BULL. AUSTRAL. MATH. SOC. Vol. 52 (1995) [177-181]

WEIGHTED NORMAL NUMBERS

GEON H. CHOE

We show that if $\{a_k\}_k$ is bounded then $\lim_{n\to\infty} (1/n) \sum_{k=1}^n a_k (-1)^{d_k} = 0$ for almost every $0 \leq x \leq 1$ where $x = \sum_{k=1}^{\infty} d_k 2^{-k}$ is the dyadic expansion of x. It is also shown that $(1/n) \sum_{k=1}^n a_k \exp(2\pi i \cdot p^k x) \to 0$ almost everywhere where p > 1 is any fixed integer.

Let (X,μ) be a probability measure space. A measurable transformation $T: X \to X$ is said to be *measure preserving* if $\mu(T^{-1}E) = \mu(E)$ for every measurable subset E. A measure preserving transformation T on X is called *ergodic* if f(Tx) = f(x), $f \in L^1(X,\mu)$, holds only for constant functions. Let 1_E be the indicator function of a measurable set E and consider the behaviour of the sequence $\sum_{k=0}^{n-1} 1_E(T^kx)$ which equals the number of times that the points T^kx visit E. The Birkhoff Ergodic Theorem implies that the relative frequency of the visits equals $\mu(E)$, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbf{1}_E(T^n x) = \mu(E).$$

Consider the ergodic transformation $T: x \mapsto \{2x\}$ on [0,1), where $\{t\}$ is the fractional part of t. If $x = \sum_{k=1}^{\infty} d_k 2^{-k}$ is the dyadic expansion of x, then $d_k = 1_{[(1/2),1)}(T^{k-1}x)$. The same theorem applied to $T: x \mapsto \{2x\}$ on [0,1) gives the classical Borel's Theorem on normal numbers:

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} d_k = \frac{1}{2} \quad \text{almost everywhere,}$$

hence almost every x is normal, that is, the relative frequency of the digit 1 in the binary expansion of x is 1/2. Equivalently we may rephrase it as $\lim_{n} (1/n) \sum_{k=0}^{n-1} (-1)^{d_k} = 0$

Received 20th October, 1994 Research partially supported by GARC-KOSEF.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

almost everywhere, with respect to the Lebesgue measure. For general references, see [6, 7]. For recent results on spectral properties of uniform distribution, see [2].

In this paper we obtain weighted ergodic theorems, in other words, we show that for some T and a bounded sequence $\{a_k\}_k$ of complex numbers the limit of $(1/n) \sum_{k=1}^{n} a_k f(T^k x)$ exists almost everywhere, if f satisfies certain orthogonality conditions. Similar problems were studied by Nair [5] for the Gauss transformation $x \mapsto \{1/x\}$ and sequences satisfying $a_k \in \{0, 1\}$.

We need the following lemma. For the proof see Proposition 1.9 in [1].

LEMMA. Let $\{u_j\}_{j=1}^{\infty}$ be a bounded sequence of complex numbers and let $\{v_j\}_{j=1}^{\infty}$ be a sequence of complex numbers for which there exists a constant M > 0 such that $(1/n)\sum_{j=0}^{n-1} |v_j|^2 \leq M$ for every n. Suppose that an increasing sequence of positive integers $\{N_k\}_{k=1}^{\infty}$ satisfies

(i)
$$\lim_{k \to \infty} (N_{k+1})/(N_k) = 1,$$

(ii) $(1/N_k) \sum_{j=0}^{N_k-1} u_j v_j$ converges to A as $k \to \infty$.

Then $(1/n) \sum_{j=0}^{n-1} u_j v_j$ also converges to A.

For a unitary operator U in a Hilbert space \mathcal{H} with the inner product (,) there exists a spectral measure P such that $U = \int_{|z|=1} z \, dP(z)$ where P(E) is an orthogonal projection in \mathcal{H} for every measurable subset E. For $h \in \mathcal{H}$ we have a positive finite measure λ_h such that $\lambda_h(E) = (P(E)h, h)$ and $(U^n h, h) = \int_{|z|=1} z^n \, d\lambda_h(z)$. But for a noninvertible measure preserving transformation T acting on a probability space (X, μ) the induced linear operator U_T in $L^2(X, \mu)$ defined by $(U_T f)(x) = f(Tx)$ is not unitary, hence the spectral measure does not exist and the spectral theorem is not applicable.

Here is one of the ways to overcome this difficulty: Let U be the isometry in \mathcal{H} which is not necessarily invertible. Put $c_n = (U^n h, h)$ for $n \ge 0$ and $c_n = ((U^*)^{|n|}h, h) = (h, U^{|n|}h)$ for n < 0, where U^* is the adjoint of U. Then $c_{-n} = \overline{c_n}$ and the sequence $\{c_n\}_{n\in\mathbb{Z}}$ is positive definite. Hence by Bochner's theorem there exists a positive finite measure λ_h such that $c_n = \int_{|z|=1} z^n d\lambda_h(z)$ for $n \in \mathbb{Z}$. Note that $(U^k h, U^j h) = (U^{k-j}h, h) = c_{k-j}$ for $k \ge j$ and $(U^k h, U^j h) = (h, U^{j-k}h) = c_{k-j}$ for k < j. If there is an element $h \in \mathcal{H}$ such that $(U^n h, h) = 0$ for every n > 0, then $d\lambda_h$ and the normalised Lebesgue measure on the circle dz have the same Fourier-Stieltjes coefficients, hence we see that $d\lambda_h = C \cdot dz$ for $C = ||h||^2$. For details on Bochner's theorem, see [3, 4]. **PROPOSITION 1.** Let $\{a_j\}_j$ be a sequence of complex numbers such that

$$\frac{1}{n}\sum_{j=0}^{n-1}|a_j|^2\leqslant M$$

for every n. For almost every $0 \leq x \leq 1$ the limit of

$$\frac{1}{n}\sum_{j=1}^{n}a_{j}\left(-1\right)^{d_{j}}$$

exists and equals 0 where $x = \sum_{j=1}^{\infty} d_j 2^{-j}$, $d_j \in \{0,1\}$, is the dyadic expansion of x.

PROOF: Let $T: [0,1) \to [0,1)$ be the Lebesgue measure preserving transformation given by $Tx = \{2x\}$. Let $h(x) = 1_{[0,1/2)}(x) - 1_{[1/2,1)}(x) = 1 - 2 \cdot 1_{[1/2,1)}(x)$. Then $h(T^jx)$ is the *j* th Rademacher function and $\{h(T^jx)\}_{j=0}^{\infty}$ is an orthonormal family in $L^2(0,1)$.

Hence the isometry $U_T f(x) = f(Tx)$ satisfies for $j, k \ge 0$,

$$c_{j-k} = \left(U_T{}^j h, U_T{}^k h\right) = \int_0^1 h(T^j x) h(T^k x) dx = \delta_{jk}$$
$$\left(U_T{}^j h, h\right) = 0 \text{ for } j > 0.$$

and

Since

$$\left\|\sum_{j=0}^{n-1} a_j U_T{}^j h\right\|^2 = \sum_{\substack{0 \le j, k \le n-1 \\ j = 0}} a_j \overline{a_k} c_{j-k}$$
$$= \sum_{j=0}^{n-1} |a_j|^2 \le n \cdot M,$$

the Monotone Convergence Theorem implies that

$$\begin{split} \left\| \int_{0}^{1} \sum_{n=1}^{\infty} \left| \frac{1}{n^{2}} \sum_{j=0}^{n^{2}-1} a_{j}h(T^{j}x) \right|^{2} dx &= \sum_{n=1}^{\infty} \int_{0}^{1} \left| \frac{1}{n^{2}} \sum_{j=0}^{n^{2}-1} a_{j}h(T^{j}x) \right|^{2} dx \\ &= \sum_{n=1}^{\infty} \left\| \frac{1}{n^{2}} \sum_{j=0}^{n^{2}-1} a_{j}U_{T}^{j}h \right\|^{2} \\ &\leqslant \sum_{n=1}^{\infty} \frac{1}{n^{4}} \cdot n^{2} \cdot M < \infty, \end{split}$$

hence

$$\sum_{n=1}^{\infty} \left| rac{1}{n^2} \sum_{j=0}^{n^2-1} a_j h(T^j x)
ight|^2 < \infty \quad ext{almost everywhere} \ rac{1}{n^2} \sum_{i=0}^{n^2-1} a_j h(T^j x) o 0 \quad ext{almost everywhere}.$$

and

Putting $u_j = h(T^j x)$, $v_j = a_j$ and $N_k = k^2$ we apply the Lemma. Then

$$rac{1}{n}\sum_{j=0}^n a_j hig(T^j xig) o 0$$
 almost everywhere.

Let $x = \sum_{j} d_j 2^{-j}$ be the dyadic expansion of x, and note that $d_j = 1_{[(1/2),1)} (T^{j-1}x)$ and use $h(T^{j-1}x) = 1 - 2 \cdot 1_{[1/2,1)} (T^{j-1}x) = 1 - 2 \cdot d_j(x) = (-1)^{d_j(x)}$.

REMARK. Let p > 1 be a fixed integer. Using the Lebesgue measure preserving transformations $Tx = \{px\}, 0 \leq x \leq 1$ and the corresponding function h defined by $h(x) = \exp((2\pi i (j-1)/p) x), (j-1)/p \leq x < j/p, j = 1, ..., p$, we can easily see that for a bounded sequence $\{a_k\}_k$ of complex numbers the limit of

$$\frac{1}{n}\sum_{k=1}^{n}a_{k}\lambda^{d_{k}} \quad \text{where } \lambda = \exp\left(2\pi i/p\right)$$

is equal to 0 almost everywhere, where $x = \sum_{k=1}^{\infty} d_k p^{-k}$, $d_k \in \{0, 1, \dots, p-1\}$ is the *p*-adic expansion of x.

PROPOSITION 2. Let $\{a_k\}_k$ be a bounded sequence of complex numbers. For almost every $0 \leq x \leq 1$ we have

$$\frac{1}{n}\sum_{k=1}^{n} a_k \sin\left(2\pi i \cdot p^k x\right) \to 0,$$
$$\frac{1}{n}\sum_{k=1}^{n} a_k \cos\left(2\pi i \cdot p^k x\right) \to 0,$$
$$\frac{1}{n}\sum_{k=1}^{n} a_k \exp\left(2\pi i \cdot p^k x\right) \to 0$$

and

where p > 1 is a fixed integer.

PROOF: Define $Tx = \{px\}, 0 \le x \le 1$. Note that the function $\exp(2\pi ix)$ satisfies the condition $(U_T{}^jh, h) = 0$ for j > 0. Proceed as in Proposition 1 and take real and imaginary parts.

[4]

Weighted normal numbers

References

- [1] A. Bellow and V. Losert, 'The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences', *Trans. Amer. Math. Soc.* 288 (1985), 307-345.
- G.H. Choe, 'Spectral types of uniform distribution', Proc. Amer. Math. Soc. 120 (1994), 715-722.
- [3] H. Helson, Harmonic analysis (Addison-Wesley, 1983).
- [4] Y. Katznelson, An introduction to Harmonic analysis (Dover, New York, 1976).
- [5] R. Nair, 'On the metrical theory of continued fractions', Proc. Amer. Math. Soc. 120 (1994), 1041-1046.
- [6] K. Petersen, Ergodic theory (Cambridge University Press, Cambridge London, 1983).
- [7] P. Walters, An introduction to Ergodic theory (Springer-Verlag, New York, 1982).

Department of Mathematics Korea Advanced Institute of Science and Technology Taejon 305-701 Korea e-mail: choe@euclid.kaist.ac.kr