
Canad. Math. Bull. Vol. 37 (3), 1994 pp. 384-392 

ON CURVES AND SURFACES 
WITH PROJECTIVELY EQUIVALENT 

HYPERPLANE SECTIONS 

S. L'VOVSKY 

ABSTRACT. In this paper we describe projective curves and surfaces such that al­
most all their hyperplane sections are projectively equivalent. Our description is com­
plete for curves and close to being complete for smooth surfaces. In the appendix we 
make some remarks on connections between the mentioned property of a projective 
variety and its adjunction properties. 

Introduction. In this paper we are concerned with the following question: how to 
describe the projective varieties such that almost all their hyperplane sections are projec­
tively equivalent? We give the complete answer for curves and a partial one for smooth 
surfaces (in characteristic 0 both). 

The question we are interested in was considered, for the case of surfaces, in 1925 
by Guido Fubini and Gino Fano ([6, 4, 5]). The final results are contained in [5]. Fano 
gives the complete list of surfaces with projectively equivalent hyperplane sections (and 
arbitrary singularities); we consider only smooth surfaces, and our list is apparently su­
perfluous: according to Fano, some of the surfaces therein should not have projectively 
equivalent hyperplane sections, but I did not manage to prove it, nor to follow the argu­
ment in [5]. For the case of curves in characteristic 0, our result is complete. 

Nowadays this problem was considered by Edoardo Ballico [1] in arbitrary charac­
teristic. Our method differs from that of [1]. For the case of curves our result is in accord 
with [1], for the case of surfaces in characteristic 0 our result strengthens Proposition 5.2 
of[l] . 

In the appendix we prove a result concerning connections between projective equiv­
alence of hyperplane sections, finiteness of monodromy group and the adjunction prop­
erties of a variety. 

When the first draft of this paper was finished, I learned that Rita Pardini [9] had 
proved Fano results from [5] in full. 

Notation and conventions. Throughout the paper, the base field will be the field C 
of complex numbers. If £ is a locally free sheaf over X, then P(£) = Proj Sym(£). 

If p.X —• F is a nonramified covering, we will say that it is split if each connected 
component of X is mapped isomorphically on Y. 
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EQUIVALENT HYPERPLANE SECTIONS 385 

We will say that a surface X Ç Pn is a scroll if 

(x,Ox(l))^(P('E),0Pmic(l)) 

for a smooth curve C and a rank 2 locally free sheaf £. 
If (Pn)* is the dual to projective space Pn and a 6 (Pn)*, we denote by Ha C Pn the 

hyperplane corresponding to a. 
We say that a projective variety X Ç Pn is linearly normal if the linear system of its 

hyperplane sections is complete. 
If X Ç P" is a smooth projective variety of dimension d, the monodromy group of its 

hyperplane section is the monodromy group acting on Hd~l(Y, R) as its smooth hyper­
plane section Y varies (cf. [3]). 

Statement of results. Let X Ç Pn be a projective variety. We say that X satisfies the 
FF condition (named so after G. Fubini and G. Fano) if almost all hyperplane sections 
of X are projectively equivalent. 

PROPOSITION 0.1. IfXis an irreducible curve not contained in a hyperplane, then 
FF condition is satisfied if and only ifdegX < n + 1. 

PROPOSITION 0.2. If X CPn is a smooth irreducible surface satisfying the FF con­
dition, then X is either a rational scroll, or a Veronese surface V2(P2) C P5, or its iso­
morphic projection, or a non-linearly-normal scroll with elliptic base. 

According to Fano [5], of all the surfaces listed in the above proposition, only linearly 
normal rational scrolls and V2(P2) C P5 satisfy the FF condition. 

Here is an amusing corollary to Proposition 0.2. 

PROPOSITION 0.3. If the surface I Ç P " is a scroll with base of genus > 2 or a 
linearly normal scroll with elliptic base, then almost all hyperplane sections ofX are not 
linearly normal. 

ACKNOWLEDGEMENTS. I am grateful to F. L. Zak for attracting my attention to the 
papers [6, 4, 5] and for numerous helpful discussions. I would like to thank E. Ballico 
and Rita Pardini for helpful correspondence, and S. Tabachnikov for helpful discussions. 

1. Preliminaries; the FF condition and monodromy. Let X Ç Pn be a projective 
variety. For oc,/3 G (Pn)* denote by $>ap the set of projective isomorphisms ip:Ha^ Hp 
such that <p(XCiHa) = XHHp. 

PROPOSITION 1.1. Assume that X satisfies the FF condition and X is smooth or 
dimX = 1 ; if we denote by Y = X HP" the generic hyperplane section, then the ac­
tion of the monodromy group on H*(Y) is induced by the action of a subgroup G Ç 
{geAut(Pn):gY=Y}. 

PROOF. The condition FF implies that there exists a Zariski open subset U Ç (Pn)* 
such that, for a, /? E U we have Oa/3 ^ 0 and Ha is transversal to X. Consider a fiber 
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space O over U x U such that 0>ap is the fiber over (a, /?). <D is a principal T-bundle, 
where r = {g 6 Aut(Pn) : gY = Y}. lfY = Xr\Pn~l = XDHa, consider the restriction 
of O to {a} x U. Each loop {at}(t E [0; 1]) in U can be lifted to this restriction as the 
path {{oct; </?,)}, where ipt E Oa>a/. It is clear that ip\ induces in Hm(Y) the monodromy 
transformation corresponding to the loop {at}. The proposition is proved. 

COROLLARY 1.2. If a smooth variety I Ç P " satisfies the FF condition, then the 
monodromy group of its hyperplane section is finite; if dim X is even, this group is trivial 

PROOF. Since the connected component To Ç T acts trivially in cohomology and 
T/To is finite, the first assertion holds; the second assertion follows immediately from 
the first one and the Picard-Lefschetz theory. 

The following proposition is quite similar to the main construction of [8], so we omit 
some details of the proof. 

PROPOSITION 1.3. Let X C Prt, X ^ Pn be a smooth projective variety, and L Ç 
(Pn)*, L = P1 a Lefschetz pencil of hyp erplane s. Assume that there exist a Zariski open 
subset U Ç L and a E Usuch that for any (3 E U there exists a projective isomorphism 
ifrp'.Hp —• Ha satisfying the following conditions: 

i) xjjf3(H^nX) = HanX; 
ii) ifcp is identity on Ha D H@. 

Then X is a quadric. 

PROOF. Choose the homogeneous coordinates in Pn so that the equations of Ha 

(resp. the axis of L) are xn = 0 (resp. xn-\ = xn = 0). For u E C denote by Hu 

the hyperplane defined by the equation xn = uxn-\, and denote by HOQ the hyperplane 

Xn-l = 0. 
Now for j3 E U denote by H'p the set of projective automorphisms ^p'.Hp —• Ha, 

such that il>p(Hp H X) = Ha D X and ^/|//arv/j8nx' = id. Consider a fiber space *F over U 
such that *¥p is the fiber over /?. Let r Ç *F be a quasi-section of P̂ over an open subset 
U' Ç U; the projection 7r: P̂ —> U induces a regular function u on T such that any p ET 
may be regarded as a linear isomorphism^,: Hu —• HQ = Ha\ writing^"1 in the matrix 
form, we obtain regular functions ao, . . . , an-\ such that^ -1 sends (JCO : • • • : xn-\) E Ha 

to the point 

(x0 + a0(p)xn-i : • • • : xn-2 + an-2(p)xn-i • an-\(p)xn-X : u(p)an-\(p)xn-\) EXCPn. 

Set an = u - an-\. If S is the smooth projective model of T, then a/s may be regarded 
as rational functions on S; not all of them are constant, because u is not constant and 
an = u - an-\. 

Now we can proceed as in [8, Section 3]: not all a/s, 0 <j < n, are constant, hence 
some of them must have poles. Assume that the maximal order of these poles equals m 
and is attained at the point £ E S\ by [7, Lemma 3.1], for each c EC and x = (xo : • • • : 
xn-\ : 0) there exists a map h:A—*XC\ Ha, h: t \—• {x0(t) : • • • : xn-\ (t) : 0), where A is 
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the unit disk in the complex plane, such that Jc/(0) = xi for 0 < / < n — 2, xn-\ ~ cf1 as 
/ tends to 0. The point \\mt^)fh{t)-\ (h(ij) is in X, and its homogeneous coordinates are 

(xo + cb0xn-i : • • • : xn-2 +cbn-2xn-i : cbn-\xn-\ : cbnxn-\)\ 

as it is explained in [8], b/s do not depend on c. Hence X DHhnihn_x is a cone; since L is 
a Lefschetz pencil, this cone must be a quadratic cone and X must be a quadric. 

COROLLARY 1.4. IfX Ç Pn /s «ctf a linearly normal rational scroll nor the Veronese 
surface V2(P2) C P5, then Proposition 1.3 holds with hypothesis (ii) replaced by "x/jp is 
identity on Ha D Hp C\X". 

PROOF. If degX = d, then the hypothesis implies that its generic linear section of 
codimension 2 contains at least d + 1 points in general position, hence "identity on the 
linear section of codimension 2" implies "identity on the projective space of the section", 
and the Proposition applies. 

2. Case of curves. In this section we prove Proposition 0.1. Assume that X Ç Pw is 
a curve for which FF holds, and that X is not contained in a hyperplane. We are to prove 
thatdegX< n + 1. 

Let us apply Proposition 1.1. In our case the generic hyperplane section is a set of 
degX points in Pn~l, and the monodromy group consists of permutations of these points. 
According to [2], this group is the whole symmetric group; on the other hand, if Y = 
XflP" - 1 is the generic hyperplane section, then no n points of Y belong to a hyperplane 
(we will call it the generic position property). Proposition 0.1 follows immediately from 
the above observations and the following lemma. 

LEMMA 2.1. If there are s > m + 2 points in Pm such that nom+\ of them belong to 
a hyperplane, then there is no automorphism ofVm that interchanges two of these points 
and leaves the rest s — 2 points fixed. 

PROOF. If s > m + 4, there is nothing to prove since any projective automorphism 
of Pm fixing m + 2 points in general position must be identity. Hence we may assume 
that s = m + 3. Due to the generic position condition we may choose the homogeneous 
coordinates so that p\ = (1 : 0 : • • • : 0), p2 = (0 : 1 : • • • : 0) , . . . , pm+\ = (0 : • • • : 0 : 
1), Pm+2 = (1 : • • • : 1). If Pm+3 = (*o • * • * • xm), then it follows from the generic position 
condition that JC; ^ 0 for all /, xi ^ Xj for / ^ j . Hence the automorphism (p: Pm —• Pm 

that interchangespm+2 and/?m+3 should be defined by a diagonal matrix diag(xo,... ,xm); 
since ip(xm+3) = xm+2, we see that each of the Xj can be chosen to equal 1 or —1; this 
contradicts the generic position condition. The lemma and Proposition 0.1 are proved. 

3. Case of surfaces, parti. We keep the notation of Section 1. AssumethatX Ç Vn 

is a smooth surface for which the FF condition holds. 
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PROPOSITION 3.1. If the generic hyperplane section ofX is not a rational curve, then 
O —• U x U is a finite covering. 

PROOF. The fiber of O over (a,/?) E U x U is isomorphic to {g E AutHa : 
g(X H Ha) = I f l Hp}. Since the group of automorphisms of a smooth curve of genus 
> 1 or a polarized elliptic curve is finite, we are done. 

PROPOSITION 3.2. If the genus of the generic hyperplane section ofX is greater than 
1, then the coveringp: O —• U x U is split. 

PROOF. Assume the contrary; then the covering/?-l(U x {a}) —> U x {a} is not 
split for the generic a E U. Hence, there exists a connected component *F C p~l(U x 
{a}) such that/?: *F —• U x {a} is a nontrivial covering. Thus, there exists a loop in U 
originating at (a, a), such that its lifting to *F defines a nontrivial automorphism of XnHa. 
Since any nontrivial automorphism of a Riemann surface C of genus > 1 acts nontrivally 
on H1 (C, R), we infer that this loop defines a nontrivial element of the monodromy group 
of the hyperplane section X n Ha. This contradicts Corollary 1.2. 

PROPOSITION 3.3. IfX Ç Pn w « smooth surface for which the FF condition holds, 
then the genus of the generic hyperplane section ofX is at most 1. 

PROOF. Assume the contrary, and let a E U be a generic point. Since O —• £/ x U is 
split by Proposition 3.2, there exists a section s: Ux{a} —• O, such that 5((a, a)) = id#a 

Set i/>0 = s(/3): Hp —• 7fa. Define, for the generic x EX, the mapping/: U —• X Pi Ha by 
the formula /3 i—• i/^W E Ha. By Proposition 1.4 this mapping is not constant, hence 
f(U) = XC\Ha. But this equality is impossible since XC\Ha is not a rational curve. This 
contradiction completes the proof. 

4. Case of surfaces, part 2. In this section we assume that X Ç P" is a linearly 
normal smooth surface, that the condition FF holds for X and that the generic hyper­
plane section of X is an elliptic curve. We make use of the following important result of 
Zak[l l ] : 

THEOREM 4.1 (F. L. ZAK). IfX Ç P" is a smooth surface such that the monodromy 
group of hyperplane section of X is trivial, then X is either a scroll, or the Veronese 
surface V2(P2), or its isomorphic projection to P4. 

It follows immediately from this theorem and Corollary 1.2 that the assumptions of 
this section imply that X is Pc(E) embedded by the complete linear system |0X|C(1)|, 
where £ i s a rank 2 locally free sheaf on the elliptic curve C. H°(0X|C(1)) will be canon-
ically identified with //°(E). Let us denote L = det £. 

If s E #°(0X |C(1)) = #°(£) , consider the homomorphism/5: £ —• det £ defined by 
the formula £ i—• s A £. 

https://doi.org/10.4153/CMB-1994-056-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-056-8


EQUIVALENT HYPERPLANE SECTIONS 389 

PROPOSITION 4.1. If the section s defines a smooth hyperplane section ofX, then the 
sequence of sheaves 

(1) 0 — ^ O c - ^ E - ^ X — > 0 

is exact. 

The proof is straightforward. 

PROPOSITION 4.2. Consider an exact sequence of sheaves 

(2) 0 —• Oc -Î-+ £ - ^ L —• 0 

where C is an elliptic curve, £ is a locally free sheaf of rank 2, L is an invertible 
sheaf (hence, L = det £), as an extension of L by Oc. The class of this extension in 
Ext^X, Oc) is determined, up to proportionality, by the linear subspace 

Im(tf°(C, E) -> fl°(C, X)) C H°(Q X). 

PROOF. Since the sheaves are locally free and the underlying variety is a smooth 
curve, Ext1 (L,Oc) is canonically isomorphic to Hl(C,L~l) and, by Serre's duality, 
canonically dual to H°(C, X); the fundamental class of the extension (2) in Ext1 (X, Oc) = 
(H°(C,L)Y is 

8:H°(L)-+Hl(Oc) = C, 

where 6 is the connecting homomorphism associated with the exact sequence (2). Hence 
this class is determined, up to proportionality, by Ker5 = Im/*. 

Let us return to our surface X. 

PROPOSITION 4.3. For generic hyperplanes H\,H2 Ç Pn there exists a projective 
automorphism F: Pn —• Pn, such that F(X) = X, F(H\) = H<i, and F maps each line of 
the ruling ofX into itself 

PROOF. The smooth hyperplane section of X defined by a section s € //°(£) is 
projectively isomorphic to the curve C embedded by the linear system | V |̂, where 

Vs = lm(H°m^H°(L)). 

It follows immediately, from the exact cohomology sequence associated with (1) and the 
ampleness of £, that Vs has codimension 1 in H°(L). 

Now if s and t are two generic sections of £, then the hyperplane sections defined by 
s and t are projectively isomorphic if and only if there exists an isomorphism ip:C—> C 
such that (p*L = L and Vs = (f*Vt. Since the group of automorphisms of a polarized 
elliptic curve is finite, the FF condition implies that the hyperplanes Vs C H°(L) are 
the same for almost all s € #°(£) . By Proposition 4.2 this implies that the extensions 
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(1) are "congruent up to multiplication by a constant" for various s. Hence, for generic 
sj E H°(*E) there exists an automorphism g: £ —• £ and a constant À E C* such that 
the diagram 

0 — , Oc - ^ £ - ^ X —-• 0 

0 — ^ O c - ^ E - ^ X — • 0 

is commutative. The automorphism g induces a projective automorphism F: Pn —• Pn 

that maps X into itself and preserves the fibers of X over C. Translating all this into the 
geometric language, we obtain our proposition. 

PROPOSITION 4.4. IfX Ç Pn is a linearly normal scroll with elliptic base, then the 
FF condition does not hold for X. 

PROOF. Assume the contrary. Then Proposition 4.3 applies. Since generic hyper-
plane section intersects each line of the ruling only once, the automorphism F of the 
above proposition fixes all the points of Hi H Hj DX. This contradicts Proposition 0.2. 
The proposition is proved. 

5. Proof of Propositions 0.2 and 0.3. To complete the proof of Proposition 0.2, we 
use the following fact: if the generic hyperplane section of a smooth surface face X CPn 

has genus 0, then X is either a rational scroll, or P2, or the Veronese surface V2(P2), or its 
isomorphic projection. When put together with Propositions 3.3 and 3.4, this yields the 
required result. 

To prove Proposition 0.3, observe that if a scroll X is isomorphic to Pc(£)> where C 
is a curve and £ is a locally free sheaf of rank 2, such that H is a hyperplane section 
of X, then (H, 0(1)) = (C, det £), where H is a hyperplane section of X. Hence, if this 
hyperplane section were linearly normal, then almost all hyperplane sections would be 
projectively isomorphic to the curve C embedded by the complete linear system | det E|, 
contrary to Proposition 0.2. The proposition is proved. 

6. Appendix. Finite monodromy groups and adjunction. The FF property and 
finiteness of the monodromy group have to do with the adjunction properties of the va­
riety. 

PROPOSITION 6.1. Consider the following properties of a smooth projective variety 
X C F l , d i m X = d > l : 

i) Almost all hyperplane sections ofX are projectively equivalent, 
ii) The monodromy group of hyperplane sections ofX is finite. 

Hi) Ifp ^ q, p + q — d — 1, then hp,q(X) = hp,q(Y), where Y is a smooth hyperplane 
section ofX. 

iv) \KX + Y\ = 0. 

Then the following implications hold: 

i) =$> ii) «=>. iii) => iv). 
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If, in addition, dimX < 3, then iii) & iv). 

PROOF. The implication i) => ii) is just Corollary 1.2; the equivalence of ii) and iii) 
is proved in [3, Exposé XVIII]. To prove that iii) => iv), observe that iii) implies that 

(3) hd-\X,Ox) = hd-\Y,0Y). 

Now the exact sequence 

0 —• Ox(-1) —• Ox —-> Oy —• 0 

together with Kodaira vanishing theorem, yields the exact sequence 

(4) 0 — • Hd~l(X, Ox) -> Hd~\Y, 0Y) —^ Hd(x, Ox(-l)) —> Hd(X, Ox) —+ 0. 

Hence, (3) is equivalent to injectivity of the homomorphism Hd(X, Ox(— 1)) —-*• 
Hd(X, Ox) from (4); by Serre duality this is equivalent to the equality 

dim\Kx\ = dim\Kx + Y\. 

The latter equality holds if and only if \Kx + Y\ = 0. Indeed, the " i f part is obvious since 
dim \Kx\ < dim \Kx + Y\, and to prove the "only i f part observe that \Kx\ ^ 0 implies 
the inequality dim \Kx + Y\> dim \Kx\, since the linear system |F| is movable. 

To prove the last assertion observe that, if 2 < dimX < 3, property iii) is equivalent 
to the equality (3). The proposition is proved. 

In the paper [10], A. J. Sommese gave a complete description of threefolds having 
property iv). Proposition 6.1 shows that [10] yields description of smooth threefolds 
with finite monodromy group of hyperplane section, as well. All the threefolds with FF 
property are among those from [10]; no doubt only few of the latter actually have the FF 
property. 
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