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On the pluriclosed flow on
Oeljeklaus—Toma manifolds

Elia Fusi and Luigi Vezzoni

Abstract. We investigate the pluriclosed flow on Oeljeklaus-Toma manifolds. We parameterize left-
invariant pluriclosed metrics on Oeljeklaus-Toma manifolds, and we classify the ones which lift
to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the
pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution a), which
once normalized collapses to a torus in the Gromov-Hausdorff sense. Moreover, the lift of ;we to
the universal covering of the manifold converges in the Cheeger-Gromov sense to (H* x (C woo)

where @ is an algebraic soliton.

1 Introduction

Oeljeklaus-Toma manifolds [300pt]are a very interesting class of complex manifolds
introduced and first studied in [17]. These manifolds are defined as compact quotients
of the type

_H' xC*
- UKO]K)

where H ¢ Cis the upper half-plane, Ok is the ring of algebraic integers of an algebraic
extension K of Q satisfying [K : Q] = r + 2s, and U is a free subgroup of rank r of Oz *
satisfying some compatible conditions. The action of U x Og on H" x C* is defined via
some embeddings of K in R and C. Oeljeklaus-Toma manifolds have a rich geometric
structure. For instance, they have a natural structure of T"**-torus bundle over a

" and a structure of solvmanifold [13], i.e., they are always compact quotients of a
solvable Lie group by a lattice. The Poincaré metric' wgr = vV/-131_, &Zgﬁngz induces
a degenerate metric w., on M which has a central role in the study of geometric flows
on these manifolds. The pair (7, s) is called the type of the manifold. The case of type
(r,s) = (1,1) corresponds to the Inoue-Bombieri surfaces [11].

In [2,7, 28, 32], the Chern-Ricci flow [10, 29] on Oeljeklaus-Toma manifolds M of
type (r,1) is studied. According to the results in [2, 7, 28, 32], under some assumptions
on the initial Hermitian metric, the flow has a long-time solution w; such that (M, {3 )
converges in the Gromov-Hausdorff sense to an r-dimensional torus T" as t — oo. The

result can be adapted to Oeljeklaus-Toma manifolds of arbitrary type by assuming
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the initial metric to be left-invariant with respect to the structure of solvmanifold.
Moreover, a result of Lauret in [15, 16] allows us to give a characterization of left-
invariant Hermitian metrics on an Oeljeklaus-Toma manifold which lift to an alge-
braic soliton of the Chern-Ricci flow on the universal covering of the manifold (see
Proposition 4.1).

Following the same approach, we focus on the pluriclosed flow on Oeljeklaus—
Toma manifolds when the initial pluriclosed Hermitian metric is left-invariant. The
pluriclosed flow is a geometric flow of pluriclosed metrics, i.e. of Hermitian metrics
having the fundamental form 90-closed, introduced by Streets and Tian in [25]. The
flow belongs to the family of the Hermitian curvature flows [26] and evolves an initial
pluriclosed metric along the (1,1)-component of the Bismut-Ricci form. Namely, on
a Hermitian manifold (M, w), there always exists a unique metric connection vB,
called the Bismut connection [4], preserving the complex structure and such that

w(T®(--),J-) isa3-form,

where T8 is the torsion of V2. The Bismut-Ricci form of w is then defined as
n
PB(X7 Y) =V -1 Z RB(Xa Y; Xi)Xi)s
i=1

where Rp is the curvature tensor of V® and {X;} is a unitary frame with respect to
w. pg is always a closed real form. Given a pluriclosed Hermitian metric w on M, the
pluriclosed flow is then defined as the geometric flow of pluriclosed metrics governed
by the equation

0w = —py (@), Wjt=o = @.

The pluriclosed flow was deeply studied in literature (see, for instance, [3, 5, 6, 9,
12, 19-24, 27] and the references therein).
Our main result is the following theorem.

Theorem 1.1 Let w be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus-
Toma manifold M. Then the pluriclosed flow starting from w has a long-time solution
w; such that (M, 3% ) converges in the Gromov-Hausdor(f sense to (T*, d). Moreover,
w lifts to an expanding algebraic soliton on the universal covering of M if and only if it is
diagonal and the first s diagonal components coincide. Finally, (H* x C*, {) converges
in the Cheeger-Gromov sense to (H* x C°, @, ), where @ oo is an algebraic soliton.

Here, we recall that a left-invariant Hermitian metric w on a Lie group G with a left-
invariant complex structure is an algebraic soliton for a geometric flow of left-invariant
Hermitian metrics if w; = ¢;¢} (w) solves the flow, where {c, } is a positive scaling and
{¢:} is a family of automorphims of G preserving the complex structure. Moreover,
the distance d in the statement is the distance induced by 3w on the torus base of
M. Now, we describe the condition diagonal appearing in the statement of Theorem
L.1. The existence of a pluriclosed metric on an Oeljeklaus-Toma manifold imposes
some restrictions (see [1, Corollary 3]). In particular, the manifold has type (s, s) and
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admits a left-invariant (1, 0)-coframe {w', ..., %, y,...,y°} satisfyin
Y Y g

dwk:@wk/\d)k, k=1,...,s,

dy' =i i @F Ay =il Ak@F Ayl i1,

ijk ——*(Sk
! 4 e

By w diagonal, we mean that it takes a diagonal form with respect to such a coframe.
The first part of Theorem 1.1 in the case of the Inoue-Bombieri surfaces is proved in
[5, Corollary 3.18].

Theorem 1.1 provides a description of the long-time behavior of the solution w, to
the pluriclosed flow as t — co. For the definition of the convergence in the Gromov-
Hausdorff sense, we refer to Section 3, whereas here we briefly recall the definition of
convergence in the Cheeger-Gromov sense: a sequence of pointed Riemannian man-
ifolds (Mg, gk, px) converges in the Cheeger-Gromov sense to a pointed Riemannian
manifold (M, g, p) if there exists a sequence of open subsets A of M so that every
compact subset of M eventually lies in some Ay, and a sequence of smooth maps
¢x: Ay & My which are diffeomorphisms onto some open set of M; which satisfy

ér(px) = p, such that
¢r(gk) > g smoothly on every compact subset, as k — oo.

See [14, Section 6] for a deep analysis of Cheeger-Gromov convergence both in
the general case and in the homogeneous one and [15, Section 5.1] for the case of
Hermitian Lie groups.

2 Definition of Oeljeklaus-Toma manifolds

We briefly recall the construction of Oeljeklaus—Toma manifolds [17].

Let Q cK be an algebraic number field with [K: Q] =r+2s and r,s > 1. Let
01,...,0, K- R be the real embeddings of K and 041, ..,0r12:: K - C be the
complex embeddings of K satisfying oy,s.; = 0,4, for every i =1,...,s. We denote
by Ok the ring of algebraic integers of K and by O the group of units of Ok. Let

O ={uecOg | o0i(u)>0, foreveryi=1,...,r}

be the group of totally positive units of Ox. The groups Ok and O3 act on H" x C°

as
a- (21,03 Zrs Wiy e, W)
=(nr+a(a),....,z, +o,(a), w1 + 0rs1(a),...,ws + 0,45(a)), forallae Ok
and
U (21,005 Zrs Wi, e, W)
= (o1(u)z1, ... 0, ()2, Ora (W)W, . .., Ops(u)wy),  foreveryu e Op".
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There always exists a free subgroup U of rank r of O * such that prg, o I(U) is alattice
of rank r in R", where [: Of{r — R is the logarithmic representation of units

I(u) = (logoy(u),...,logo,(u),2loglo,1 (1), ..., 2loglo, s (1))

and prg,:R™ — R" is the projection on the first r coordinates. The action of U x
Ok on H" x C* is free, properly discontinuous, and co-compact. An Oeljeklaus-Toma
manifold is then defined as the quotient

H" x C*

M= —,
U x Ok

and it is a compact complex manifold having complex dimension r + s.
The structure of torus bundle of an Oeljeklaus-Toma manifold can be seen as
follows: we have
"xC*
O]K

R r]rr+25
and that the action of U on H" x C* induces an action on R’, x T"** such that, for
every x € R and u € U, the induced map
w (%, T o (oy(u)x1, . . . 00 (1) x,, TTH)
is a diffeomorphism. Hence,

R:_ x r]rr+25
U

M:

inherits the structure of a T"***-bundle over T”. We denote by 7 and F the projections
mH xC*->M, FM->T.

From the viewpoint of Lie groups, the universal covering of an Oeljeklaus—Toma
manifold M has a natural structure of solvable Lie group G and the complex structure
on M lifts to a left-invariant complex structure [13]. Therefore, Oeljeklaus-Toma man-
ifolds can be seen as compact solvmanifolds with a left-invariant complex structure.
The solvable structure on the universal covering of M can be described in terms of the

existence of a left-invariant (1,0)-coframe {w', ..., ®",y',...,y*} such that
M dwk \Fa)k/\w, k=1,...,1,
dy' = Si Ak @F Ay = Th A@F Ayl i=1,.,s,
where
V-1 1
Aki = W bri — Ecki

and by, cx; € R depend on the embeddings o; as

(2) Grﬂ(” (H(Uk(u z ) VIEi ICkxlogOk(u)
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foranyueU,k=1,...,randi=1,...,s. Since U ¢ O, it is easy to see that

r+s
Z Xi = 0} .
i=1

This fact together with (2) implies that, for every u € U,

> logai(u) (1 +> b,-k) =0,
i=1 k=1

which, since prg, o I(U) is a lattice of rank r in R’, is equivalent to

I(U) c {xeR’“

(3) Zb,-k:—l, foralli=1,...,r.
k=1

The dual frame {Z;,...,Z,, Wi,..., W} to {@',...,@",y',..., )"} satisfies the
following structure equations:

_ V-1 _ . -
(Zk, Zk] = _T(Zk +2), [Zi, Wi] = =-AiWi,  [Z, Wi] = A W,

for k=1,...,r and i =1,...,s. Consequently, the Lie algebra g of the universal
covering of M splits as vector space as

g=he7,
where J is an abelian ideal and § is a subalgebra isomorphic to f @ - -- & §, where § is
N ———
r-times

the filiform Lie algebra f = (e}, e2), [e1, 2] = —%el. The complex structure J induced
on g preserves both ) and J, and its restriction Ji on § satisfies

Jp=]i®--&J;,
———
r-times

where J; is the complex structure on f defined by J;(e;) = e,. Moreover,

[hl,o’ 30,1] c /J«O,l'

3 Convergence in the Gromov-Hausdorff sense

We briefly recall Gromov-Hausdorff convergence of metric spaces. The Gromov-
Hausdor{f distance between two metric spaces (X, dx), (Y, dy) is the infimum of all
positive ¢ for which there exist two functions F: X - Y, G:Y — X, not necessarily
continuous, satisfying the following four properties:

|dx (x1,%2) —dy(F(x1),F(x2))| <&, dx(x,G(F(x))) <,
ldy (71, 2) = dx(G(3n), G(2))[ <& dv(y,F(G(y))) <
for all x,x1,x; € X and y, y1,y2 € Y. If {d;}sc[0,00) is @ one-parameter family of

distances on X, (X, d;) converges to (Y,dy) in the Gromov-Hausdor{f sense if the
Gromov-Hausdorft distance between (X, d;) and (Y, d) tends to 0 as t — oo.
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Let {@¢}te[0,00) be a smooth curve of Hermitian metrics on an Oeljeklaus-Toma
manifold, and let d; be the induced distance on M. For a smooth curve y on M, let
Li(y) be the length of y with respect to w;. We further denote by J{ the foliation
induced by h on M.

Proposition 3.1 Let {w;}e[o,00) be a smooth curve of Hermitian metrics on an
Oeljeklaus-Toma manifold such that

lim w; = weo

t—o0
pointwise. Assume that there exist T € (0, c0) and C > 0 such that:

1. Li(y) < CLo(y), for every smooth curve y in M.
2. Li(y) < (C/\/t)Lo(y), for every smooth curve y in M such that p € ker wo..

Assume further that:

3. For every &, > 0, there exists T > 0 such that |L;(y) — Lo (y)| < &, for every t > T
and every curve y in M tangent to H and such that Lo, (y) < L.

Then (M, d;) converges in the Gromov-Hausdorff sense to (T",d), where d is the
distance induced by wo, onto T".

Proof We follow the approach in [28, Section 5] and in [32, Proof of Theorem 1.1].
Let M be an Oeljeklaus-Toma manifold. Consider the structure of M as T"***-bundle
over a T". Let F: M — T" be the projection onto the base, and let G:T" - M be an
arbitrary map such that F o G = Idy-. We show that, for every ¢ > 0, there exists T > 0

such that

(4) |d(p>q) - d(F(p),F(q))| <,
() |d(a,b) - di(G(a),G(b))| <&,
(6) di(p,G(F(p))) <&,

7) d(a,F(G(a))) <&,

forevery t > T, p,q € M, a,b € T, which implies the statement.
Note that (7) is trivial since

d(a,F(G(a))) =0,

for every a € T".

Then we show that (6) is satisfied. Let p, g € M be two points in the same fiber over
T". Assume that p = 77(z, w). We denote with £, ) the leaf of the foliation ker @, on
the universal covering of M passing through (z, w). We easily see that, for all (z, w) €
H" x C%, L,y = {2z} x C°. In view of [30, Section 2], for every z € H", n({z} x C*)
is the leaf of the foliation ker w., on M passing through p and it is dense in the fiber
F7Y(F(p)). Let Bg be the standard ball in C* about the origin having radius R. We can
choose R so that every point in F!(F(p)) has distance with respect to d; less than
¢/2C to ({z} x Bg). On the other hand, given two points in 77({z} x Bg), they can
be joined with a curve y in F~!(F(p)) which is tangent to ker w.,. Hence, for any such
curve, condition 2 implies
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/

)Sﬁ;

for a uniform constant C" depending only on R. Let py = 71(z,0), let y; be a curve in
F7'(F(p)) connecting p with p, tangent to ker w.., and let y, be a curve connecting
po with g having minimal length with respect to dy. Hence, by using condition 1, for
t sufficiently large, we have

Li(y

+CLo(y2)< —+7<s,

di(p,q) < Lie(y1) + Le(y2) < NG

\/_
ie.,
dt(pa CI) < &,

and (6) follows.

Next, we show (4) and (5). First of all, we denote with g the Riemannian metric on
T" induced by w., for an explicit expression of g (see [32, Section 2]), and we observe
that

(8) Le(F(y)) € Lo(y), for every curvey in M,
and the equality holds if and only if

1 -
peY =span~{s —— (Z; - Z; i=1,...,r;.
Y panc {2\/_—1 ( ) }

Let p,q € M. We can find a curve y in M connecting p with a point § in the T"*%-
fiber containing g which is tangent to Y and such that F(y) is a minimal geodesic on
(T, g) (see, for instance, [28, Proof of Theorem 5.1] or [32, Proof of Theorem 1.1]). By
applying condition 3, we have

di(p,q) <di(p,q) +di(qq) <de(p,q) + e < Li(y) + &< Loo(y) +2¢
= Lg(F(y)) +2¢ = d(F(p), F(q)) + 2¢,

for t big enough, i.e.,

©) di(p,q) - d(F(p), F(q)) < 2¢,

for t sufficiently large.
Next, using again (8), we obtain, for p, g € M,

d(F(p),F(q)) < Lg(F(y)) < Loo(y) < Le(y) + &= di(p. q) + &,

for t big enough, where y is a curve which realizes the distance d;(p, q). Hence, we
obtain

(10) d(F(p),F(q)) - di(p.q) <e.

By substituting p = G(a) and q = G(b) in (9) and (10), we infer
-£<di(G(a),G(b)) —d(a,b) <2,

and (4) and (5) follow. [ ]
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4 The left-invariant Chern-Ricci flow on Oeljeklaus-Toma
manifolds

Given a Hermitian manifold (M, w), the Chern connection of w is the unique
connection V on (M, w) preserving both w and the complex structure such that the
(1,1)-component of its torsion tensor is vanishing. The Chern-Ricci form of w is the
real closed (1,1)-form

n
pc(X,Y) =V-1Y Re(X,Y, Xi, Xi),
i=1

where R is the curvature tensor of V and {X;} is a unitary frame with respect to w.
The Chern-Ricci flow is then defined as the geometric flow

o1y = _PC(wt)’ Wjt=0 = W.
In this section, we prove the following Proposition.

Proposition 4.1 Let w be a left-invariant Hermitian metric on an Oeljeklaus-Toma
manifold M. Then w lifts to an expanding algebraic soliton for the Chern-Ricci flow on
the universal covering of M if and only if it takes the following expression with respect to
the coframe {w', ..., w",y',...,y*} satisfying (1):

(11) w:\/—_l(AZwiAcbi+ ZgHm;Y"Ayf)_
i=1 i

i,j=1

Moreover, the Chern-Ricci flow starting from w has a long-time solution {w.} such that
(M, 34 converges as t — oo in the Gromov-Hausdorff sense to (T",d), where d is
the distance induced by we onto T". Finally, (H" x C*, £ ) converges in the Cheeger-

> 1+t
Gromov sense to (H" x C*, @« ), where @ is an algebraic soliton.

The proof of Proposition 4.1 is based on the following theorem of Lauret.

Theorem 4.2 (Lauret [15]) Let (G,]) be a Lie group with a left-invariant complex
structure. Then the Chern-Ricci form of a left-invariant Hermitian metric w on (G,])
does not depend on the Hermitian metric. Moreover, if P # 0 is the endomorphism
associated with p¢ with respect to w, then the following are equivalent:

(1) w is an algebraic soliton of the Chern-Ricci flow.

(2) P =cI+ D, for some D € Der(g).

(3) The eigenvalues of P are either 0 or ¢, for some ¢ € R with ¢ # 0, ker P is an abelian
ideal of the Lie algebra of G, and (ker P)* is a subalgebra.

Proof of Proposition 4.1 Let M be an Oeljeklaus—Toma manifold. Since the Chern-
Ricci form does not depend on the choice of the left-invariant Hermitian metric, it is
enough to compute p¢ for the “canonical metric”

(12) w=\/—_l(2wi/\d)i+2yj/\)7j).
i=1 j=1
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We recall that the Chern-Ricci form of a left-invariant Hermitian metric w =
V-1¥"_ a® A &* on a Lie group G*" with a left-invariant complex structure takes
the following algebraic expression:

n

1) pe(X,Y) == 3 (w([[X, Y]™, Xa]. Xa) + 0([[X, Y], Xa]. Xa)) »

a=1

for every left-invariant vector fields X, Y on G, where {a’} is a left-invariant unitary
(1,0)-coframe with dual frame {X, } (see, e.g., [31]). By applying (13) to the canonical
metric (12), we have

el 1) = = Sa(([X, VI Za), Z0) + w([[X, V1", 22),2)

- bi_{w<[[X, Y104, W1, W) + o(([X YU, Wy, W)

Clearly,
pc(Zi,Z;)=0, foralli#j, pc(W;,W;)=0, foreveryi,j=1,...,s.
Moreover, since J is an abelian ideal and w makes J and b orthogonal, we have
pc(Zi, W;) =0, foralli=1,...,r, j=1,...,s.

Moreover, we have

(12020, 20,22 = Y0, w1220, 200,20 = Y,
and
(2021 Wl Wh) = Shiss @(([200 21" Wi Wh) =~ A
which imply

- | V-1
PC(ZiaZi) =—-v-1 ( + ij(lzb)) =--—,
2 3 4
and, consequently,
PC = ~Weo»

where wo, is the degenerate metric induced on M by the Poincaré metric on H’,
namely,

V-1 . .
Woo = ~—— > ' NG
4 3
In general, we have that

—ig’rj, ifie{l,...,r},

P] = i l—(] =
! =(pc)ikg {0) otherwise.

Then part (3) of Theorem 4.2 readily implies that any left-invariant Hermitian metrics
of the form (11) lifts to an expanding algebraic soliton on the universal covering of M
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with cosmological constant ¢ = 7. Conversely, let w be an algebraic soliton for the

Chern-Ricci flow. Then, thanks to part (2) of Theorem 4.2, we have that
P - cI € Der(g).

On the other hand, we can easily see that, if D € Der(g), then h € ker D (see the proof
of Corollary 5.4 for the details). This readily implies that
1 ;1 5
—Zg” = —Zg” =¢, foralli,j=1,...,r, g"7=0, forallie{l,...,r},j#1,
from which the claim follows.
Moreover, the Chern-Ricci flow evolves an arbitrary left-invariant Hermitian
Wi

metric @ as @; = w + twoo and & > wo as £ — co. In order to obtain the claim
W

regarding the Gromov-Hausdorff convergence, we show that %% satisfies conditions
1-3 in Proposition 3.1. Here, we denote by | - |; the norm induced by w,.

Condition 2 is trivially satisfied since w545 = wo, for every t > 0, and
1
V1+t

for every curve y in M tangent to ker wo..
On the other hand, for a vector v € hj, we have

Li(y) = Lo(y),

1
[v|¢ < Clvlo,
VI+t
for a constant C > 0 independent on v. This, together with condition 2, guarantees
condition 1.
In order to prove condition 3, let ¢, £ > 0 and T > 0 be such that

[vle o] < &
Vitt |

for every v e hand ¢t > T. Let y be a curve in M tangent to H{ which is parametrized
by arclength with respect to we and such that L (y) < £. Then

L) - Lal< [

1

daszbs‘s,

since b < 4.

For the last statement, we identify w, with its pullback onto H" x C* and we fix as
base point the identity element of H" x C°. First, we observe that the endomorphism
D represented with respect to the frame {Z;,...,Z,, W;,..., W} by the following

matrix
0 0
0 Iy

is a derivation of g. Moreover, we can construct

exp(s(t)D) = (IS es(?)lj) € Aut(g,J), foreveryt>0,
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where s(t) =log(v/1+t) and define the one-parameter family {¢,} ¢ Aut(H" x
C*, ) such that

do, = exp(s(t)D), foreveryt>0.

Trivially, we see that

*wt (Z,,Z) \/_ (gl]+ 6,1) @&j ast — oo,

s(t)
1+ tg’”f
Zs(t)

o “’t (20 W) = VA

-0 ast— oo,

*wt (VV,,W) \/—

These facts guarantee that

gr+1r+] v _1gr+i?j as t — oo.

x Wt

Py

hence, the assertion follows. ]

= Weo + W3py asSt —> 00;

5 Proof of the main result

In this section, we prove Theorem 1.1.
The existence of pluriclosed metrics on Oeljeklaus-Toma manifolds was studied in
[1, 8, 18]. In particular, from [1] it follows the following result.

Theorem 5.1 ([1, Corollary 3])  An Oeljeklaus—Toma manifold of type (r,s) admits a
pluriclosed metric if and only ifr = s and

(14) oj(u)|oyj(u)P =1, foreveryj=1,...,sandue U.

Condition (14) in the previous theorem can be rewritten in terms of the structure
constants appearing in (1). Indeed, (1) together with (14) forces by; € {0,-1} and
biibii = 0, forevery i, k,l =1,...,s with k # [. In particular, using (3), for every fixed
index k € {1,...,s}, there exists a unique ix € {1,...,s} such that

bri, =-1, by =0,

for all i # iy and, if k # [, then i; # i;. Hence, up to a reorder of the y;’s, we may and
do assume, without loss of generality, iy = k, for every k € {1,...,s}, ie.

1 s
~5Cki» ifi #k,
15 Aei =
s) k {_Ckk 771, ifi = k.

Proposition 5.2 (Characterization of left-invariant pluriclosed metrics on Oeljeklaus—
Toma manifolds). A left-invariant metric w on an Oeljeklaus-Toma manifold admit-
ting pluriclosed metrics is pluriclosed if and only if it takes the following expression with
respect to a coframe {w', ..., w*,y", ..., y*} satisfying (1) and (15):

s k
16) w=V-1Y Ajw' A" +Biy' AP + V-1 (CrwPr AjPr + CopPr A 0PT)
i=1 r=1
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for some Ay, ..., A, By,...,Bs €R,y, Cy,...,Cr € C, where {p1,....px} S {L,...,s}
are such that
Aip, =0, forall j+ p;, foralli=1,...,k.
Proof We assume s > 1since the case s = 11is trivial. Let
S -
w=V-1 " ApgwP A@T+Byzy? A §T+ Cpgw? AJT+ Cpgy? A 0P
p-q=1
be an arbitrary real left-invariant (1,1)-form on M, with A5, B,; € R, for every
p=L...,s, ApgBpg € C, for all p,g=1,...,s with p # g, and C,; € C, for every
p-q=1...,s.
From the structure equations (1), it easily follows

00(w? A @7) € (WP A I A @F A @7),
(17) 20(w? A§7) € (@' A wl A @' AJ™),

29(y? A§7) € (w' A @) Ay A ™),

and that w is pluriclosed if and only if the following three conditions are satisfied:

(18) > Apgdo(w? A @) =0,
P)qs=1

19) 2. Bpgdd(yf n§7) =0,
P»Sq:l

(20) > Cpgdd(w? A§T) =0.
p>q=1

The first relation in (17) yields that (18) is satisfied if and only if
Ap; =0, forall p # q.
Next, we focus on (19). We have

20(y? A §1) =0 (— Z/L;P(I)& AYP A YT =P A Z)_L(;qd)‘s A )7‘1)
0=1 d=1

and
aé(yP Ayt = Z(iaq - Asp) (8(2}5 AP Ayl - @ A oy Ayl + @ A yP A ayq),
5-1

which implies that

_ _ /1 - ) ) s ) s B )
0(y? nypl)=>" T(qu —)l(;p)w‘9 A@° AYPAPT =3 (Agg - )L,;p)w‘s A (Z Aapw Ay") Ayl
51 51 a=1

N - S
+ 3 (Asg = Asp)@® AyP A (— > Aagw® A )7‘1)
=1 a=1

s /1 - : : _ _ B ) )
=y T(A(gq - A@P)wé A@d AyP AT+ D (Aap = Aag) (Aoqg — Asp)@® A @ AyP A .
8= S8,a

—_
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Finally, we get

20(y? A7) = ;(Asq—lap)

1
(\/_+/\5p—/\5q)w‘s/\w AyP Ayl

-3 Ohap ~ Lag) (Rag = sp)® 2.0 197 171

d+a

and that condition (19) is equivalent to

s \/_
qu(z(lgq /1617)( +/15P /lsq)w /\w + Z(A“P Aaq)(Asq*ASP)w /\a)‘S =0,
d=1 d#a
forevery p,g=1,...,s
By using our conditions on the by;’s, it is easy to show that the quantity
S - \/ —
> (Aog —Asp) (

+/\5p /lgq)w A @ +Z()Lap aq)(/-\(sq—lgp)wa/\d)a
6=1

d+a

is vanishing for p = g and, consequently, there are no restrictions on the By4’s. Now,
we observe that the real part of

(qu - App) (\/__1

+App = )_‘pq)
is different from 0, for every p, g with p # g, which forces B, = 0, for p # g. Indeed,
we have

. 1 V-1

Asqg—Asp = 5(5617 —Csq) — T(bz?p +bsq)s

\/__1 3 1 \/__1(1+b6p+b5q)
2 bl

T+Aap—)\5q=—5(cap—caq)+ 3

which implies that

B} 1 B
(21) Re ((/\5‘1 /\5},) (\/_ + )t(sq )t(gp))
:_(Cgp—65q) +1(b5p+b5q)(l+b5p+b5q)'
4 4 2 2

Since p # g, we have
bpp=-1 bpg=0,
and so (21) computed for § = q gives

Re ((’ipq ~App) (\/2__1 +Apq — ipp))) = i (—(Cpp ~cpg)’ ~ i) 0,

as required. Therefore, equation (19) is satisfied if and only if

Bp; =0, forall p # g.
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Next, we focus on (20). We have
3 v s
09(w? AyT) =0 (zwp AP APT— P A (;/\M(I)‘s A )7‘1))
=1

and
- — — N _
00(w? A y?) = g (—\/z_lwf’ AP AOP AP+ wP AP A (— S Asqw’ A )'ﬂ))
8-1
s 1. s s
+> gxlngp Awd A @® AP+ D Asqw? A @° A (Z Aaqw“Ajﬂ).

=1 8=1 a=1

Hence, we get

S

3 . s /1.
29(w? ApT) =" glaqu NP A AP+ g)tngp NP LN

8=1 8=1
S%p 8#p
+ Y Agghaqw? A @ A APl

d,a

a+p

and

P A7 S\/__l‘p-p TR o U SIS SO I S
00(w? A j ):ZTlaqw NP AW AP+ Apghagw? AP A @ A
=1 a=1

=

8+p azp
N /_1 _ _ _
+ > T/L;qu Awd A @ AP+ > Asghaqw? A @ A AP
=1 é,a
8#p 8+p
axp

Therefore,

09(w? AjT) = > dgy (\/2__1 +/_\pq) WP A @ A wd APl
51

8+p
s /_1 _ _ _
8 -8 - -3 a -
+ qu(z—lgq)prw AD AP+ Y dsghagw? A @° A @ AT
=1 S+a
8%p 8+p
a%p

and (20) is equivalent to

s 1 . s _ o
Cpg Zlgq(§+/1pq)a‘)1’/\w5+Zlaq(g—/\@)w‘s/\dz5+ 3 Aoghaq@® A w® | =0,

a1 o1 2 d7a
8+p 8+p 8+p
ap

for every p,g=1,...,s. Since

-1
qu;t:tg, forall p,g=1,...,s,
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the quantity
Epj:= Y. Asq (E + /_\Pq) 0P A’ + > dgy (E - /_15‘1) @ A%+ > Agghaq@® A @
521 2 5=1 2 b%a
8+p 8+p S+p
a%p
is vanishing if and only if
Asq =0, foralld#p.
Since 144 # 0, it follows
Ey;#0, foreveryp,qwithp+gq
and
E,; = 0ifand only if ¢5, = 0, for all § # p.
Hence, the claim follows. [ ]

Proposition 5.3 Let
s k
(22) w=V-1Y Aiw' A@d + By Ajt+ V1Y (Crwfr AjP+ CoyPr A @Pr)
i=1 r=1
be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus—Toma manifold, where

the components are with respect to a coframe {w', ..., w*,y', ..., y*} satisfying (1) and
(15) and {p1, ..., px} € {L,...,s} are such that

Aip, =0, forall j+ p;, foralli=1,...,k.
Then the (1,1)-part of the Bismut-Ricci form of w takes the following expression:

k 2
3 C 30 i
pil= VY2 TP (S SR D Y Ce ad
=3 \" "4, B, - |CP .
r pr=pr ig{pr,ees Pr}

wPr ApPr 4+ conjugates.

VA Ekj 3 G VG ) BaG
16 4 4 ) A, B, -|C]

r=1

Proof We recall that the Bismut-Ricci form of a left-invariant Hermitian metric w =
VLY pe1 8ap & A ab on a Lie group G>" with a left-invariant complex structure
takes the following algebraic expression:

(23)  pp(X,Y) =~ Zn: g o ([[X, Y]*, X1, %) + g w([[X, Y]*!, Xa], Xs)

a,b=1
VALY g0([X, Y], )[Xe X3 ]),
a,b=1

for every left-invariant vector fields X, Y on G, where {a'} is a left-invariant (1,0)-
coframe with dual frame { X, } and (g**) is the inverse matrix of (g; 7) (see, e.g., [31]).
We apply (23) to a left-invariant Hermitian metric on an Oeljeklaus-Toma manifold
of the form (22).
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We have
gt:s-H':{o’ 1f1¢{p1”pk}’ i _ Bi Sstis+i _ Ai

o} . =, =,
A CE otherwise, g AiB; — |Ci]? A:B; - |Ci2

and taking into account that the ideal J is abelian, we have

where

pe(X,Y) =~ lei(X’ Y),

V-1

p(X,Y) = z £ (@[], 2,0, 20) - Y ([ Y], 2~ 24)

+o([[X, Y], Z4], Z4)),

p2(X,Y) = Zs:g”“m(w([[X) Y1V Wal, Wa) + w([[X, Y], Wal, Wa)),

a=1

[ ] .
ps(X,Y) =3 g (([[X, Y17, 2,1, Wy, ) - 0([X, Y1, [Zp,, W, 1))

r=1

+ PP ([[X, Y] Z,, 1 Wy, ) s

k _ _ -
pa(X,Y) =37 g PP (w([[X, YTV, Wy, 1, Zp,) + 0([X, Y], [Wy,» Z,, 1))

r=1

+ g PP o([[X, Y] W, 1, Z,,).

Next, we focus on the computation of pg(Z;, Z;). Thanks to (1), we easily obtain

that

pp(Zi,Z;) =0, foreveryi,j=1,...,s, i#j.

On the other hand,

Moreover, we have

PZ(Zi>Zi) =- T ZgSJrum(w([Zi) Wa]; Wu) + (,U([Zi, Wa]> Wa)
=1

S

== V1Y ¢ Re w([Zi, Wal, Wa).
a=1

Using (1), we have

w([zia Wa]a Wa) = _\/__1/\iaBa >

y Babia Bu
Re w([Zi, Wa], Wa) = T = —I(Sia.
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Then

. stistip. /21 A;B;
p2(Zis Zi) =V ¢ =

4 © 4 ABi - [Ci]F
Next, we observe that
p3(Zi, Zi) + pa(Zi, Z;) = 0,

which implies that

(24)
PB(ZhZi) :{—\/—_12 (1 + #A—zlcrlz) , if there exists r = 1,..., k such that i = p,,
-V-13, ifié¢{p1,....px}
We have
N L — l _ Vak - -
p3(Zi,Zi) =3 ¢ M w((Zi, Zi, [ 2y, Wp,]) = 5 28" Ay gy 0(Zi + Zis Wy)

Jj=1 j=1

:{O, ifi ¢ {pi,....px}

%gim;\iich otherwise.
We compute the three addends in the expression of p4 separately:

- - 1 - 0, ifi¢ {p1,....px} ori#p;j
Z,‘,Z,‘ I’O,W. Ly :—*Ai C,y. = - ]
w([[ ] i1 Zp;) S iniCp; {_;/\‘icis otherwise,
0, ifi ¢ {p1,....px} or i#pj,

- - 1
W([Zi, Zi), [Wp;» Zp,]) :7APjPig?s+Pf ) {;Aiic_b otherwise,

2

_ - 1
w([[zi’zi]o’l’ WP1]>ZP;') :EAingSTPij = {

0, ifi#pj,
%/_\i,-C,-, otherwise.
It follows
p3(Zi,Zi) = pa(Zi,Z;) =0 ifid {pr,....px}>
and, for i € {p1,..., pxr}
p3(Zi, Zi) + pa(Zis Z;)

Vs ol gty a ety A S e

—2g 111g2111g2111g2111—-
Now, we focus on the calculation of pg(Z;, W;). We have

N

pi(Zi Wy) = 3 g (—zw(Wﬁza = Za) + w(m/ﬁz_a]’za))
a=1

o, _ ifi=je{p....px}
- \/—_lgiiCii,-i(@—/_li,-), otherwise,
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and since J is abelian
pz(Zi,Wj) =0.
Furthermore,
T L5 10,1 5 K Spii 3
istp; s / iS+pj
p3(Zi, Wj) = Z;gp’ Pio([[Zi, W] Zp [, Wp,) == —IZ;g"‘ p’Aij/\p,-p,-
Jj= Jj=

_ 0 . ifi=je{p....px}
—V/-1A%;g/**/B;, otherwise,

Esvjs+p;

and

k ) ) ) k
pa(Zis Wy) =3 g PPiw([Zi, W), (W), Zp)]) = v ‘1ng+p’P’/\ij’1PfP;g?js+p,-

j=1 i
= 0, __ ifi:jE{P1)~--,pk},
\/__lgs”j)tjj)tjij, otherwise.

It follows that pg(Z;, W;) # Oifand onlyif i = j € {p1,..., px}. In such a case, we
have

pe(Zj, Wj) = - V—_l(g B (Mg - A3;) + 87CiAj; (2 -Aji -

Since
gs+]]Bj _ _% and g”Cj — %’
A;B; - |Cjl AjB;-|Cjl
we infer
_ - V-1 - 2 12 B;C;
pe(Zj Wj) = —v-1 (Aj,- (2 = A ) = (il = 45) AB, |G
Taking into account that A;; = —@ — 2, we obtain
2
_ 3 & e\ BiC
ZoW) = /1| -2 - T ji it
pr(Zp> Wi) ( 16 4 4 |AB- |G
and the claim follows. ]

Corollary5.4  Let w be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus-
Toma manifold M. Then w lifts to an algebraic expanding soliton of the pluriclosed flow
on the universal covering of M if and only if it takes the following diagonal expression
with respect to a coframe {w', ..., 0%, y',...,y"} satisfying (1) and (15):

S
(25) w=vV-1Y Aw' A&' + By’ Ay
i=1

Proof Let w be a pluriclosed left-invariant metric on an Oeljeklaus-Toma manifold
M. In view of [15, Section 7], w lifts to an algebraic expanding soliton of the pluriclosed
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flow on the universal covering of M if and only if

p},ﬁl(%') =cw()+ % (w(D--) + w(-, D)),

for some ¢ € R_ and some derivation D of g such that DJ = JD.
Assume that w takes the expression in formula (25). Proposition 5.3 implies that
pp is represented with respect to the basis {Z;, ..., Z;, Wi, ..., W} by the matrix

3 (I, 0
P‘_4A(o 0)'

3 (0 o

4A\0 Iy
induces a symmetric derivation on g, w lifts to an algebraic expanding soliton of the
pluriclosed flow on the universal covering of M and the first part of the claim follows.

In order to prove the second part of the statement, we need some preliminary
observations on derivations D of g that commute with ], i.e., such that

D(g"%) cg"®, D(g*')cg”.

Since

We can write
s s
DZ, :Zk;Z]+m;W] and DZ, :ZZ;ZJ-F?‘;VVJ
j=1 j=1
Since D is a derivation, we have, foralli =1,...,s,

D[Z,',Zi] = [DZI‘,Z{] + [Z,,DZI]

On the other hand,
pz,2]- - ! (gk;z,. FUZ W r;:wj) :
[DZ;,Z;] = - @kf(Zi +Z;) —;mﬂum‘>
[Zi,DZi] = - @l;’(zi +Z,~) +§;r§)_&ij"vj

and

0=D[Z;,Z;] - [DZi, Z;] - [Zi, DZ;]

i i

- s igiz s Yoz Y iz
) J J 2 2 !

Jj#i

+Zm; ()Lij_ \/__1) Wj—ri-(\/z__l +iij) Wj,

=i 2 !

which forces DZ;, DZ; = 0, forall i =1,...,s. It follows that Dy = 0.
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Moreover, for all I, I’ € J, we have
0=D[I,I'| = [DL,I'] + [I,DI'],
which implies that
[DI,I'] = -[1,DI'].

Assume that

DW, = Zk;”Zj + mj.”Wj and DW; =) l;”Z_j + r}”Wj,

=i =1
then
N S
WMwmzzyrwpka“ md[mJMH=§Wﬂmzﬂa“.
J= J=
This implies that

S S
DW; =Y mi"'W;, DW= r"'W,
j=1 j=1

i.e, D(J) € J. Moreover, for all i = 1,..., s, we have that
S
D[Z;, Wi] = =AiiDW; = = 3" Aiym3™' W,
j=1
whereas [DZ;, W;] = 0 and
S
[Zi, DWi] = = > mi™ " AW
j=1
Using again the fact that D is a derivation, we have
DW; = 3 m;Wj,
jeli
where
]iI{jE{l,...,S} ‘ Aii:Ai]‘}.
With analogous computations, we infer
DW; = 3 W,
jeli

Clearly, i € J;. On the other hand, for all i=1,...,s, we know that Jm(1;;) #0,
whereas, for all i # j, A;; € R. This guarantees that, forall i = 1,...,s,

Ji ={i}.
This allows us to write

DW; = m{*'W;, DW; =rit'W,.
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From the relations above, we obtain that
Der(g)"? = {E € End(g)"° | h c ker(E), E((W;)) € (W;), foralli=1,...,s}.

First of all, we suppose that w is a pluriclosed Hermitian metric which takes the follow-
ing diagonal expression with respect toa coframe {w', ..., @%,y", ..., y*} satisfying (1)
and (15):

S
w=V-1Y Aijw' A@" +Bjy' Ay,
i-1

such that there exist i, j € {I,...,s} such that A; # A; and we suppose that w is an
algebraic soliton. Thanks to the facts regarding derivations proved before, we have
that

3 . - 1 - -
- _IZ = PB(ZiaZi) :Cw(Zi,Z,') + 5 (w(DZi,Zi) + w(Zi,DZi)) =V —ICA,‘,
3 . - 1 - -
-V _IZ = pB(Z],Z]) :C(U(Zj,Zj) + E ((U(DZ],Z]) + w(ZJ,DZ])) =V —1CAj,
which is impossible, since A; # A je
Now, suppose that w is a pluriclosed metric on M which is not diagonal. So, we

suppose that there exists j = 1,...,s such that C 7 # 0. Then assume that there exist a
constant ¢ € R and D € Der(g) such that

(pw)" () =ca(2) + 5 (@(D~) +@( D)), DJ=JD.

On the other hand,

0=p5(Wj, W;) = ca(W;, ;) + % («(DW;, Wy) + w(W;, DW;)) = V=1cB; + @(rjfj + mj,*f)Bj,
pB(Z]:, W]) =cw(Z]r, W]) + % (w(DZ]r, W]) + w(Z]r,DWJf)) = \/—_ICC]?+ @riffc;,
pu(Z;, W;) =ca(Z;, W;) + % (w(DZ;, W) + w(Zj, DW))) = ~V/1cC; - @m:ffcj,

which implies that

1 g s+j
c= 2(r7 +m; ).

j
On the other hand,
pB(Z]T, VV']') =V —lKC]f,
where
K:(3+C”+ _1%7) B] .
16 4 | AB;-|Ci2
Then
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and
Lopsti o _Lsvi
2 J 27
From this, we obtain that

¢ =K+ K =2%Re(K) > 0.

On the other hand, we have
12

3 |Cj|
-vV-1-|1+ ——
4( AJTBJ.'—|CJ7|2

) =ps(Z52;)
- 1 _ -
= cw(ZJr, ZJ") + 5 (a)(DZ]r, ZJ') + a)(Z]?, DZJ”)) = \/—_ICAJT,
which implies that ¢ must be negative. From this, the claim follows. ]

Corollary 5.5 Let w be a pluriclosed Hermitian metric on an Oeljeklaus-Toma mani-
fold which takes the form (16). Then the pluriclosed flow starting from w is equivalent to
the following system of ODEs:

Al=1, 2 ifi ¢ {pr,-. > px}>
C:
A’py:%(ﬁm)’ forallr=1,...,k,
(26) B’ =0, forallj=1,...,s,
2
— 3 Sprpr _lcrr BrCV —
C:__(E_F%JFV 4PP)AP,BI;y—|Cr|Z’ forallr=1,...,k.

Moreover, |C,| is bounded, for all r = 1,.. ., k, and the solution exists for all t € [0, +00)
and A; ~ 3t,ast - +oo, foralli=1,...,s.
In particular,

Wy

- 3Wo0,

ast — oo,
Proof Observe that, for everyr e {1,...,k},

2 2
3 ¢ rPr B r C |
(|CT|2),:_(+ B ) P d 2 = >
8 2 )A,B, -|C]

which guarantees that |C,|? is bounded. On the other hand, denote, forallr = 1,.. ., k,
uy = Ap By, —|C,

We have that
2 2
3 9 ¢ B, |C
u, = A, By, (IC,2) = =By, + [ = + L& /G S 20.
£ \8" 72 ) 4,8, -Cl

This guarantees

A —3(1+ G )<3(1+ K )
pr g A B —lcl2]=a (0 )’
4 Ap By, — IC,| 4 u,(0)
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where K > 0 such that |C,|* < K, for all ¢ > 0. This implies the long-time existence. As
regards the last part of the statement, it is sufficient to prove that

C 2
lim Q =0.
t—>+oo Y,
However,
;3
u, > ZBPT.
Therefore,
3
Uy > ZBP"t +u,(0) = +00, t—> +oo0,
Then
li t) = +o0,
LR
and, since |C,|? is bounded, the assertion follows. ]

Proof of Theorem 1.1 Let w be a left-invariant pluriclosed metric on an Oeljeklaus—
Toma manifold. Corollary 5.5 implies that pluriclosed flow starting from w has a long-
time solution w; such that

we

—-3ws as t— oo.

We show that {2 satisfies conditions 1-3 in Proposition 3.1. Here, we denote by |- |;

the norm induced by w;.
Taking into account that

Wt3e3 = Wo|J@T >

condition 2 follows.
Thanks to the fact that condition 2 holds,

s
wt|b@b = ZA,‘(t)(UI A @'
i=1

with Al"f(tt) — % as t — oo, and there exist C, T > 0 such that, for every vector v € b,

1
vl < Clvlo,
\/m| |t | |0
for every t > T, condition 1 is satisfied.
In order to prove condition 3, let €, > 0 and let y be a curve in M tangent to H
which is parameterized by arclength with respect to 3w and such that Lo, (y) < 4.
Letv = yand T > 0 such that

’Ai(t) 3’ y 3¢?

1+t 4| 42
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for t > T. Then
1 5 ) S 1A (t) 3 , €
- _ < - — —
1+t|v|t Vles ‘,Z:; 1+t 4|’| Z
and
L) - Lol < [ [ Al lila|da < S
t(y ooy_o\/myt Veo|da< Jb<e,

since b < £.

Now, we show the last part of the statement, using the same argument as in Propo-
sition 4.1, and we prove that (H® x C*, {3~ ) converges in the Cheeger-Gromov sense
to (H* x C*, @ ), Where @ is an algebraic soliton. Again, here we are identifying w,
with its pullback onto H* x C® and we are fixing as base point the identity element of
H* x C*. It is enough to construct a one-parameter family of biholomorphisms { ¢}
of H® x C* such that

L e

Py

As we already observed, since J is abelian, the endomorphism represented by the

matrix
0 O
D= (0 Ig)

is a derivation of g that commutes with the complex structure J. Then we can consider
de: = exp(s(t)D) = (I(;’ es(?)l ) € Aut(g, /),
3
where s(t) = log(v/1+ t). Using d¢,, we can define
¢¢ € Aut(H' x C°, )).

Fori=1,...,s, wehave

1 i 1 .3
1T: t((/)twt)(zi)zi) 17 th(Zi,Zi) - Z\/_l’ as t — oo,

1 - 1 i,
1 t((P:wt)(Zi,VVi)=7w[(Zi,Wi)—>0, as t — oo,
+

V1+t
o (T (Wi W) = (Wi, W) = V1B:(0).

Then

1 -
7 tgofwteww, as t — oo,
+

where
Woo =3 Woo + W3g7-

Notice that @, is an algebraic soliton diagonal since w|ygy is diagonal in view of
Proposition 5.2. u
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6 A generalization to semidirect product of Lie algebras

From the viewpoint of Lie groups, the algebraic structure of Oeljeklaus-Toma mani-
folds is quite rigid and some of the results in the previous sections can be generalized
to semidirect product of Lie algebras.

In this section, we consider a Lie algebra g which is a semidirect product of Lie
algebras

g:thj)

where A:h — Der(J) is a representation. We further assume that g has a complex
structure of the form

J=Ty @3,

where Jy and J5 are complex structures on b and J, respectively.
The following assumptions are all satisfied in the case of an Oeljeklaus-Toma
manifold:

i. b has (1,0)-frame such that {Z,,..., Z,} such that [Z, Z;] = —@(Zk +Zk),

forall k =1,...,r, and the other brackets vanish.

ii. Jis a 2s-dimensional abelian Lie algebra, and J5 is a complex structure on J.

iii. A(H>%) c End(J)"°.

iv. J has a (1,0)-frame {Wi,... W,} such that A(Z) - W, = 1,(Z)W,, for every r =

1,...,s, where A, € A¥(p).

Y1 Im(A,(Z;)) is constant on i.

vi. J has a (1,0)-frame {W), ... W,} such that A(Z) - W, = A.(Z)W,, for every r =
L,...,s, where A’ € A%*(h) and %,_, Im(1,(Z;)) is constant on i.

Note that condition i is equivalent to require that h = f @ - - @ f equipped with the

<

—_——
r-times
complex structure J, = J; @ --- ® J;, whereas in condition iv, the existence of {W,}
—_—
r-times

and A, is equivalent to require that
MZ)oMZ")=MZ") o M2),
for every Z, Z' € b0,
The computations in Section 5 can be used to study solutions to the flow
(27) 0rw; = —py(wy)

in semidirect products of Lie algebras (this flow coincides with the pluriclosed flow
only when the initial metric is pluriclosed). We have the following proposition.

Proposition 6.1 Let g = b x) J be a semidirect product of Lie algebras equipped with a
splitting complex structure J = Jy @ J5, and let w be a Hermitian metric on g making b
and J orthogonal. Then the Bismut-Ricci form of w satisfies pgllbeaﬁ = pi}"lj@:i =0.

If conditions i-iv hold and w\y gy, is diagonal with respect to the frame {Z; }, then the
(1,1)-component of the Bismut-Ricci form of w does not depend on w and the solution
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to the flow (27) starting from w takes the following expression:

wr=w-tp Bl(w)

If conditions i-iv and vi hold and w|ygy, is a multiple of the canonical metric with
respect to the frame {Z;}, then w is a soliton for flow (27) with cosmological constant
=3+ Tam Tm(A5(20)).

The previous proposition does not cover the case when properties i-iv are satisfied
and the restriction to ) @ b of the initial Hermitian inner product

w = \/_ Z gubw A @ +\/_ Z gr+ar+by y

a,b=1 a,b=1

is not diagonal with respect to { Z; }. In this case flow (27) evolves only the components
giiof w along w' A @' via the ODE

r 1 s R
tg;; = Z ““SRegm— Z ngrJrC{ Z,,W] Wd)+w([Z,,W Wd)}
a=-1 d=

c, 1
where g;; depends on t. Note that the quantities —3 3¢ ;_; gmr“ {w([Z;, W],
W) +w([Zi, W], Wd)} appearing in the evolution of g;; are independent on t.
The same computations as in Section 4 imply the following proposition.
Proposition 6.2 Let g = h x, J be a semidirect product of Lie algebras equipped with

a splitting complex structure | = J ® J5. Assume that properties i-iii are satisfied, and
let w be a left-invariant Hermitian metric on g. Then

pciaes = Pclpes = 0

whereas pc|yep is diagonal with respect to {Zy, ..., Z,}.
If, in addition, property iv holds, then

pc(Zi, Z;) = —\/—_1(; - ijm(/\u(Z,-))) , foralli=1,...,r

If, in addition, property v holds, then w is a soliton for the Chern-Ricci flow with
cosmological constant ¢ = = ¥5,_; Jm(Xa(Z;)) if and only if wyey is a multiple of the
canonical metric on b with respect to the frame {Z;} and wpgz = 0.

Acknowledgment We are grateful to Daniele Angella, Ramiro Lafuente, Francesco
Pediconi, and Alberto Raffero for useful conversations. In particular, Ramiro Lafuente
suggested us how to prove the convergence in the Cheeger-Gromov sense in
Theorem L.1.

References

[1] D. Angella, A. Dubickas, A. Otiman, and J. Stelzig, On metric and cohomological properties of
Oeljeklaus-Toma manifolds. Preprint, 2022.  arXiv:2201.06377

[2] D. Angella and V. Tosatti, Leafwise flat forms on Inoue-Bombieri surfaces. Preprint, 2021.
arXiv:2106.16141

https://doi.org/10.4153/50008414X22000670 Published online by Cambridge University Press


https://arxiv.org/abs/2201.06377
https://arxiv.org/abs/2106.16141
https://doi.org/10.4153/S0008414X22000670

On the pluriclosed flow on Oeljeklaus—Toma manifolds 65

[3] R.M. Arroyo and R. A. Lafuente, The long-time behavior of the homogeneous pluriclosed flow.
Proc. Lond. Math. Soc. (3) 119(2019), no. 1, 266-289.
[4] J.-M. Bismut, A local index theorem for non-Kdihler manifolds. Math. Ann. 284(1989), no. 4,
681-699.
J. Boling, Homogeneous solutions of pluriclosed flow on closed complex surfaces. J. Geom. Anal.
26(2016), no. 3, 2130-2154.
N. Enrietti, A. Fino, and L. Vezzoni, The pluriclosed flow on nilmanifolds and Tamed symplectic
forms. J. Geom. Anal. 25(2015), no. 2, 883-909.
[7] S.Fang, V. Tosatti, B. Weinkove, and T. Zheng, Inoue surfaces and the Chern-Ricci flow. J.
Funct. Anal. 271(2016), no. 11, 3162-3185.
[8] A.Fino, H. Kasuya, and L. Vezzoni, SKT and Tamed symplectic structures on solvmanifolds.
Tohoku Math. J. (2) 67(2015), no. 1, 19-37.
[9] M. Garcia-Fernandez, J. Jordan, and J. Streets, Non-Kdhler Calabi-Yau geometry and pluriclosed
flow. Preprint. 2021.  arXiv:2106.13716
[10] M. Gill, Convergence of the parabolic complex Monge-Ampére equation on compact Hermitian
manifolds. Comm. Anal. Geom. 19(2011), 277-303.
[11] M. Inoue, On surfaces of Class V1. Invent. Math. 24(1974), no.4, 269-320.
[12] J.Jordan and J. Streets, On a Calabi-type estimate for pluriclosed flow. Adv. Math. 366(2020),
Article no. 107097, 18 pp.
[13] H. Kasuya, Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds. Bull. Lond.
Math. Soc. 45(2013), no. 1, 15-26.
[14] J. Lauret, Convergence of homogeneous manifolds. . Lond. Math. Soc. (2) 86(2012), no. 3,
701-727.
[15] J. Lauret, Curvature flows for almost-Hermitian Lie groups. Trans. Amer. Math. Soc. 367(2015),
no. 10, 7453-7480.
[16] J. Lauret and E. A. Rodriguez Valencia, On the Chern-Ricci flow and its solitons for Lie group.
Math. Nachr. 288(2015), no. 13, 1512-1526.
[17] K. Oeljeklaus and M. Toma, Non-Kdihler compact complex manifolds associated to number
fields. Ann. Inst. Fourier (Grenoble) 55(2005), no. 1, 161-171.
[18] A.Otiman, Special Hermitian metrics on Oeljeklaus-Toma manifolds. Bull. Lond. Math. Soc.
54(2022), 655-667.
[19] M. Pujia and L. Vezzoni, A remark on the Bismut-Ricci form on 2 -step nilmanifolds. C. R.
Math. Acad. Sci. Paris 356(2018), no. 2, 222-226.
[20] J. Streets, Pluriclosed flow, Born-Infeld geometry, and rigidity results for generalized Kihler
manifolds. Comm. Partial Differential Equations 41(2016), no. 2, 318-374.
]. Streets, Pluriclosed flow on manifolds with globally generated bundles. Complex Manifolds
3(2016), 222-230.
]. Streets, Pluriclosed flow on generalized Kihler manifolds with split tangent bundle. J. Reine
Angew. Math. 739(2018), 241-276.
J. Streets, Classification of solitons for pluriclosed flow on complex surfaces. Math. Ann.
375(2019), nos. 3-4, 1555-1595.
J. Streets, Pluriclosed flow and the geometrization of complex surfaces. Prog. Math. 333(2020),
471-510.
[25] J. Streets and G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN
2010(2010), 3101-3133.
J. Streets and G. Tian, Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13(2011), no. 3,
601-634.
[27] J. Streets and G. Tian, Regularity results for pluriclosed flow. Geom. Topol. 17(2013), no. 4,
2389-2429.
[28] V. Tosatti and B. Weinkove, The Chern-Ricci flow on complex surfaces. Compos. Math.
149(2013), no. 12, 2101-2138.

[5

[6

[21

[22

[23

[24

[26

[29] V. Tosatti and B. Weinkove, On the evolution of a Hermitian metric by its Chern-Ricci form. J.
Differential Geom. 99(2015), no. 1, 125-163.
[30] S. Verbitsky, Surfaces on Oeljeklaus-Toma manifolds. Preprint, 2013.  arXiv:1306.2456

[31] L. Vezzoni, A note on canonical Ricci forms on 2-step nilmanifolds. Proc. Amer. Math. Soc.
141(2013), no. 1, 325-333.

[32] T.Zheng, The Chern-Ricci flow on Oeljeklaus-Toma manifolds. Canad. J. Math. 69(2017), no. 1,
220-240.

Dipartimento di Matematica G. Peano, Universita di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
e-mail: luigi.vezzoni@unito.it elia.fusi@unito.it luigi.vezzoni@unito.it

https://doi.org/10.4153/50008414X22000670 Published online by Cambridge University Press


https://arxiv.org/abs/2106.13716
https://arxiv.org/abs/1306.2456
mailto:luigi.vezzoni@unito.it
mailto:elia.fusi@unito.it
mailto:luigi.vezzoni@unito.it
https://doi.org/10.4153/S0008414X22000670

	1 Introduction
	2 Definition of Oeljeklaus–Toma manifolds
	3 Convergence in the Gromov–Hausdorff sense
	4 The left-invariant Chern–Ricci flow on Oeljeklaus–Toma manifolds
	5 Proof of the main result
	6 A generalization to semidirect product of Lie algebras

