this case, after solving the formula of Example 8,

{log} would return exactly the solution shown in Example 9. As another example, when

solving the second formula of Example 10 in fix size mode, {log} will return (as its

first solution):

A = {}, B = {_N1}, C = {_N1}, N = 1

Constraint: 1 + K > 5

which is indeed a more concrete solution for the given formula.
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var content :set; size:integer;

procedure insert(e:element) { [requires: |e| = 1 ∧ |e ∩ content | = 0]
content := content ∪ e; [maintains: size = |content |]
size := size + 1;

} [ensures: size′ > 0]

Fig. 3. Procedure insert inserts e into set contents and updates its cardinality in size.

7.1 Applications to formal verification

We now present a simple example showing how {log} can be used as a verification tool

of problems involving cardinality constraints. In doing so we will show how our approach

differs from other tools that can deal with similar problems – see Section 8 for a detailed

account. More than 250 real-world examples have been used in the empirical evaluation

presented in Section 7.3 and another example is developed in Appendix C. The example

is taken from Kuncak et al . (2006). Figure 3 shows the insert procedure which inserts

an element e into the set content . Besides, the procedure maintains the cardinality of

content in variable size. In this context an element is an object represented as a set of

cardinality one. The procedure is annotated with its preconditions (i.e. requires), its

postconditions (i.e. ensures) and the invariant it preserves (i.e. maintains). Kuncak

then proposes a verification condition for the insert procedure.

The {log} representation of insert is the following:

sl_insert(Content,Size,E,Content_,Size_) :-

un(Content,E,Content_) & [content := content ∪ e]

Size_ is Size + 1. [size := size + 1]

where Content and Size are the initial values and Content_ and Size_ the final ones. In

this way, sl_insert becomes a {log} program and thus it can be executed as any other

program and can be part of a larger Prolog+{log} program. For example the query:

sl_insert({},0,{hellow},C1,S1).

returns:

C1 = {hellow}, S1 = 1

and the following one:

sl_insert({},0,{hellow},C1,S1) & sl_insert(C1,S1,{world},C2,S2).

returns:

C1 = {hellow}, S1 = 1, C2 = {hellow,world}, S2 = 2

Furthermore, sl_insert is also a formula. Indeed, we can discharge the verification

condition indicated by Kuncak using the same representation of insert by simply encoding

the negation of the verification condition as a {log} query:

size(E,1) & inters(E,Content,M1) & size(M1,0) & [precondition]

size(Content,Size) & [invariant@before state]

sl_insert(Content,Size,E,Content_,Size_) & [ insert is executed]

(Size_ =< 0 [negation of postcondition@after state]

or

size(Content_,M2) & M2 neq Size_ [negation of invariant@after state]

).
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If X is any of Ȧi ; m is any of ṁi ; ṁi is the cardinality of Ȧi ; then:

un(Ȧ1, Ȧ2, Ȧ3) ∧ size(X , ṁ) −→ un(Ȧ1, Ȧ2, Ȧ3) ∧ ṁ3 ≤ ṁ1 + ṁ2

∧

i=1,2,3

size(Ȧi , ṁi)

(15)

inters(Ȧ1, Ȧ2, Ȧ3) ∧ size(X , ṁ) −→ inters(Ȧ1, Ȧ2, Ȧ3)
∧

i=1,2,3

size(Ȧi , ṁi)
∧

i=1,2

ṁ3 ≤ ṁi

(16)

Fig. 4. Rule scheme for size inference rules.

If the answer is no it means the query is unsatisfiable for all values of the variables, and

so the verification condition is a theorem. {log} runs this query in 0.016 s.

As the example shows, the {log} representation of insert is both a formula (or exe-

cutable specification) and a program (or prototype, because of its lack of efficiency). Or

put it in another way, {log} is the very same tool that executes insert and automatically

proves its correctness. We think this is a rare characteristic in verification tools deal-

ing with cardinality constraints. {log} has been used in the same fashion on real-world

problems (Cristiá and Rossi 2021a; 2021).

7.2 Improvements

In this section we present some improvements recently made to {log} to render it a more

usable tool.

Derived constraints. As shown in Section 2.3, many set operators in {log} are defined as

derived constraints, that is, as |·|-formulas built out of the primitive constraints that L|·|
offers. For example, the predicate inters(A,B ,C ), which is true when C is the intersection

between sets A and B , can be defined as a derived constraint as follows:

inters(A,B ,C ) =̂ un(C ,N1,A) ∧ un(C ,N2,B) ∧ N1 ‖ N2

This approach is good from a theoretical perspective because it keeps the language,

proofs, and implementation to a minimum. However, it pays the price of reduced efficiency

which, in the end, makes the tool less interesting from a practical perspective. Therefore,

we move some key set constraints from derived constraints to built-in constraints by

defining and implementing possibly recursive rewriting procedures for them. Specifically,

we select inters, ⊆, and diff (for set difference) to be implemented as built-in constraints.

The main new rewrite rules for these constraints can be found in an online document

(Cristiá and Rossi 2019)).

Inference rules. In order to further improve the efficiency of our solver we introduce

special rewrite rules – hereafter simply called inference rules – that allow new size and

integer constraints to be inferred from the irreducible constraints. The presence of these

additional constraints will allow the solver to detect more efficiently certain classes of

unsatisfiable formulas.

Some significant inference rules are shown in Figure 4.
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Example 11

Proving a formula such as B = A1 ∪ · · · ∪ A20 ∧
∑20

i=1|Ai | < |B | which can be easily

written in {log} by using un, size, =, and < constraints, would cause an exponential

explosion in solve size. Instead, by implementing the first inference rule shown in Figure 4

the unsatisfiability is found in a few milliseconds. In fact, the introduction of this rule

eliminates the exponential explosion for this class of formulas. �

Hence, we extend Algorithm 1 by properly adding new calls to the inference rules

inside solve size, just before starting the third phase of SATZa . If Φ1 is the formula

received by solve size and Φ1
′ the one obtained from Φ1 after applying the inference

rules, then CLP(Q) is called on the integer subformula of Φ1
′. If CLP(Q) fails, then the

whole computation fails and the input formula is unsatisfiable; if not, the third phase of

SATZa is started with Φ1.

7.3 Empirical evaluation

In this section we present the results of the empirical evaluation we conducted in order to

evaluate how well the implementation of SAT |·| in {log} performs in practice. In previous

papers, we have evaluated other aspects of {log} such as its efficiency in producing model-

based test cases (Cristiá et al . 2013); how well it deals with relational constraints (Cristiá

and Rossi 2020) and restricted intensional sets (Cristiá and Rossi 2017; 2021b); and we

have applied it to industrial strength case studies such as the Bell-LaPadula security

model (Cristiá and Rossi 2021a) and the Tokeneer project (Cristiá and Rossi 2021).

The empirical evaluation consists of two experiments where {log} is asked to determine

the satisfiability of a collection of L|·| formulas. We measure how many of those formulas

are solved and the time spent in doing so. In both experiments we use a 2 s timeout and

the computing times are those of the solved problems. The data set to reproduce these ex-

periments can be downloaded from http://people.dmi.unipr.it/gianfranco.rossi/

SETLOG/size.zip (the technical details can be found in Appendix D). These experiments

do not use nested sets.

As shown in Table 1, the first experiment is performed over a collection of 468 L|·|
formulas. These formulas are taken from different sources:

• Tests. These are simple cardinality formulas of our own.

• Properties. These are formulas related to typical cardinality properties such as

|A ∪ B | ≤ |A|+ |B |.
• CVC4. These are problems used by Bansal et al . (2018) as a benchmark for the

implementation of cardinality constraints in the CVC4 SMT solver plus problems

derived from these.

• Kuncak. These are the five examples of program verification used by Kuncak et al .

(2006) to show their algorithm that solves BAPA formulas. BAPA is discussed in

Section 8.

• ssl-reachability. This is the collection of problems used by Piskac (2020) to

evaluate their method based on a LIA∗ encoding. LIA∗ is briefly discussed in Sec-

tion 8.

As can be seen, {log} solves 95% of the problems in 25.9 s, meaning an average of

0.06 s per problem. Even if the first collection is not considered, {log} solves 93% of the
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Table 1. Results of the first experiment

Collection # Satisfiable Unsatisfiable % Time

Slvd Uslvd Slvd Uslvd

Tests 150 98 0 52 0 100 0.5 s
Properties 53 14 0 36 3 94 3.8 s
CVC4 20 8 0 12 0 100 2.5 s
Kuncak 5 0 0 5 0 100 0.0 s
ssl-reachability 240 130 13 90 7 92 19.1 s

Total 468 250 13 195 10 95 25.9 s

Table 2. Results of the second experiment

Collection # Satisfiable % Time

Slvd Uslvd

Tests 98 97 1 99 0.4 s
Properties 14 14 0 100 0.1 s
CVC4 8 8 0 100 0.7 s
ssl-reachability 130 128 2 98 15.3 s

Total 250 247 3 99 16.5 s

resulting 318 problems in 25.4 s, thus making 0.09 s per problem. In particular, {log}
solves all the problems in the CVC4 and Kuncak collections. It also solves 92% of the

ssl-reachability collection in 19.1 s (0.09 s on average) whereas Piscak et al. manage

to solve 76% of them in 59 s (0.3 s in average)6 (Piskac 2020, Table 1). If the timeout

is set to 50 s, as done by Piscak, {log} manages to solve 11 more problems thus solving

96% of them (although it needs considerably more time as some problems are solved only

after several seconds).

The second experiment concerns the evaluation of SAT |·| when computing minimal

solutions—cf. Section 6 and command fix_size given in Section 7. Then, we run {log}
on the 250 satisfiable problems of Table 1 that the tool is able to solve. The results

are given in Table 2. This experiment sheds some light on the efficiency of {log} in

constructing more concrete solutions of satisfiable problems. As can be seen, {log} is

able to produce a more concrete solution to 99% of the satisfiable problems in 0.07 s

on average. Note that the tool is not able to find a concrete solution for three formulas

whose satisfiability, nonetheless, it was able to ascertain.

Even if the first collection of problems is removed from this experiment, {log} solves
99% of the problems in 0.1 s on average.

7.4 Discussion

In spite of initial theoretical concerns, the empirical evaluation presented in Section 7.3

shows that, in practice, {log}’s implementation of SATZa performs no worse than other

6 Piscak et al. run their evaluation on a 2018 MacBook Pro running OS X Mojave 10.14.5 with a 2.9
GHz Intel Core i9 processor and 32GB of RAM. Our hardware platform is older and less powerful,
see below.
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approaches and better than special purpose algorithms such as those by Kuncak and

Piscak. It is true, however, that in the worst case the exponential complexity of the

algorithm makes it unfit for certain problems. We can see that in the unsolved problems

(23 out of 468) of Table 1.

Broadly speaking, {log}’s implementation of SAT |·| goes through three phases: a) solve

the formula with minimal concern about cardinality; b) compute the set of solutions of

a Boolean formula derived from the irreducible form (cf. Definition 10); and c) solve

an integer linear programming problem for each subset of the Boolean solutions, which

presupposes the powerset of the set of Boolean solutions being computed. Each phase of

SAT |·| is inherently exponential, at least, in the worse case.

However, according to our experiments, the worst of these three problems is c). Its

most demanding part is not the computation of the powerset itself but solving the integer

problem for each of its elements. In fact, {log} uses backtracking in such a way as to

avoid computing the powerset explicitly. This problem bears some relationship with the

number of set variables of the input formula, but this is neither evident nor direct.

For example a formula such as A1 ∪ · · · ∪ A50 = ∅ ∧ |A43| > 2 ∗ k + 5 is solved in

virtually no time, while a formula with fewer variables but where ∪ is substituted by

∩ will take an exponential time. As we have noted, the real problem is the number of

solutions returned by step b) which determines the size of the powerset. Unfortunately,

the relationship between the input formula and the number of solutions of the Boolean

problem is complex. For example, A1 ∪ · · · ∪ A50 = B will generate many more Boolean

solutions than A1 ∪ · · · ∪A50 = B ∧
∧49

i=1 Ai ‖ Ai+1. To worsen things, if the number of

set variables is large, the integer problem to be solved for each element of the powerset

becomes increasingly more complex, consuming a non-negligible time. On the other hand,

a palliative to deal with c) is the fact that the problem is inherently parallelizable.

The introduction of inference rules proved to be a good method to avoid many of the

exponential problems we have discussed above. As long as the application of inference

rules remains polynomial in the size of the formula received by solve size, it will be, on

average, better to add them than not. It remains as an open problem whether or not

there is a set of inference rules applicable in polynomial time constituting a decision

procedure for L|·|. We believe the answer is no.

8 Related work

Computable Set Theory (CST) has studied the problem of deciding the satisfiability of

set formulas involving cardinality constraints since a long time ago (Ferro et al . 1980)

(Cantone et al . 2001, Chapter 11). In these works cardinality formulas are encoded as ad-

ditive arithmetic formulas over the natural numbers. Hibti (1995) proves the decidability

of a similar problem by encoding it as a propositional consistency problem.

Zarba’s work is rooted in CST and thus relies on the notion of place as a way to

represent Venn regions. This notion is used only inside solve size. Zarba also proves that

a theory of multisets, without the cardinality operator, is decidable (Zarba 2002a). Later

on, Zarba proved that a theory of (not necessarily finite) sets, including the cardinality

operator, combined with a theory of cardinal numbers is decidable (Zarba 2005).

In the field of Constraint Logic Programming a number of proposals have been put

forward introducing set constraints, possibly including cardinality (Azevedo 2007; Gervet
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1997; Hawkins et al . 2005). In these proposals, constraint (set) variables have a finite

domain attached to them, which is exploited by the solver to efficiently compute sim-

plified forms of the original constraints or to detect failures. The same approach is

adopted in the constraint modeling language MiniZinc (Stuckey et al . 2020). While

the availability of finite domains for constraint variables allows efficient handling of

set constraints, it actually prevents the user from using the solver as a general the-

orem prover. On the contrary, this is feasible in {log} where constraint variables do

not require finite domains. For example, proving the property ∀A,B ,n : A ⊆ B ∧
|A| = n ∧ |B | = n ⇒ A = B , can be done in {log} by checking that the formula

subset(A,B) & size(A,N) & size(B,N) & A neq B is unsatisfiable. The same general

result cannot be achieved for instance in MiniZinc, since set variables A and B (declared

as “decision variables” in MiniZinc) must have a fixed domain attached to them—for

example, var set of 0..100: A. Thus, we can write the formula in MiniZinc but what

we prove is not as general as in {log}: if we get an UNSATISFIABLE answer from MiniZinc

it does not mean we have proved the (general) property, while in {log} it does. Further-
more, set elements in {log} can be of any type, including unbounded constraint variables

and other sets, which are not allowed in MiniZinc and in other related proposals for set

constraints.

V. Kuncak and his colleagues have worked on the decidability of the first-order mul-

tisorted theory BAPA and its applications to program verification (Kuncak et al . 2006).

BAPA extends the combination of the theory of Boolean algebras of sets (BA) and Pres-

burguer arithmetic (PA). In this way BAPA can deal with formulas where the cardinality

of a set is treated as an integer variable subjected to PA constraints. Kuncak’s algorithm

reduces a BAPA sentence to an equivalent PA sentence. In this way, the algorithm enjoys

several nice properties (e.g. its complexity is no worse than an optimal algorithm for

deciding PA). This implies that the complexity of Kuncak’s algorithm is identical to the

complexity of PA. Besides, the algorithm can eliminate quantifiers from a BAPA formula

thus turning this into a quantifier-free BAPA formula—called QFBAPA. The algorithm

depends upon MAXC, an integer constant denoting the size of the finite universe. Our

method does not depend on any constant denoting the size of the universe. Kuncak and

his colleagues have implemented this algorithm in the Jahob system, used to check the

consistency of data structures in the Java language. Kuncak shows a few problems related

to program verification that can be solved with his algorithm. All the problems proposed

by Kuncak can also be efficiently solved by {log} as is shown in Section 7.3.

In a further development, Piskac and Kuncak (2008) give a decision procedure for

multisets with cardinality constraints by using a similar method (i.e. encoding input

formulas as quantifier-free PA formulas); more recently a more efficient method based on

a LIA∗ encoding has been proposed (Piskac 2020; Levatich et al . 2020). These algorithms

have been implemented in the MUNCH (Piskac and Kuncak 2010) and ssl-reachability

(Piskac 2020) tools which use existing solvers to solve the various problems involved in

this approach, for example, linear integer arithmetic. The empirical evaluation used to

evaluate the ssl-reachability tool is included in the evaluation of the implementation of

our algorithm in {log} (cf. Section 7.3).

Suter et al . (2011) have extended the Z3 SMT solver to solve problems of the QF-

BAPA logic which, as said above, can be used to encode set problems combined with
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PA problems through the cardinality operator. Bansal et al . (2018) also approach the

problem of deciding the satisfiability of finite set formulas with cardinality in the context

of SMT solvers. They propose and implement in CVC4 a calculus describing a combi-

nation of a procedure for reasoning about membership with a procedure for reasoning

about cardinality. Their method is based on a different strategy w.r.t. to Suter’s work

but it draws the concept of place from CST although used in an incremental way. Ac-

cording to Bansal and his colleagues, Suter’s method cannot scale well when the formula

has set membership constraints because these are encoded as cardinality constraints (i.e.

x ∈ A⇔ {x} ⊆ A and {x} is actually a set whose cardinality is 1). Instead, they propose

to avoid dealing with set membership constraints in terms of places or Venn regions, but

to reason directly about membership. This is aligned with how our method deals with

set membership, although we do it in terms of set unification (Dovier et al . 2006). In

fact, in our method a formula such as x ∈ B ∪ C is written as un(B ,C ,A) ∧ x ∈ A

which in turn is rewritten as A = {x � N } ∧ un(B ,C , {x � N }), where N is a new

variable (implicitly existentially quantified) and {x �N } is a set constructor interpreted

as {x} ∪ N . No Venn regions are computed when this formula is solved. Bansal et al.

empirically evaluate their method on 25 problems on program verification. The first 15

of these problems are drawn from the evaluations performed by Kuncak and Suter on

their tools. CVC4 shows a comparable performance w.r.t. those other tools. These 15

problems are included in the empirical evaluation of our method reported in Section 7.3;

{log} also shows a comparable performance. Bansal et al. also compare their method

with Suter’s on the constraint x ∈ A1 ∪ · · · ∪A21. As expected, Suter’s method runs out

of memory after some time while CVC4 solves the formula immediately. {log} also solves

the formula quickly and is able to return a finite representation of all possible solutions

which, as far as we know, no other tool can do. {log} also supports nested sets which is

apparently not the case of CVC4.

Yessenov et al . (2010) prove the decidability of a theory of sets including functions,

n-ary relations and some operators for the algebra of relations (e.g. relational image).

Then, they show that the cardinality operator can be added to the theory preserving its

decidability.

Azevedo (2007) describes the Cardinal system which is part of the ECLiPSe Prolog

library. Cardinal is based on constraint propagation on set cardinality and set interval

reasoning. Methods of this kind are, in general, restricted to formulas where the cardi-

nality of each set is constrained to range over a closed integer interval. Azevedo applies

his method to some problems on digital circuits.

A proposal for extending {log} with integers and cardinality constraints had already

been put forward in a previous work (Dal Palú et al . 2003). In that case, however, the

extension is based on the integration of CLP(FD) into {log}. Consequently, completeness

of the solver is obtained only if finite domains are provided for all integer variables and

labeling is performed over them. This in fact implies an upper limit for set cardinalities.

Furthermore, the presence of labeling can easily lead to unacceptable performance.

Alberti et al . (2017) extend linear integer arithmetic with free function symbols

and cardinality constraints for interpreted sets. Interpreted sets are sets of the form

{x ∈ [0,N ) | ϕ}, for some 0 < N ∈ N, and ϕ is an arithmetic formula. Free unary function

symbols are used to represent array ID’s. Thus, the language offers terms of the form a(y)
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where a is an array ID and y is a variable. Formulas such as a(y) < 1 are allowed to occur

in interpreted sets where y is the bound variable. Then, the language only allows one to

indicate the cardinality of interpreted sets, for example, |{y ∈ [0,N ) | a(y) < 1}| = 0.

These authors prove that some fragments of this logic are both decidable and expressive

enough as to model and reason about problems of fault-tolerant distributed systems. The

decidability results are obtained by mapping those fragments into Presburger arithmetic

enriched with unary counting quantifiers. One of the decidable fragments has been im-

plemented in a tool that uses the Z3 SMT solver as a back-end solver for quantifier-free

linear arithmetic. Alberti’s logic does not include classic set-theoretic operators such as

union. Hence, it is difficult to compare the expressiveness of Alberti’s logic with other

logics analyzed in this section and with ours. Although {log}’s intensional sets (Cristiá

and Rossi 2021b) could be used to encode Alberti’s interpreted sets, it is still necessary

to extend that theory as to compute the cardinality of intensional sets. This is a line of

future research.

Bender and Sofronie-Stokkermans (2017) extend some of the previous results to theo-

ries where cardinalities are replaced by the more general notion of measures. In this case,

a key aspect of the previous approaches is no longer valid, namely the fact that only the

empty set has cardinality equal to 0, as there are non-empty sets with measure 0. The

theories analyzed by these authors are important in, for example, duration calculus.

Also the Artificial Intelligence community has studied the problem of reasoning about

the size of sets, for example, Ding et al . (2020); Kisby et al . (2020). We want to remark

the work by Kisby et al . (2020) because they propose two logics, combining sets with

cardinality, whose decidability can be solved in polynomial time. As expected, the gain

in complexity is at the cost of expressiveness. Nonetheless, the result may deserve be-

ing studied in terms of software verification as it might give clues about what are the

simplest specifications and proof obligations involving sets and cardinality. From there,

compositional methods might be drawn in order to tame the complexity constantly faced

in automated program verification.

9 Concluding remarks

In this paper we have presented a decision procedure for the algebra of hereditarily

finite hybrid sets extended with cardinality constraints. The proposed procedure is im-

plemented within {log}, a CLP system able to deal with a few decidable fragments of set

theory. The empirical evaluation carried out on the implementation proves that {log} is
able to deal efficiently with formal verification problems involving cardinality constraints.

As a future work, we plan to use this decision procedure as the base for a decision pro-

cedure for the algebra of finite sets extended with integer intervals. Indeed, the following

identity:

A = [m,n]⇔ A ⊆ [m,n] ∧ |A| = n −m + 1

becomes the key for a set unification algorithm including integer intervals with variable

limits. In fact, it would suffice to be able to deal with constraints of the form A ⊆ [m,n] in

a decidable framework to have a decision procedure for integer intervals. In turn, integer

intervals are a key component in the definition of arrays as sets. In fact, if array(A,n)
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is a predicate stating that A is an array of length n whose components take values on

some universe U , then it can be defined as follows:

array(A,n)⇔ A : [1,n]→ U

{log} already supports a broad class of set relation algebras (Cristiá and Rossi 2020;

2018), including partial functions and the domain operator. Hence, it would be possible

to use {log} to automatically reason about broad classes of programs with arrays from

a set-theoretic perspective which would be different from existing approaches (Stump

et al . 2001; Bradley et al . 2006).
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Appendix A Proofs

In this section we provide the proofs of equisatisfiability of the main rewrite rules for the

size constraint. Note that the equisatisfiability property for rule (7) and for rule (8) is

trivial. Then we give the proofs for rule (10) and (14).
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Lemma 1 (Equisatisfiability of rule (10))

∀ x ,A,m :

size({x � A},m)⇔
∃n : x /∈ A ∧ m = 1 + n ∧ size(A,n)

∨ ∃N : A = {x � N } ∧ x /∈ N ∧ size(N ,m)

Proof

First, assume x /∈ A.

size({x � A},m)

⇔ |{x � A}| = m [by semantics of size]

⇔ |{x} ∪ A| = m [by semantics of {· � ·}]
⇔ |{x}|+ |A| = m [by x /∈ A and property |·|]
⇔ 1 + |A| = m [by property of |·|]
⇔ 1 + n = m ∧ n = |A| [by substitution]

⇔ 1 + n = m ∧ size(A,n) [by semantics of size]

Now, assume x ∈ A. Then, take N = A\{x}. Trivially, A = {x}∪N and x /∈ N . Now,

A = {x � N } [by semantics of {· � ·}]. Finally:

size({x � A},m)

⇔ |{x � A}| = m [by semantics of size]

⇔ |{x} ∪ A| = m [by semantics of {· � ·}]
⇔ |A| = m [by x ∈ A ⇒ {x} ∪A = A]

⇔ size(A,m) [by semantics of size]

And this finishes the proof.

Lemma 2 (Equisatisfiability of rule (14))

∀A, c : c > 0⇒
size(A, c)⇔ ∃ y1, . . . , yc : A = {y1, . . . , yc} ∧ ad(y1, . . . , yc)

where:

ad(y1, . . . , yc) =̂
∧c−1

i=1

∧c
j=i+1 yi 
= yj

Proof

size(A, c)

⇔ |A| = c [by semantics of size]

⇔ A = {y1, . . . , yc} ∧ ad(y1, . . . , yc) [by semantics of |·| and c > 0]

for some elements y1, . . . , yc .
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Appendix B Mapping L|·| formulas into LZa formulas

In this section we define a mapping of L|·| formulas into LZa formulas. Actually, in order

to justify Theorem 2, we only need to map the L|·| formulas in irreducible form that are

passed in to SATZa . Indeed, the implementation of SATZa is called on L|·| formulas in

irreducible form, as explained in Section 4.

Hence, we define a function, Z, that takes L|·| terms, constraints or formulas in irre-

ducible form and returns LZa terms, constraints or formulas.

Variables. Variables are mapped onto themselves taking care of their sort:

Z(x ) =̂ x , if x ∈ V

Ur-elements. Ur-elements are mapped onto themselves:

Z(x ) =̂ x , if x is of sort U

Integer terms. As LZa only provides the constants 0 and 1, the mapping of n ∈ Z is as

follows:

Z(0) =̂ 0

Z(n) =̂
n︷ ︸︸ ︷

1 + · · ·+ 1 =
n∑

i=1

1, for n 
= 0

LZa does not provide the integer product. However, recall that L|·| admits only linear

terms so in n ∗m at least one is a constant; if it is m, then we first switch the term as

m ∗ n. In this case the mapping for integer linear terms is as follows:

Z(−m) =̂ −Z(m)

Z(n +m) =̂ Z(n) + Z(m)

Z(n −m) =̂ Z(n)−Z(m)

Z(n ∗m) =̂

n︷ ︸︸ ︷
Z(m) + · · ·+ Z(m) =

n∑
i=1

Z(m)

Integer constraints.

Z(n = m) =̂ Z(n) = Z(m)

Z(n ≤ m) =̂ Z(n) < Z(m) ∨ Z(n) = Z(m)

Set terms. Recall that we only need to map set terms in irreducible form except those

at the right of an equality of the form Ẋ = t . This means that, actually, we do not need

to map any set term.

Set constraints. Again, we only need to map set constraints appearing in irreducible

form. Moreover, we do not need to map constraints based on =, /∈, and 
=, as explained

in Section 4.2. Therefore, we only need to map constraints based on un, ‖ and size.
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Z(un(A,B ,C )) =̂ Z(C ) = Z(A) ∪ Z(B)

Z(A ‖ B) =̂ Z(A) ∩ Z(B) = ∅
Z(size(A,K )) =̂ |Z(A)| = Z(K )

Formulas. The irreducible form is a conjunction of constraints in irreducible form. Then,

we only need to map conjunctions of constraints.

Z(p ∧ q) =̂ Z(p) ∧ Z(q)

Appendix C A simple {log} program

The following {log} program models a simple data container and its cache. As long as

the container Cont holds at most N elements its cache Cache holds the same elements;

when Cont grows beyond N, Cache contains only N elements. In this model, both Cont

and Cache are sets.

cache(Cont,N,Cache) :-

0 < N &

size(Cont,S) &

(S =< N &

Cache = Cont

or

S > N &

un(Rest,Cache,Cont) &

disj(Rest,Cache) &

size(Cache,N)

).

In this way, we can run queries to play with cache:

{log}=> cache({1,b,[2,q]},2,Cache).

Cache = {b,[2,q]}

Another solution? (y/n)

Cache = {1,[2,q]}

Another solution? (y/n)

Cache = {1,b}

Another solution? (y/n)

no

Given that Cont and Cache are sets, cache returns several solutions where Cache holds

different elements of Cont. In other words, this model of the system is nondeterministic

as we cannot say what are the first elements to be put in the cache. Determinism can be

imposed by calling cache in this way:
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{log}=> cache({1,b,[2,q]},2,C)!.

C = {b,[2,q]}

Another solution? (y/n)

no

{log} can be used to prove that cache verifies some properties. For example, if M is the

size of Cont and we have that N < M then Cache is a non-empty set. This is proved by

running a query representing the negation of this property:

{log}=> cache(Cont,N,Cache) & size(Cont,M) & N < M & Cache = {}.

In which case {log} answers no meaning the query cannot be satisfied.

Appendix D Technical details of the empirical evaluation

The experiments described in Section 7.3 were performed on a Latitude E7470 (06DC)

with a 4 core Intel(R) CoreTM i7-6600U CPU at 2.60GHz with 8 Gb of main memory,

running Linux Ubuntu 18.04.5 (LTS) 64-bit with kernel 4.15.0-135-generic. {log} 4.9.8-7g
over SWI-Prolog (multi-threaded, 64 bits, version 7.6.4) was used during the experiments.

Each {log} formula was run within the following Prolog program:

consult(’setlog.pl’).

set_prolog_flag(answer_write_options,[max_depth(0)]).

set_prolog_flag(toplevel_print_options,

[quoted(true),

portray(true), spacing(next_argument)]).

time(once(rsetlog(<FORMULA>), 2000,__C,__R,[]))).

where <FORMULA> is replaced by each formula, 2000 is the timeout (in milliseconds), and

__C and __R are used to get the result of the execution. Each of these programs was run

from the command line as follows:

prolog -q < <PROG>

The execution time is the one printed by the time/1 predicate.

Appendix E Inequality elimination (remove neq)

The |·|-formula returned by Algorithm 1 when STEPS reaches a fixpoint is not necessarily

satisfiable.

Example 12 (Unsatisfiable formula returned by STEPS)

The |·|-formula:

un(A,B ,C ) ∧ un(A,B ,D) ∧ C 
= D (E1)

cannot be further rewritten by any of the rewrite rules considered above. Nevertheless,

it is clearly unsatisfiable. �
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If A ∈ VS; t : 〈{Set,Ur}〉; Φ is the input formula then:

If Ȧ occurs as an argument of a π-constraint, π ∈ {un, size}, in Φ:

Ȧ �= t −→ (ṅ ∈ Ȧ ∧ ṅ /∈ t) ∨ (ṅ ∈ t ∧ ṅ /∈ Ȧ) ∨ (Ȧ = ∅ ∧ t �= ∅)

Fig. E 1. Rule scheme for �= constraint elimination rules.

In order to guarantee that SAT |·| returns either false or satisfiable formulas (see The-

orem 2), we still need to remove all inequalities of the form Ȧ 
= t , where Ȧ is of sort

Set, occurring as an argument of |·|-constraints based on un or size. This is performed

(see Algorithm 1) by executing the routine remove neq, which applies the rewrite rule

described by the generic rule scheme of Figure E 1. Basically, this rule exploits set ex-

tensionality to state that two sets that differ can be distinguished by asserting that a

fresh element (ṅ) belongs to one but not to the other. Notice that the third disjunct is

necessary when t is a non-set term. In this case the second disjunct is false while the first

disjunct forces Ȧ to contain an element ṅ; so without the third disjunct we would miss

the solution Ȧ = ∅.

Example 13 (Elimination of 
= constraints)

The |·|-formula of Example 12 is rewritten to (we do not consider the third disjunct as

C and D are set variables):

un(A,B ,C ) ∧ un(A,B ,D) ∧ C 
= D −→
un(A,B ,C ) ∧ un(A,B ,D) ∧ (ṅ ∈ C ∧ ṅ /∈ D ∨ ṅ /∈ C ∧ ṅ ∈ D) −→
un(A,B ,C ) ∧ un(A,B ,D) ∧ ṅ ∈ C ∧ ṅ /∈ D

∨
un(A,B ,C ) ∧ un(A,B ,D) ∧ ṅ /∈ C ∧ ṅ ∈ D

Then, the ∈ constraint in the first disjunct is rewritten into a = constraint (namely,

C = {ṅ � Ṅ }), which in turn is substituted into the un constraints, which in turn are

further rewritten by rules such as those shown in Figure 1 and (Dovier et al . 2000). This

process will eventually return false, at which point the second disjunct is processed in a

similar way. �
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