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BIMODULES FOR CUNTZ-KRIEGER ALGEBRAS OF INFINITE
MATRICES

WOJCIECH SZYMANSKI

We show that any Cuntz-Krieger algebra OA over an infinite 0-1 matrix A may be
realised as a Cuntz-Pimsner algebra Ox for a Hilbert bimodule X over a suitable
Abelian C*-algebra with totally disconnected spectrum. Using Pimsner's six-term
exact sequence for the ifif-groups we calculate the /^-groups of OA- We also give
a description of the corresponding Toeplitz algebra Tx in terms of generators and
relations.

0.

Exel and Laca [3] have recently constructed and described a class of C*-algebras
corresponding to infinite 0-1 matrices, which generalises the classical work of Cuntz and
Krieger [2]. Exel and Laca's primary approach is based on crossed products for partial
actions. However, they also recognise that the algebras are universal for a suitable set
of relations imposed on the generating families of partial isometries. On the other hand,
Pimsner [11] defined a large class of C*-algebras based on Hilbert bimodules. We refer to
these as to Cuntz-Pimsner algebras. Pimsner showed, in particular, that his construction
encompasses both Cuntz-Krieger algebras (of finite 0-1 matrices) and crossed products
by the integers.

It is the purpose of this note to show that the Cuntz-Krieger algebras of infinite
matrices constructed by Exel and Laca fall into the general framework of Cuntz-Pimsner
algebras. Namely, for any infinite 0-1 matrix A without zero rows we construct a Hilbert
bimodule X such that the C"-algebras OA and Ox are canonically isomorphic. The
bimodule X is over an Abelian C*-algebra with totally disconnected spectrum. As a
consequence of this result we may now use general methods developed for Cuntz-Pimsner
algebras to investigate Cuntz-Krieger algebras. This in particular applies to the exact
sequences for the K/('-groups of Ox found in [11], which in special cases yield the K-
groups of Cuntz-Krieger algebras of infinite matrices, calculated earlier by Exel and
Laca [4] in a different way. One may also try to get in this way an insight into the structure
of ideals. To the author's best knowledge none of the presently available results in this
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direction, for example, [7, 10], covers all possible cases resulting from Cuntz-Krieger
algebras built on infinite matrices. However, a necessary and sufficient condition for
their simplicity has been already found in [13]. It does not seem unreasonable to expect
that this and some other results that have been obtained for Cuntz-Krieger algebras by
other methods may now help develop analogous techniques applicable to a more general
class of Cuntz-Pimsner algebras.

Before Exel and Laca came up with their extension of the Cuntz and Krieger theory
to infinite matrices, a very satisfactory generalisation of Cuntz-Krieger algebras was given
in terms of directed graphs, see, for example, [9, 1]. It was shown in [5] that if E is a
directed graph without sinks or sources then the corresponding algebra C*(E) may be
realised as a Cuntz-Krieger algebra OA, for a suitable infinite 0-1 matrix A, as well as
a Cuntz-Pimsner algebra Ox for a suitable Hilbert bimodule X. The bimodule is over
an Abelian C*-algebra with discrete spectrum. For locally finite graphs without sinks or
sources an analogous result was obtained in [8].

1.

In what follows, we always assume that N is an at most countable, nonempty set and
A — \A(i, j)]. . is a matrix with entries in {0,1}, no row of which is identically zero.
Exel and Laca define in [3, Theorem 8.6] a Cuntz-Krieger algebra OA corresponding
to A as the universal C*-algebra generated by a family of partial isometries {Si \ i € N},
subject to the following relations:

(ELI) Si Si and SjSj commute for any i, j e N,

(EL2) SjSj = 0 for any z ^ j in N,

(EL3) (5'5j)5,- = A(i,j)Sj for any i,j e N,

(EL4) For any finite subsets K,L of N such that

(
ieL

is nonzero for only finitely many j € N, we have

II s-ksk n (/ - s;s<) = £ A(K, LJ)SJS;.

Above, / is the identity of the multiplier algebra of OA • This definition generalises that
of Cuntz and Krieger [2] for finite matrices. In what follows for finite subsets K,L of N
we denote

and if A(K, L,j) is nonzero for only finitely many j & N then we write (K, L) 6
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2.

We denote by D the C*-subalgebra of OA generated by the domain projections 5,*Sj
with i € N, of all the generators of OA- It follows from (ELI) that D is a separable
Abelian C*-algebra with totally disconnected spectrum. D may or may not have a unit.
We denote by Do its dense *-subalgebra generated algebraically by {S'Si \ i € N}. If
0 7̂  o € Do then there exist finite collections Ku, Lv of finite subsets of N such that

(1) a = '£\yPK.jn,

where the Xv are nonzero complex numbers, Kv ^ 0, and PKU,LU are nonzero, mutually
orthogonal projections. We denote by DQO the ideal of DQ generated by all projections
PK,L with (K, L) € CA- Any element of Doo may be written in the form (1) with
(Kv, Lu) € CA for all v. We define

X = span{5ia | i e N, a 6 D).

X has a natural structure of a D-bimodule, with both actions given by the multiplication
in OA- This is obvious for the right action. For the left action, this follows from the fact
that aSib is either a scalar multiple of Sib or 0 for any i € N and a,b € D, by virtue of
(EL3). Furthermore, X carries a natural structure of a right Hilbert .D-bimodule [12],
with the D-valued inner product given by (x,y)D = x*y. This inner product is well-
defined by virtue of (EL2). It follows from the definitions that X is full, that is, the closure
of (X, X)D is the entire algebra D. The homomorphism <j> : D —> C(XD), determined
by the left action of D on X, is injective. Indeed, suppose that 0 / u S Do and write
a = E KPK.,U, as in (1). Let fi be such that |A^| = ||a||. It follows from (EL4) that there
exists i € N such that PK^L^ = Si and, hence, \\aSi\\ = |AM5j| = ||a||. Consequently,
4> is isometric on a dense subalgebra, and thus injective. We denote by K{XD) the space
spSa{9Xiy | x,y € X}, with 0X}V : X -> X defined as 0XtV{z) = x(y,z)D for z €. X. Later

we shall need the following.

LEMMA 3 . If X is a Hilbert D-bimodule as in Section 2 above, then DQO is a dense
*-subalgebra of <f>~1 [IC(XD)J.

PROOF: TO this end we show that for any a G D

(2)

If (K,L) € CA, then PKJ, = £ A{K,L,j)SjS; by (EL4) and, hence, 4>(PKj.) =
jeN

£ A{K,L, j)6Si s belongs to KiXD). Thus <j>{Dw) Q K{XD) and, consequently,

- !C(XD)\\ < \\<j>(a) -
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It sufficies to prove the reverse inequality for a € Do. So suppose that a € Do \ A>o is
equal to Y.KPK*,LV, as in (1). Let |A,J = max{|A,,| I (KV,LV) £ CA) for some u0 such
that {KVa,Lv<) $ CA, and let i^j^ e i V , ^ e C, and b^d^ G D for some finite set of
indices fj,. Since Px^.L^Sk = S/t for infinitely many k G N, there exists one such k € N

different from all indices j ^ . We have

Thus |(^(o) - £(X D ) | | ^ \\a - £>00||, as required. D

4.

We now recall the definitions of the Toeplitz algebra Tx and the Cuntz-Pimsner
algebra Ox associated with the .D-bimodule X [11]. We take the universal property
approach of [6]. Thus, a Toeplitz representation (ip, n) of the bimodule X in a C*-algebra
B consists of a linear map xp : X —> B and a C*-algebra homomorphism n : D —» B such
that

(3) *{xa) = il>{x)ir{a),

(4) ip{ax) = TT(a)ip(x),

(5) il>{x

for any x, y € X and a £ D. Then Tx is a C*-algebra generated by copies ix{X) of X and
%D{D) of D, and universal for Toeplitz representations of X [6, Proposition 1.3]. That
is, for any (tp, ir) satisfying (3) to (5), there exists a C*-homomorphism i\> x -n : Tx -> B
such that tp x 7r(ix(a;)J = ip{x) and ^ x 7r^£)(a)j = 7r(a) for any x € X and a € D.
This Toeplitz algebra exists and is unique up to a canonical isomorphism. There exists a
C*-algebra homomorphism n : K.(XD) —> Tx such that K,{0x,y) == ix{x)ix(y)*• Let Jx be
the closed 2-sided ideal of Tx generated by {iD(a) - /c(0(a)) | a 6 0"1(/C(A'£,))}. The
Cuntz-Pimsner algebra Ox of the bimodule X may be defined as the quotient Tx/Jx-
We point out that we only consider Hilbert bimodules with injective left actions, as they
suffice for our purposes (see Section 2).

THEOREM 5 . If A = L4(i,j)l is a 0-1 matrix with no zero rows, D is the

C-subalgebra of OA generated by {SjSi \ i € N}, and X = span{$a | i G N,a E D},

as in Section 2, then the Cuntz-Krieger algebra OA and the Cuntz-Pimsner algebra Ox

are canonically isomorphic.
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PROOF: Since the natural inclusions of X and D into OA give a Toeplitz repre-

sentation of X there exists a homomorphim / : Tx -> OA such that f(ix(x)) = x and

f(iD{a)) = i for any x € X, a € D. It follows from (EL4) that iD(a)-«;(0(a)) 6 ker /for

any a e D M . Thus Lemma 3 implies that Jx C ker / and, consequently, / induces a ho-

momorphism / : Ox -> O^. Since the family [ix{Si)+Jx i € N} C Ox satisfies (ELI)

to (EL4), there exists a homomorphism g : OA -> Ox such that g(ix(Sij\ = St + Jx for

any i £ N. Since, clearly, both fg = id and gf = id, the C*-algebras OA and Ox are

isomorphic, as claimed. D

6.

Theorem 5 allows application of general techniques developed for Cuntz-Pimsner
algebras to the case of Cuntz-Krieger algebras corresponding to infinite matrices. In
particular, one can apply to OA the six-term exact sequences for K/f-groups found by
Pimsner [11]. As a special case of these we obtain an exact sequence for the /f-groups.
Namely, [11, Theorem 4.9], natural isomorphisms KK™C(C,M) = K,(M) for any C-
algebra M, K1(M) = 0 for any ^IF-algebra M, Lemma 3 and Theorem 5 yield an exact
sequence
(6) 0 -> KX{OA) -> Ko(Doo) -^> K0(D) -> K0(OA) -+ 0,

with fix = 0 ( id — [^]J- Consequently, we obtain a description of the /^-groups of OA as

Of course, it is not difficult to write the map fix more explicitly in terms of the matrix
A. Namely, we can identify K0(D) with the subring of ZN generated by the rows of A
(see [4]), and KO(DOO) with the subring of K0(D) consisting offinitely supported elements
of ZN. Then fix is identified with the map id - A1. This gives a different description of
the /('-groups of OA from the one produced by Exel and Laca in [4]. Namely, our map is
defined by the same formula as in [4], but between smaller Abelian groups.

7.

In Theorem 5 we used a bimodule X which was defined in Section 2 with help of
some elements from the C*-algebra OA- In fact it is not difficult to construct D and
X directly from the matrix A. Namely, let A = L4(i,j)J. . be a 0-1 matrix with no
zero rows. Let DA be any C*-algebra generated by a family {Pi \ i e iV} of commuting
projections such that for any finite subsets K,L of N

(7) A(K, L,j) = 0, Vj e N «• I ] pk II (7 - P') = °-
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In the above formula we take / to be the identity of the multiplier algebra of DA- If D
is the C*-subalgebra of OA generated by {S,*5,- | i € TV}, as defined in Section 2, then it
is not difficult to verify that there exists a C*-algebra isomorphism DA -»• D such that
Pi >-* SfSi for any i € TV. Thus, in particular, DA is canonically determined by the
matrix A.

We denote by TV a complex vector space with a basis {i \ i e TV}. TV ® DA is a
right £>,4-module with the action (i ® ajb = i <8>ab for i € TV, a,b e DA- We define a
possibly degenerate .D^-valued inner product on N®DA by (i®a,J®b)pA = Sija*Pib for
i>3 € N, a,b € DA- We define XA as the quotient of TV® .D^ by its submodule (by virtue
of the Cauchy-Schwarz inequality [12, Lemma 2.5]) \x € TV ® DA (X,X)DA — o}. XA

is naturally a right inner product Z^-module [12, Definition 2.1]. We denote by XA the
completion of XA- For i 6 TV, a € .CU we denote by i <S> a the canonical image of i ® a in
X4. For any i € TV there is a projection Q; € £(^ / i ) such that Qi(j ® a) = /l(i, j ) j ® a
for any j £ N, ae DA- Since the projections {Qj | i € TV} commute and satisfy (7) there
exists a homomorphism 4>A '• DA -»• £(-?Ci) such that <^/i(Pi) = Qi for any i € TV. With
the left action of JDx given by (f>A, XA becomes a Hilbert D^-bimodule.

PROPOSITION 8 . Let A = \A(i, j ) | . . be a 0-1 matrix with no zero rows, and
let X and XA be the corresponding Hilbert D and DA bimodules, respectively, as defined
in Sections 2 and 7. With the canonical identification of D with DA, as in Section 7, the
Hilbert bimodules X and XA are unitarily equivalent.

P R O O F : We identify DA with D, as in Section 7, so that Pt — S'Si for any i e TV.
We define a map U : XA —• X by

uiyXi ®a\=Y\Sa

with \v € C, iv € TV, au € DA for some finite set of indices v. We have

,Xu(iv ®av'i

which shows that U is a well-defined isometry. Thus, U extends to an isometry from XA
into X, still denoted U. It is clear that U is a surjective map commuting with the right
actions of DA — D. Furthermore, for any i,j e TV, a e DA we have

U(Pi(j ® a)) = A(i,j)U(j ® o) = A(i,j)Sja = S;SiU(j ® a)
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and, hence, U commutes with the left actions as well. D

As shown in [11], Proposition 8 implies that the C*-algebras OxA and Ox are
canonically isomorphic.

9.

Let X be the Hilbert bimodule associated with a matrix A, as in Section 2, and let
Tx be the corresponding Toeplitz algebra [11, 6]. Similarly to Ox — OA, Tx admits a
definition in terms of generators and relations. Indeed, let {7* | i S TV} be a family of
partial isometries. We say that this family satisfies condition (T) if for any finite subsets
K, L of N

(T) A{K, L, j) = 0, Vj e N =• n T^Tk JJ (/ - ITT,) = 0.

This is precisely condition (1.5) from [5].

THEOREM 1 0 . Let A — \A(i,j)} be a 0-1 matrix with no zero rows, and
let X be the corresponding Hilbert bimodule, as constructed in Section 2. Then the
Toeplitz algebra Tx is naturally isomorphic to a universal C*-algebra T generated by
partial isometries {Ti\ie N} satisfying (ELI) to (EL3) and (T).

PROOF: A standard argument, involving a direct sum of suitable cyclic representa-
tions, shows that such a universal C*-algebra T indeed exists. Since the partial isometries
{ix{Si) | i € N} satisfy (ELI) to (EL3) and (T) (see Section 7), there exists a homo-
morphism / : T -> Tx such that /(TJ) = tx{Si) for any i € N. This in particular shows
that projections {TfTi \ i € N) satisfy (7) and, thus, they generate a C*-subalgebra
of T naturally isomorphic to D. Hence, there is a homomorphism TT : D —¥ T such that
TT(5,*SJ) = T*Ti for any i € N. For \v, iv e N, av 6 D, indexed by a finite set, we define

A short calculation similar to the one from the proof of Proposition 8 shows that this
is an isometry and, hence, extends to a map ip : Tx -> T such that ip(Si) = 7* for any
i 6 N. Clearly, (tp, n) is a Toeplitz representation of the bimodule X inside T. Indeed,
the very definition oiip implies (3), (4) follows from (EL3), and (5) follows from (EL2).
Considering the corresponding homomorphism ipxn :Tx —* T we see that f{ip x TT) = id
and {rp x n)f = id, which completes the proof. D

In view of Theorem 10 it would only be natural to denote Tx by TA and call it the
Toeplitz algebra associated with the matrix A. However, this notation has been already
reserved in [3] for a different object. Namely, Exel and Laca define the Toeplitz algebra
TA as the universal C*-algebra for (ELI) to (EL3).
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