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Abstract

We study Bose gases in d ≥ 2 dimensions with short-range repulsive pair interactions at
positive temperature, in the canonical ensemble and in the thermodynamic limit. We
assume the presence of hard Poissonian obstacles and focus on the non-percolation
regime. For sufficiently strong interparticle interactions, we show that almost surely
there cannot be Bose–Einstein condensation into a sufficiently localized, normalized
one-particle state. The results apply to the canonical eigenstates of the underlying
one-particle Hamiltonian.
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1. Introduction

An important phenomenon in many-body quantum theory is Bose–Einstein condensation
(BEC). It refers to a surprising coherent behavior in (possibly interacting) bosonic many-
particle systems which occurs below some critical temperature or, equivalently, above some
critical particle density. Originally predicted by Einstein to occur in non-interacting Bose gases
in three dimensions [7, 10, 11], a rigorous proof of BEC for realistic interacting continuum
systems was achieved only some twenty years ago [23, 25]. Since then, BEC has remained a
highly active area in mathematical physics. We refer to [1, 4, 5, 12] and references therein for
further information on current developments in BEC in a non-random setting.

An important open question regarding BEC is whether it is stable with respect to repul-
sive short-range interparticle interactions in the classical thermodynamic limit. Recently, we
studied this question in a one-dimensional setting, namely, in the so-called Luttinger–Sy
model where the external potential is a random (singular) potential generated by a Poisson
point process on R [17]. In the present paper, it is our aim to generalize some of the results
obtained there to the higher-dimensional setting. More explicitly, we study BEC in 2 ≤ d ∈N

dimensions in the canonical ensemble at positive temperature and in the presence of hard
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Poissonian obstacles, that is, hard balls of a fixed radius that are distributed according to
a Poisson point process on R

d. We assume the intensity of the Poisson point process to be
large enough that no percolation is present. Regarding the interparticle interaction, we explore
the ‘hardcore’ case, that is, two bosons experience each other as hard balls, with a radius
that can be constant or converge to zero at some speed. We will also consider soft repulsive
pair interactions, modeled by a non-negative function with certain properties. In either case,
whenever the pair interaction is sufficiently strong, we show that almost surely there can-
not be BEC into a sufficiently localized one-particle state. As a consequence, almost surely
there cannot be BEC into any canonical one-particle eigenstate of the underlying one-particle
Hamiltonian.

We want to stress that hardcore interactions are not only interesting from a mathematical
point of view since particles in realistic gases repel each other strongly at very short distances,
as famously expressed by potentials of the Lennard–Jones type. In addition, at positive temper-
ature and whenever the particle density is sufficiently large, BEC is expected to occur (in the
grand canonical ensemble) in a non-interacting Bose gas placed in a Poisson random potential
[15, 16, 24]. Our results then show that such a condensate would be destroyed by the presence
of sufficiently repulsive pair interactions. For this reason, it might prove interesting to study
generalized BEC in such a scenario (as done, for example, in [18] for the one-dimensional case
at zero temperature). In addition, it would be interesting to understand if, for example via the
method of enlargement of obstacles (as illustrated, for example, in [32]), some of our results
obtained for the non-percolation regime and hard Poissonian obstacles can be carried over to
the percolation regime and soft Poissonian obstacles.

The paper is organized as follows. In Section 2 we introduce our model and in Section 3
we discuss the probabilistic properties of our system that are used susbequently. In Section 4
we then present our results regarding BEC; we discuss the case of hardcore interactions in
Section 4.1 and the case of soft interactions in Section 4.2.

2. The model

We study interacting Bose gases in R
d, 2 ≤ d ∈N, and in an external Poisson random poten-

tial V(ω, x). Denoting the underlying probability space by (�,�, P), on an informal level the
external potential reads

V(ω, x) :=
∑

j

u
(‖x − xωj ‖Rd

)
, x ∈R

d, ω ∈�, (2.1)

where {xωj }j is a set of random points generated by a Poisson point process on R
d with intensity

ν > 0. For more details regarding Poisson point processes, we refer the reader to [20, 22].
Furthermore, we assume that the single-site potential u : Rd →R is given by

u(x) :=
{

0 if x> R,

∞ otherwise,

where R> 0 is a constant. This means that we place hard balls BR(xωj ) with radius R> 0 at
each random point xωj . Note that such a random potential appears in well-known models such
as the Kac–Luttinger model in the area of BEC [15, 16] and the Poisson Boolean model in
stochastic geometry [13].
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Also, we will investigate BEC in the thermodynamic limit. In this limit, N bosons are placed
in the cube�N := (−LN/2,+LN/2)d ⊂R

d of side length LN > 0 such that the particle density,

ρ := N

Ld
N

, (2.2)

remains constant in the limit N → ∞. The N-particle configuration space in the external
random potential (2.1) is given by (�ωN)N , with

�ωN := (−LN/2,+LN/2)d \
⋃

j

BR(xωj ) (2.3)

representing the one-particle configuration space.
Hardcore pair interactions are then introduced by further reducing the configuration space

(�ωN)N . For this, we define the set

�
(HC),ω
N := {

x = (xj) ∈ (�ωN)N : ‖xi − xj‖Rd > aN, i, j = 1, . . . ,N, i 
= j
}
,

where (aN)N∈N ⊂ (0,∞) denotes the sequence of radii describing the range of the pair interac-
tion. On a rigorous level, the N-particle Hamiltonian with hardcore pair interactions is the
self-adjoint dN-dimensional Dirichlet Laplacian defined on L2

s

(
�

(HC),ω
N

)
; here, the index s

refers to the totally symmetric subspace of L2
(
�

(HC),ω
N

)
. On an informal level, the N-particle

Hamiltonian with hardcore pair interaction is given by

Hω
N :=

N∑
i=1

(− �i +V(ω, xi))+
∑

1≤i<j≤N

whc
N (‖xi − xj‖Rd ), (2.4)

where

whc
N (x) :=

{
0 if x> aN,

∞ otherwise.

We study hardcore pair interactions in Section 4.1.
In Section 4.2 we also consider a class of soft repulsive pair interactions: for all N ∈N, with

wN ∈ L∞(R) ∩ L1(R, xd−1dx) non-negative, we introduce the N-particle Hamiltonian

Hω
N :=

N∑
i=1

(− �i +V(ω, xi))+
∑

1≤i<j≤N

wN(‖xi − xj‖Rd ) (2.5)

on the Hilbert space L2
s

(
(�ωN)N

)
. Finally, we write

hω0 := −� +V(ω, x) (2.6)

for the underlying one-particle Hamiltonian on L2(�ωN). Note that hω0 can be defined rigorously
as a direct sum of Dirichlet Laplacians, each defined over a connected component of �ωN . In
this way we obtain a canonical set of eigenfunctions, namely those from each component,
continued by zero to the rest of �ωN .
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Remark 2.1. In this paper we will abuse notation slightly to increase readability. To be more
precise, for given ω ∈� and N ∈N it might be that �ωN = ∅ or �(HC),ω

N = ∅ (for example,
depending on the choice of radii (aN)N∈N and the particle density ρ > 0). In such a case,
the underlying one-particle or N-particle system is not well-defined. But, since we are going
to establish statements regarding the absence of BEC only, we choose to formulate state-
ments under the proviso that, for a given ω ∈�, all systems are well-defined for all N ∈N.
In the case of interest, statements can be made more precise by restricting attention to suitable
subsequences (Nj)j∈N ⊂N together with other obvious changes.

3. Probabilistic results

First, we note that the volume of the vacancy set�ωN , see (2.3), tends to be a constant fraction
of �N in the limit N → ∞. More precisely, for any ε > 0 we have limN→∞ P

(∣∣|�ωN |/|�N | −
e−νωdRd ∣∣< ε)= 1, where ωd is the volume of the unit ball in d dimensions; see, for example,

[32, p. 147]. Consequently, for any 0< c< e−νωdRd
there is P-almost surely a subsequence

(Nj)j∈N ⊆N such that |�ωNj
|> c|�Nj | for all but finitely many j ∈N. Also, �ωN is possibly

divided into components (regions), but P-almost surely has only finitely many components
for each N ∈N [28, Proposition 4.1]. We denote the component of�ωN with the largest volume

by �(1),ω
N,> and its volume by

∣∣�(1),ω
N,>

∣∣.
Next, we estimate the volume of the largest component of the vacancy set �ωN . Note that,

P-almost surely, a ball free of Poisson points with radius (d/(νωd))1/d(ln LN)1/d − c (for an
arbitrary constant c> 0) occurs within �N for all but finitely many N ∈N and for dimensions
d ≥ 2; recall that ωd is the volume of the unit ball in d dimensions. This has been shown in
[32, Proof of Proposition 4.4.3] but, for the convenience of the reader, we provide more details
on this fact. We set R̂ := (d/(νωd))1/d and RN := R̂(ln LN)1/d − c for a constant c> 0. For
each N ∈N, we place ĉLd

N/ ln LN disjoint boxes with side length 2RN in the box �N , where
ĉ = ĉ(ν, d)> 0 is a constant independent of N. The probability that, in any of these smaller
boxes, the centered ball with radius RN is free of Poisson points is given by e−νωdRd

N . Thus, the
probability that none of the ĉLd

N/ ln LN disjoint boxes has such a centered ball free of Poisson
points is (using the inequality 0 ≤ 1 − x ≤ e−x for 0 ≤ x ≤ 1)(

1 − e−νωdRd
N
)ĉLd

N/ ln LN ≤ exp
[−ĉ(Ld

N/ ln LN)e−νωdRd
N
]

≤ exp
[−ĉ(Ld

N/ ln LN)e−νωdR̂d ln(LN )(1−(const.)(ln LN )−1/d)]
≤ exp

[−ĉ(1/ ln LN)ed(const.)(ln LN )1/2]
≤ e−(ln LN )2 ≤ L−2

N = ρ2N−2

for all but finitely many N ∈N. The statement then follows with the Borel–Cantelli lemma. On
the other hand, we have the following result.

Theorem 3.1. Let 2 ≤ d ∈N be given. For any radius R> 0 of the hard Poissonian obstacles
there is a ν̃ > 0 such that, for all intensities ν > ν̃ of the Poisson random potential, the follow-
ing holds: there is a C̃> 0 such that, for the number AωN of disjoint boxes

[
sj1 − s

2 , sj1 + s
2

)×[
sj2 − s

2 , sj2 + s
2

)× · · · × [
sjd − s

2 , sjd + s
2

)
where j = (j1, j2, . . . , jd) ∈Z

d and s := R/
√

d
that intersect any one component of the vacancy set within �N, we have lim

N→∞ P(AωN ≤
C ln(LN)) = 1 as well as AωN ≤ C ln(LN) P-almost surely for all but finitely many N ∈N, and
for all C> C̃.
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Proof. We partition R
d into the boxes

[
sj1 − s

2 , sj1 + s
2

)× [
sj2 − s

2 , sj2 + s
2

)× · · · ×[
sjd − s

2 , sjd + s
2

)
, where j = (j1, j2, . . . , jd) ∈Z

d and s := R/
√

d. The centers of the boxes
are then given by the points (sj1, sj2, . . . , sjd), and we shall call them vertices. Vertices with
a Euclidean distance of s are called adjacent and consequently we obtain a discrete graph G.
A sequence (vi)J

j=1, J ∈ {1, 2, . . . ,∞}, of vertices in G such that vi and vi+1 are adjacent for
all j ∈ {1, 2, . . . , J − 1} is called a path in G. A path in G is called finite if J <∞ and infinite
whenever J = ∞.

It is important to note that if a Poisson point xωj is contained in such a box, then the box is not
contained in �ωN (informally, this is equivalent to saying that the external potential is infinitely
high across the box). We call a vertex vacant if the corresponding box does not contain any
Poisson point, and occupied if the corresponding box contains at least one Poisson point. In
the same way we call a path in G vacant if the path contains only vacant vertices.

Furthermore, we shall assume that the intensity of the Poisson point process ν > 0 is larger
than the critical intensity νc := inf{ν > 0 : θ0(ν) = 0} where θ0(ν) = P(there exists an infinite,
self-avoiding, vacant path starting at 0). Note that 0< νc <∞, due to a Peierls argument and
since the graph G is of finite degree; see [14], [19, p. 349].

Now, let Wω(v), v ∈ sZd = (sj1, sj2, . . . , sjd), j = (j1, j2, . . . , jd) ∈Z
d, be the union of all

vertices that can be reached by a vacant path on G from v, and let #Wω(v) denote the number
of vertices in Wω(v). Due to [19, Theorem 2], [2] and [29], there are constants 0<C1,C2 <∞
such that, for any n ∈N,

P(#Wω(0) ≥ n) ≤ C1e−C2n. (3.1)

We choose a C> 2C−1
2 and set n = C ln((LN + 2)d). Using inequality (3.1), we conclude that,

for any N ∈N, the probability that the number of boxes
[
sj1 − s

2 , sj1 + s
2

)× [
sj2 − s

2 , sj2 +
s
2

)× . . .× [
sjd − s

2 , sjd + s
2

)
intersecting any component of the vacancy set �(1),ω

N,> is equal to
or larger than n is bounded from above by∑

v∈sZd∩(−�LN/2�,+�LN/2�)d

P(#Wω(v) ≥ n) ≤ s−d(LN + 2)d
P(#Wω(0) ≥ n)

≤ C1s−d[(LN + 2)d]1−CC2,

which converges to zero in the limit N → ∞. In addition, using the Borel–Cantelli lemma,
we conclude that for P-almost all ω ∈� there exists an Ñ ∈N such that, for all N ≥ Ñ, the
number of these boxes intersecting any component of the vacancy set within �N is smaller
than C ln((LN + 2)d). �

Remark 3.1. This theorem implies the following. Suppose that the intensity of the Poisson
random potential is sufficiently large. Then the probability that the volume of the largest com-
ponent �(1),ω

N,> is bounded by C ln(LN), for a sufficiently large constant C> 0 converges to 1;
i.e. there is a C̃> 0 such that, for all C> C̃,

lim
N→∞ P

(∣∣�(1),ω
N,>

∣∣<C ln(LN)
)= 1.

In addition, there is a C̃> 0 such that, for all C> C̃ and for P-almost all ω ∈�, there is an
Ñ ∈N such that, for all N ≥ Ñ,

∣∣�(1),ω
N,>

∣∣<C ln(LN).
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For the proof of Lemma 4.1 in Section 4.2, we need the following lemma. It is a statement
about the number of disjoint balls with a given constant radius within �N that are free of
Poisson points.

Lemma 3.1. Let d ≥ 2 and ν > 0 be given. Also, let (cN)N∈N be a sequence that goes to infinity.
Then, for P-almost all ω ∈�, there exists an Ñ ∈N such that, for all N ≥ Ñ, the number BωN of
disjoint balls with diameter R̂> 0 that are completely within�N and are free of Poisson points
is at least Ld

N/(cN ln(N)), that is,

BωN ≥ Ld
N

cN ln(N)
. (3.2)

Proof. We shall put (2�((LN/2) − (R̂/2))/R̂� + 1)d disjoint balls, each with diameter
R̂> 0, in �N . More specifically, the balls shall have the centers (R̂j1, R̂j2, . . . , R̂jd) with
(j1, j2, . . . , jd) ∈Z

d and ji ∈ [−�LN/(2R̂) − 1
2�, �LN/(2R̂) − 1

2�], i = 1, . . . , d.
Next, we derive an upper bound on the probability that less than �Ld

N/(cN ln(LN))� of these
balls are free of Poisson points. We denote the probability that one given ball is free of Poisson
points by c. Notice that 0< c< 1. Furthermore,

�Ld
N/(cN ln(LN ))�−1∑

i=0

(
(2�LN/(2R̂) − 1

2� + 1)d

i

)
ci(1 − c)(2�LN/(2R̂)− 1

2 �+1)d−i

≤ Ld
N

cN ln(LN)

(
LN

R̂

) dLd
N

cN ln(LN )
(1 − c)

(2�LN/(2R̂)− 1
2 �+1)d− Ld

N
cN ln(LN )

≤ exp

{
d ln(LN) + dLd

N

cN

(
1 − ln(R̂)

ln(LN)

)
+
[(

2

⌊
LN

2R̂
− 1

2

⌋
+ 1

)d

− Ld
N

cN ln(LN)

]
ln(1 − c)

}
≤ e3−dLd

NR̂−d ln(1−c)

for all but finitely many N ∈N. Since, using relation (2.2),

∑
N∈N

e3−dLd
N R̂−d ln(1−c) =

∑
N∈N

((1 − c)3−dρ−1R̂−d
)N ≤ 1

1 − (1 − c)3−dρ−1R̂−d
<∞,

the claim follows with the Borel–Cantelli lemma. �

We would like to comment on the main difference between Lemma 3.1 and the correspond-
ing one-dimensional result [17, Lemma A.1]. In the one-dimensional case, the lengths of the
intervals that are introduced by a Poisson point process on the real line are independent, iden-
tically distributed random variables with exponential distribution. This fact was used in the
proof of [17, Lemma A.1]. In higher dimensions, however, we know less about the distribution
of the volume of the components of the vacancy set. To offset this, we require that the denom-
inator in (3.2) converges to infinity at a sufficient speed, and needed to use a different strategy
here compared to the corresponding one-dimensional case.
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4. Results on Bose–Einstein condensation

In this section we apply the probabilistic results derived in Section 3 in order to say some-
thing about BEC in a system of interacting bosons placed in a random environment. In fact, we
consider two kinds of pair interactions: hardcore interactions, where each particle has to keep
a certain distance to all other particles, and soft interactions. Physically, hardcore interactions
are described by the informal Hamiltonian (2.4) and soft interactions by the Hamiltonian (2.5).
As mentioned before, based on methods presented in [3], our aim is to generalize the results
from [17] to the higher-dimensional setting.

In the canonical ensemble, the N-particle state of the system (the density matrix) at inverse
temperature β = 1/T ∈ (0,∞) is given by �β,ωN = e−βHω

N/Tr(e−βHω
N ). Here, Tr(·) refers to the

trace of a (trace-class) operator on the associated N-particle Hilbert space. Regarding e−βHω
N

being trace-class, we note that Tr(e−βHω
N ) ≤∑j∈N0

e−βEj
N , where (Ej

N)j∈N0 are the eigenvalues

of the Dirichlet Laplacian on �N
N . The latter series is finite due to Weyl’s law. Moreover, let

�
β,ω
N (·, ·) denote the kernel of �β,ωN . In order to calculate the density of particles in a given

one-particle state, we use the reduced one-particle density matrix which acts as a trace-class
operator on the underlying one-particle Hilbert space L2(�ωN); see [30, Chapter 4]. The kernel
of the corresponding reduced one-particle density matrix is then obtained as

�
β,(1),ω
N (x, y) = N

∫
�ωN

dz1 · · ·
∫
�ωN

dzN−1 �
β,ω
N (x, z1, . . . , zN−1, y, z1, . . . , zN−1), (4.1)

with x, y ∈�ωN . Here, with a slight abuse of notation and whenever we consider hardcore inter-

actions, we understand the kernel �β,ωN (·, ·) to be extended by zero such that the integration
in (4.1) makes sense. The average particle density in a one-particle state ϕ ∈ L2(�ωN) can be
calculated as

ρ
β,ω
N (ϕ) := 1

Ld
N

∫
�ωN

∫
�ωN

ϕ(x)�β,(1),ω
N (x, y)ϕ(y) dy dx;

see, for example, [3] or [30, Chapter 4]. This leads to the following definition.

Definition 4.1. Let ω ∈� and ϕωN ∈ L2(�ωN) be a normalized one-particle state, N ∈N.
We call (ϕωN )N∈N macroscopically occupied at inverse temperature β ∈ (0,∞) if

lim supN→∞ ρ
β,ω
N (ϕωN )> 0. In this case, we say that BEC into (ϕωN )N∈N is present.

For related definitions of BEC we refer to [9, 30].

4.1. Hardcore interactions

We first consider the N-particle Hamiltonian with hardcore pair interaction,

Hω
N =

N∑
i=1

(− �i +V(ω, xi))+
∑

1≤i<j≤N

whc
N (‖xi − xj‖Rd ),

where

whc
N (x) :=

{
0 if x> aN,

∞ otherwise.

We decompose R
d into the boxes �(n)

N := {x ∈R
d : rNnj ≤ xj < rN(nj + 1), j = 1, . . . , d},

where n = (n1, n2, . . . , nd) ∈Z
d and N ∈N. If the side length of these boxes satisfies
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rN ≤ aN/
√

d, then any box �(n)
N can be occupied by at most one particle. Consequently, for

a normalized one-particle state ϕωN ∈ L2(�ωN), N ∈N, ω ∈�, we have that, P-almost surely, for
all β ∈ (0,∞), and for all but finitely many N ∈N,

ρ
β,ω
N (ϕωN ) ≤ 1

Ld
N

( ∑
n∈Zd

( ∫
�

(n)
N

|ϕωN (x)|2 dx

)1/2
)2

; (4.2)

see [3, Lemma 2]. Note that each ϕωN in (4.2) is understood to be extended by zero to all of Rd.
We can now give and prove the main statement of this subsection.

Theorem 4.1 (Absence of BEC I.) Let β, ρ > 0 be arbitrarily given. We assume that R> 0 and
ν > 0 are such that Theorem 3.1 holds. Suppose that the bounded sequence of radii (aN)N∈N is
such that

lim
N→∞

1

N

(
ln(N)

ad
N

)2

= 0.

Then, for P-almost ω ∈�, if (ϕωN )N∈N, ϕωN ∈ L2(�ωN) for all N ∈N, is a sequence of normal-
ized one-particle states for which the number AωN of components of �ωN intersecting supp(ϕωN )
satisfies

lim
N→∞

1

N

(
AωN ln(N)

ad
N

)2

= 0,

then (ϕωN )N∈N is not macroscopically occupied, that is, there cannot exist a subsequence

(Nj)j∈N ⊆N such that limj→∞ ρ
β,ω
Nj

(ϕωNj
)> 0.

Proof. The proof is obtained from a suitable adaptation of the proof of [17, Theorem
3.3]. Using inequality (4.2) and Theorem 3.1, we obtain, for a constant C> 0 and P-almost
surely,

lim
N→∞ ρ

β,ω
N (ϕωN ) ≤ lim

N→∞
1

Ld
N

( ∑
n∈Zd

( ∫
�

(n)
N

|ϕωN (x)|2 dx

)1/2
)2

≤ lim
N→∞

1

Ld
N

( ∑
n∈Zd :supp(ϕωN )∩�(n)

N 
=∅
1

)2

≤ C lim
N→∞

1

Ld
N

(
AωN ln(N)

ad
N

)2

= 0.

Note here that �(n)
N is the grid defined with rN = aN/

√
d. Hence, comparing this N-dependent

grid with the fixed grid used in Theorem 3.1 eventually leads to the factor a−d
N in the third

line. �

In particular, Theorem 4.1 shows that P-almost surely all canonical eigenstates of the
underlying one-particle Hamiltonian (2.6) are not macroscopically occupied if the interaction
strength is large enough since they are supported on one component only. In this context, it
would be desirable to know if the ground state (or all eigenstates for that matter) is P-almost
surely simple for all N ∈N large enough. Although this seems to be true, to the best of our
knowledge it has not been proved for the Poissonian model with hard obstacles so far; we refer
to [21] for related results on the Poissonian model with soft obstacles.
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4.2. Soft interactions

Finally, we study the case when a soft pair interaction is present. Namely, we now consider
the N-particle Hamiltonian (2.5), that is,

Hω
N :=

N∑
i=1

(− �i +V(ω, xi))+
∑

1≤i<j≤N

wN(‖xi − xj‖Rd ),

where wN ∈ L∞(R) ∩ L1(R, xd−1dx) is a non-negative function. We furthermore assume that
for every N ∈N there exist two numbers aN, bN > 0 (recall that (aN)N∈N is assumed to be
bounded) such that

wN(x) ≥ bN for almost every x ∈ [−aN,+aN]. (4.3)

Note that similar ‘volume-dependent’ interactions were also considered in [6]. The main
result of this section is the following theorem, which says that any normalized one-particle
state that is sufficiently localized, such as any canonical eigenstate of the corresponding one-
particle Hamiltonian (2.6), is P-almost surely not macroscopically occupied, given that the pair
interactions are sufficiently strong.

Theorem 4.2. (Absence of BEC II) Let ν > 0 and R> 0 be given such that Theorem 3.1 holds.
Let ϕωN ∈ L2(�ωN) be a normalized one-particle state and AωN the number of components of �ωN
with non-empty intersection with supp(ϕωN ), N ∈N, ω ∈�. Furthermore, suppose that

lim
N→∞

bNa3d
N N

(AωN)3 ln3(N)
= ∞, lim

N→∞
a3d

N N

(AωN)3 ln3(N)
= ∞,

and limN→∞ ln2(N)‖wN(‖ · ‖Rd )‖L1(Rd) = 0. Then, for all β ∈ (0,∞), (ϕωN )N∈N is P-almost
surely not macroscopically occupied.

In the remainder of this work we prove Theorem 4.2. We proceed similarly to [17]. For
the convenience of the reader and to be able to point out the differences between the higher-
dimensional case discussed here and the one-dimensional case discussed in [17], we present
the main steps of the proof.

In the first step, we show that the expected energy density with respect to the canonical
ensemble is bounded in the thermodynamic limit. However, in contrast to the one-dimensional
setting in [17], we have to assume that the pair interaction is weak enough in a suitable sense.
This is due to the fact that, unlike in [17, Lemma A.1], we require the denominator in (3.2) to
converge to infinity at a certain speed.

Lemma 4.1. (Bound energy density) Let β ∈ (0,∞) be arbitrarily given. Assume that
limN→∞ ln2(N)‖wN(‖ · ‖Rd )‖L1(Rd) = 0. Then there exists a constant C> 0 such that, P-almost
surely,

lim sup
N→∞

〈Hω
N〉
�
β,ω
N

Ld
N

<C. (4.4)

Proof. Let a typical ω ∈� be given. As in [17], we prove (4.4) by showing that the right-
hand side of the inequality

β

2

〈Hω
N〉
�
β,ω
N

Ld
N

≤ ln(Tr(e−(β/2)Hω
N ))

Ld
N

− ln(Tr(e−βHω
N ))

Ld
N

(4.5)
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is bounded by a constant in the limit N → ∞. We note that the inequality (4.5) holds because
〈Hω

N〉
�
β,ω
N

= − d
dβ ln(Tr(e−βHω

N )) and ln(Tr(e−βHω
N )) is a convex function in β.

Regarding the first term in (4.5), we compare the eigenvalues of Hω
N with the eigen-

values (Ej
N)j∈N0 of the Dirichlet Laplacian −� on �N

N and conclude that Tr(e−(β/2)Hω
N ) ≤∑

j∈N0
e−(β/2)Ej

N . Then we use the fact that there is a constant C1 = C1(β)> 0 such that

limN→∞ L−d
N ln

(∑
j∈N0

e−(β/2)Ej
N
)= C1; see, for example, [31, Theorem 3.5.8]. Thus, there

is a constant C1 > 0 such that, P-almost surely,

lim sup
N→∞

ln(Tr(e−(β/2)Hω
N ))

Ld
N

≤ C1.

Next, we show that the second term in (4.5), including the minus sign, is also bounded from
above by a constant in the limit N → ∞. We use the inequality [26, Lemma 14.1 and Remark
14.2]

− ln(Tr(e−βHω
N )) ≤ − ln

(
e−β‖ωN ‖−2

Rd 〈ωN ,Hω
N

ω
N 〉)= β‖ωN‖−2

Rd 〈ωN ,Hω
N

ω
N 〉,

N ∈N, for a state ωN in the domain of Hω
N . We choose the N-particle state ωN to be a product

state
∏N

j=1 ψ
ω
N (xj). The one-particle state ψωN (x), x ∈R

d, is constructed as follows. We consider
a rotational symmetric function f (‖x‖Rd ) that is equal to one for ‖x‖Rd ≤ 1/4 and smoothly
decreases to zero for 1/4 ≤ ‖x‖Rd ≤ 1/2. Then ψωN is the sum of all such functions placed at
the center of each disjoint ball with diameter (1 + 2R) that are within �N and free of Poisson
points. As in Lemma 3.1, we denote the number of such disjoint balls by BωN . Then,

‖ωN‖−2
Rd 〈ωN ,Hω

N
ω
N 〉 = N‖ψωN ‖−2

L2(Rd)

∫
�N

|∇ψωN (x)|2 dx

+
(

N

2

)
‖ψωN ‖−4

L2(Rd)

∫
�N

∫
�N

wN(‖x − y‖Rd )|ψωN (x)|2|ψωN (y)|2 dy dx.

Now, by construction there are positive constants c1, c2 > 0 independent of N such that∫
�N

|∇ψωN (x)|2 dx ≤ c1BωN , ‖ψωN ‖2
L2(Rd)

≥ c2BωN , and |ψωN (x)| ≤ 1 for all x ∈R
d. Employing

Lemma 3.1 in combination with our condition on ‖wN(‖ · ‖Rd )‖L1(Rd), we finally conclude
that there is a constant C2 > 0 such that, P-almost surely,

lim sup
N→∞

− ln(Tr(e−βHω
N ))

Ld
N

≤ βC2.
�

Proof of Theorem 4.2. Suppose there was a set �̃⊂� with P(�̃)> 0 and such that, for
all ω ∈ �̃, there was a sequence of normalized one-particle states (ϕωN )N∈N ∈ L2(�ωN) that
are macroscopically occupied and that fulfill the properties described in Theorem 4.2. Then,
for all such ω ∈ �̃, we show that the expected energy density with respect to the canonical
ensemble would diverge in the thermodynamic limit. However, since this is in contradiction to
Lemma 4.1, Theorem 4.2 follows.

It remains to prove divergence of the energy density (recall that the proof is a suitable
adaptation of the corresponding ones from [8, 6, 17]). Using second quantization (see, for
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example, [27] for an introduction), an equivalent definition for a sequence of one-particle states
to be macroscopically occupied reads

lim sup
N→∞

〈a∗(ϕωN )a(ϕωN )〉
�
β,ω
N

Ld
N

> 0.

Here, the creation operator a∗(ϕωN ) = ∫
�ωN
ϕωN (x)a∗(x) dx and the annihilation operator a(ϕωN ) =∫

�ωN
ϕωN (x)a(x) dx fulfill the canonical commutation relations [a(x), a∗(y)] = δ(x − y) and

[a(x), a(y)] = [a∗(x), a∗(y)] = 0, x, y ∈�ωN . Also, δ(·) is the Dirac δ distribution.
The key ingredient now is a lower bound for the expected energy density. Let {Gj} be a

partition of Rd into boxes of side length aN/
√

d> 0 similar to that constructed in Theorem 3.1.
By KωN we denote the number of boxes in {Gj} with a non-empty intersection with supp(ϕωN ).
Employing (4.3), we now obtain

〈Hω
N〉
�
β,ω
N

Ld
N

≥ bN

2Ld
N

KωN∑
j

∫
Gj

dx
∫

Gj

dy 〈a∗(x)a∗(y)a(x)a(y)〉
�
β,ω
N

:= bN

2Ld
N

KωN∑
j

C(j)
N ,

where the summation is over all the boxes in {Gj} that have a non-empty intersection with

supp(ϕωN ). Introducing the functions ϕ(j),ω
N := ϕωN1Gj , j = 1, . . . ,KωN , as well as using [8, (14)–

(16b)], we get
KωN∑
i,j

(
〈a∗(ϕ(i),ω

N )a(ϕ(j),ω
N )〉

�
β,ω
N

)4 ≤
( KωN∑

j

C(j)
N + ρLd

N

)2

.

From this, using the inequality
∣∣∑n

i=1 xj
∣∣2 ≤ n

∑n
i=1 |xi|2, we obtain

〈a∗(ϕωN )a(ϕωN )〉4
�
β,ω
N

=
( KωN∑

i,j

〈a∗(ϕ(i),ω
N )a(ϕ(j),ω

N )〉
�
β,ω
N

)4

≤ (KωN )6

( KωN∑
j

C(j)
N + ρLd

N

)2

,

and therefore 〈Hω
N〉
�
β,ω
N

Ld
N

≥ bN

2Ld
N(KωN )3

〈a∗(ϕωN )a(ϕωN )〉2
�
β,ω
N

− bNρ

2
.

Finally, by Theorem 3.1, P-almost surely and for all but finitely many N ∈N we have KωN ≤
CAωNa−d

N ln(N) for some constant C> 0. �
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