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In this study, mean velocity and temperature profiles for turbulent vertical convection
(VC) confined in an infinite channel are investigated theoretically. The analysis starts from
the governing equations of the thermal flow, with Reynolds shear stress and turbulent
heat flux closed by the mixing length theory. Employing a three-sublayer description
of the mean fields, the mean velocity and temperature profiles are found to be linear
laws near the channel wall (viscosity-dominated sublayer), and they follow power laws
close to the channel centre (turbulence-dominated sublayer). The characteristic scales of
velocity, temperature and length in the present profiles arise naturally from the system
normalisation, rather than from scaling analyses, thus ensuring a sound mathematical
description. The derived profiles are verified fully via various literature data available
in the classical regime; further, they are compared with the reported profiles, and the
results indicate that the present profiles are the only ones with the ability to interpret
data accurately from different sources, demonstrating much better versatility. Meanwhile,
we provide analytical arguments showing that in the ultimate regime, the mean profiles
in VC may remain in power laws, rather than the log laws inferred by analogy with
Rayleigh–Bénard convection (RBC) systems. The power profiles recognised in this study
are induced by the effect of buoyancy, which is in parallel with the mean flow in VC and
contributes to the streamwise momentum transport, whereas in RBC systems, buoyancy
is perpendicular to the mean flow, and does not influence the streamwise momentum
transport, resulting in log profiles, being similar to the case of wall shear flows.

Key words: turbulent convection

1. Introduction

The mean velocity profile in wall-bounded turbulent flows has always been a fundamental
concern in the fluid mechanics community, and it can serve as the wall function in
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Figure 1. (a) Schematic of the VC in an infinite channel. (b) Illustration of the mean temperature and velocity
profiles.

engineering computations to avoid high spatial resolution near the wall (Kiš & Herwig
2012; Ng, Chung & Ooi 2013). In wall shear flows, the mean velocity profile has been
well understood, and follows a linear law near the wall (viscous sublayer), and a log
law in the turbulent core (log sublayer). Between the two sublayers, there is a transition
region connecting them smoothly (Prandtl 1925; Spalding et al. 1961). However, it is
recognised widely that the mean velocity profile in wall shear flows cannot be applied
to describe vertical convection (VC), due to the effect of buoyancy (Ke et al. 2020). The
VC is the buoyancy-driven flow along a vertical heated wall, and it usually includes three
configurations (Hölling & Herwig 2005; Howland et al. 2022): (a) a single heated vertical
plate immersed in an ambient fluid (Tsuji & Nagano 1988a,b; Wells & Worster 2008; Ke
et al. 2020), abbreviated as ‘plate VC’ hereafter; (b) a closed cavity with two opposite
sidewalls heated at different temperatures (Shishkina 2016; Jiang et al. 2019; Wang et al.
2021; Zwirner et al. 2022), abbreviated as ‘cavity VC’ hereafter; (c) a vertical infinite
channel with periodic boundary conditions in the wall-parallel directions (Pallares et al.
2010; Ng et al. 2013, 2015; Howland et al. 2022; Ching 2023), abbreviated as ‘channel
VC’ hereafter. This study focuses on the last configuration of VC, as shown in figure 1(a).

In channel VC, the mean velocity and temperature profiles have been a longstanding
topic of research, garnering continued interest from 1979 to the present (George & Capp
1979; Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Shiri & George 2008; Kiš
& Herwig 2012; Ng et al. 2017; Howland et al. 2022). In the pioneering work by George
& Capp (1979), the velocity and temperature fields are both divided into a viscous inner
region near the wall, and a fully turbulent outer region near the channel centre. The outer
region merges with the inner one at a certain zone that is usually called the overlap region
(George & Capp 1979; Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Shiri
& George 2008; Ng et al. 2013). Based on a heuristic understanding of the flow in the
inner region, where, for instance, the Prandtl number dependence must be retained since
it appears in the normalised governing equations, the scaling analysis by George & Capp
(1979) shows that the inner characteristic scales for temperature, velocity and length read
Tl = |F0|3/4(gβα)−1/4, Ul = (gβ |F0|α)1/4 and η = [α3/(gβ |F0|)]1/4, respectively. The
product of the gravity acceleration and the thermal expansion coefficient gβ, and the heat
flux F0 = α ∂T/∂y, both represent the effect of the heated wall, and the thermal diffusivity
α represents the effect of the Prandtl number. Similarly, with a heuristic understanding
of the flow in the outer region, the outer characteristic scales can be also derived via
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Mean velocity in turbulent vertical convection

the scaling analysis. Then the mean velocity and temperature profiles in both inner and
outer regions are expressed in the form of abstract functions. By further assuming that
the inner and outer abstract profiles are both valid in the overlap region, George & Capp
(1979) eventually derived the profiles in power-law form for the overlap region, using the
gradient-matching approach.

The mean temperature profile in the overlap region by George & Capp (1979) has
been well confirmed by most studies, while the mean velocity profile is recognised to
be problematic (Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Shiri & George
2008). To solve this problem, guided by various heuristic understandings of channel VC,
different characteristic scales have been proposed to normalise the inner and outer abstract
profiles (Ng et al. 2013). For example, Hölling & Herwig (2005) found that the horizontal
heat flux is a constant across the whole channel; thus they applied a single characteristic
scale for temperature in both inner and outer regions, instead of two different ones as
suggested by George & Capp (1979). These proposed characteristic scales have led to
different mean profiles, which, however, still suffer from their own shortcomings. In the
model of Versteegh & Nieuwstadt (1999), the shortcoming, as concluded by the authors
themselves, is that the inner and outer velocity gradients do not match in the overlap region.
In the model of Hölling & Herwig (2005), the involved coefficient in the mean temperature
profile was found to be not constant by Kiš & Herwig (2012), indicating the lack of
generality. To mitigate this, Kiš & Herwig (2012) introduced a probability density function
to approximate this coefficient. As a result, a combination of a logarithmic function and
an error function is proposed for the mean temperature profile. However, as the probability
density function is entirely empirical, the derived mean temperature profile is still limited
in its applicability. In the model of Shiri & George (2008), the mean velocity profile was
developed theoretically as a log law, supposed to be valid across the full range of Rayleigh
numbers in the turbulent regime; however, this log velocity profile was not recovered in
the recent numerical studies by Ng et al. (2017) and Howland et al. (2022).

As indicated above, several analytical mean profiles have been proposed for the velocity
and temperature in channel VC, but none of them is universally valid. Moreover, the
recent numerical studies have also failed to reach a consensus on the form of mean
profiles in channel VC: Ng et al. (2017) did not observe a log behaviour in either mean
velocity or mean temperature profiles, while Howland et al. (2022) believed that their
mean temperature profile exhibits a log behaviour. These indicate clearly that the mean
profiles in channel VC are still rather debatable, and none of the existing profiles is
general enough to predict data from different literatures in a unified manner. Such a
problem could be attributed to the scaling analyses involved in the derivations, where
the characteristic scales for velocity, temperature and length are proposed on the basis
of various heuristic understandings, thus a sound mathematical description is generally
not ensured. In addition, it should be pointed out that the reported mean profiles are all
discussed and verified within the classical regime of turbulence, where the near-wall parts
of the velocity and temperature boundary layers (BLs) are both laminar. As buoyancy gets
extremely strong, the near-wall parts of the BLs would become turbulent, and channel VC
will undergo a transition to the so-called ultimate regime of turbulence, in which both
mean velocity and temperature profiles are expected to follow log laws, by analogy with
the result in Rayleigh–Bénard convection (RBC) (Ng et al. 2017; Howland et al. 2022).
However, as already highlighted in previous studies (Ng et al. 2015; Shishkina 2016), the
flow dynamics between VC and RBC are not entirely identical, and this results in the
fact that the Grossmann–Lohse theory, developed originally for RBC, cannot be applied
directly to VC. Similarly, the non-identical flow dynamics may also bring some challenges
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to the straightforward profile analogy between VC and RBC systems. Thus it is necessary
to provide a further discussion regarding the log-law expectation in the ultimate regime of
channel VC.

In this study, the main objective is twofold: one objective is to develop mean profiles
for velocity and temperature in channel VC that are universally valid, with the ability of
interpreting data from different sources; the other is to shed some light on the profile
analogy between VC and RBC systems in the ultimate regime. To these ends, the mean
profiles are derived from the flow governing equations, with turbulent heat flux and
Reynolds shear stress closed by the mixing length theory, in § 2. The validations and
discussions are given in § 3. Finally, we conclude this paper in § 4.

2. Mean velocity and temperature profiles

As shown in figure 1(a), the VC system under consideration is confined in a channel
consisting of two no-slip and impenetrable vertical walls, separated by a distance H. The
two walls are kept at constant temperatures Th and Tc, respectively, with Th > Tc. In the
streamwise (x) and spanwise (z) directions, periodic boundary conditions are imposed
for both velocity and temperature. Under this configuration, the temperature difference
ΔT = Th − Tc would eventually establish a turbulent flow at sufficiently high H, and
would result in antisymmetric mean velocity and temperature profiles with respect to the
channel centre (figure 1b) (Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Shiri &
George 2008; Kiš & Herwig 2012; Ng et al. 2013, 2017; Howland et al. 2022; Ching 2023).
Accordingly, all turbulence statistics of the velocity and temperature would depend only
on the wall normal coordinate (y); thus the equations for the mean flow can be simplified
as (George & Capp 1979; Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Shiri &
George 2008; Ng et al. 2013; Ching 2023)

0 = gβ(T̄ − Tref ) + ν
∂2ū
∂y2 − ∂u′v′

∂y
, (2.1a)

0 = α
∂2T̄
∂y2 − ∂v′T ′

∂y
, (2.1b)

where the overbar and the prime respectively denote the mean and the fluctuating
quantities. Specifically, the temperature field is denoted by T , and a reference temperature
is defined as Tref = (Th + Tc)/2. The streamwise and normal components of the velocity
are denoted as u and v, respectively. All the fluid properties, including kinematic viscosity
ν and thermal diffusivity α, are considered to be constant. Meanwhile, the Boussinesq
approximation is adopted, which implies that the temperature variation affects only the
buoyancy. As a result, the present channel VC system is governed by the Rayleigh number
Ra = gβ ΔT H3/(να) and the Prandtl number Pr = ν/α.

The integration of (2.1a,b) from the hot wall to a certain wall-normal distance, i.e. over
a range [0, y], leads to∫ y

0
gβ(T̄ − Tref ) dY + ν

∂ ū
∂y

− ν

(
∂ ū
∂y

)
w

− u′v′ = 0, (2.2a)

α
∂T̄
∂y

− v′T ′ = α

(
∂T̄
∂y

)
w

, (2.2b)

where the integration variable is denoted by Y , and the subscript w indicates the quantity
at the hot wall (y = 0). It should be noted that we have used (u′v′)w = 0 and (v′T ′)w = 0
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Mean velocity in turbulent vertical convection

in the above integrations. In (2.2a,b), the wall shear stress and the wall heat flux are
usually related to the friction velocity (u∗) and the friction temperature (T∗), respectively,
as ν(∂ ū/∂y)w = u2∗ and −α(∂T̄/∂y)w/u∗ = T∗ (Kader & Yaglom 1972; Ng et al. 2017;
Howland et al. 2022). In addition, the Reynolds shear stress and the turbulent heat flux
are usually closed by the mixing length theory, which works well in modelling turbulent
flows with a single characteristic length (Tennekes & Lumley 1972) and has been applied
successfully to turbulent RBC systems with infinite horizontal extent (Grossmann &
Lohse 2012; Shishkina et al. 2017). In the present channel VC, only one characteristic
length, i.e. the distance H between the two vertical walls, is involved. Thus the turbulent
fluctuating terms in (2.2a,b) can be modelled effectively by the mixing length theory
as u′v′ = −k1y2(∂ ū/∂y)(∂ ū/∂y) and v′T ′ = −k2y2(∂ ū/∂y)(∂T̄/∂y), where k1 and k2 are
dimensionless coefficients. With these relations, the integration equations (2.2a,b) become

∫ y

0
gβ(T̄ − Tref ) dY + ν

∂ ū
∂y

− u2
∗ + k1y2 ∂ ū

∂y
∂ ū
∂y

= 0, (2.3a)

α
∂T̄
∂y

+ k2y2 ∂ ū
∂y

∂T̄
∂y

= −u∗T∗. (2.3b)

Further dividing (2.3a) by u2∗ and (2.3b) by −u∗T∗, one obtains the dimensionless
integration equations as

ν

∫ y+

0
gβ(T̄ − Tref ) dY+

u3∗
+ ∂u+

∂y+
+ k1y2

+
∂u+
∂y+

∂u+
∂y+

= 1, (2.4a)

∂T+
∂y+

+ k2 Pr y2
+

∂u+
∂y+

∂T+
∂y+

= Pr, (2.4b)

where the mean velocity, the mean temperature and the wall-normal distance are
naturally normalised as u+ = ū/u∗, T+ = (Th − T̄)/T∗ and y+ = u∗y/ν, respectively. The
above dimensionless integration equations (2.4a,b) are nonlinear and cannot be solved
analytically. However, through appropriate simplifications, they will become solvable in
certain regions of the channel, as presented below.

Near the hot wall (y+ → 0), one has ν
∫ y+

0 gβ(T̄ − Tref ) dY+/u3∗ → 0 and
k1y2+(∂u+/∂y+)2 → 0 in (2.4a), and k2 Pr y2+(∂u+/∂y+)(∂T+/∂y+) → 0 in (2.4b). Thus
the dimensionless integration equations (2.4a,b) can be simplified as

∂u+
∂y+

= 1, (2.5a)

∂T+
∂y+

= Pr, (2.5b)

where only the molecular diffusion terms are retained. However, it is worth mentioning
that the buoyancy term could also play a significant role in the near-wall region (at small
y+ values), as suggested numerically by Wei (2019). This would then lead to another set
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of simplified equations accounting for the buoyancy effect:

ν

∫ y+

0
gβ(T̄ − Tref ) dY+

u3∗
+ ∂u+

∂y+
= 1, (2.6a)

∂T+
∂y+

= Pr. (2.6b)

Near the channel centre (y+ → ∞), one has k1y2+(∂u+/∂y+)2 � ∂u+/∂y+ in (2.4a)
and k2 Pr y2+(∂u+/∂y+)(∂T+/∂y+) � ∂T+/∂y+ in (2.4b). In this case, the dimensionless
integration equations (2.4a,b) reduce to

ν

∫ y+

0
gβ(T̄ − Tref ) dY+

u3∗
+ k1y2

+
∂u+
∂y+

∂u+
∂y+

= 1, (2.7a)

k2y2
+

∂u+
∂y+

∂T+
∂y+

= 1, (2.7b)

where only the buoyancy and the turbulent mixing terms are retained.
In the intermediate region between the wall and the channel centre (intermediate y+), the

dimensionless integration equations (2.4a,b) cannot be simplified, in which all molecular
diffusion and turbulent mixing terms remain.

With no-slip velocity and constant temperature boundary conditions at the hot wall
(y+ = 0: u+ = 0 and T+ = 0), the integration of (2.5a,b), which excludes the buoyancy
effect, yields the mean velocity and temperature profiles near the wall as

u+ = y+, (2.8a)

T+ = Pr y+, (2.8b)

which are linear and recover the numerical observations of Ng et al. (2017) and Howland
et al. (2022). If we take the buoyancy effect into account, then the mean profiles near the
wall are obtained via the integration of (2.6a,b) as

u+ = y+ − 1
4

νgβT∗
u3∗

ΔT
T∗

y2
+ + Pr

6
νgβT∗

u3∗
y3
+, (2.9a)

T+ = Pr y+, (2.9b)

where the cubic velocity profile is deduced by substituting (2.9b) into (2.6a), and it is
consistent with the reported profiles in the previous studies (Tsuji & Nagano 1988a;
Hölling & Herwig 2005; Ke et al. 2020, 2021). The cubic velocity profile includes the
buoyancy effect, thus it is expected to show a wider applied range compared with the linear
one, which is applicable only at y+ → 0. Nevertheless, this does not imply that there is a
significant difference between the two velocity profiles. In fact, the cubic velocity profile is
compatible with and can reduce to the linear one, since at y+ → 0, the quadratic and cubic
correction terms in (2.9a) would become negligible relative to the linear term. In addition,
although the linear velocity profile can be regarded as a reduced case of the cubic one, it
is indispensable in understanding channel VC. This is because the linear velocity profile
is a solid signature of the constant stress layer.
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Mean velocity in turbulent vertical convection

In the following, we derive the mean velocity and temperature profiles near the channel
centre. Differentiating (2.7a) twice with respect to y+, one obtains

− νgβT∗
u3∗

∂T+
∂y+

+ ∂2

∂y2+

(
k1y2

+
∂u+
∂y+

∂u+
∂y+

)
= 0. (2.10)

Substituting the temperature gradient ∂T+/∂y+ obtained from the above equation into
(2.7b), one has

y2
+

∂u+
∂y+

∂2

∂y2+

(
y2
+

∂u+
∂y+

∂u+
∂y+

)
= νgβT∗

u3∗k2k1
. (2.11)

This equation is nonlinear and cannot be solved via direct integrations. Nevertheless, it
is noticed that the right-hand side of (2.11) is a constant, which thereby requires that the
left-hand side must be independent of y+. To meet this requirement, the velocity gradient
must take the form ∂u+/∂y+ = kyγ

+, with which (2.11) can be rewritten as

k3(2γ + 2)(2γ + 1)y3γ+2
+ = νgβT∗

u3∗k2k1
. (2.12)

Further, the requirement of y+ independence results in γ = −2/3 and k =
[−9νgβT∗/(2u3∗k2k1)]1/3. Then the velocity and temperature gradients can be expressed
as

∂u+
∂y+

=
(

−9νgβT∗
2u3∗k2k1

)1/3

y−2/3
+ , (2.13a)

∂T+
∂y+

= 1
k2

(
−9νgβT∗

2u3∗k2k1

)−1/3

y−4/3
+ , (2.13b)

where the temperature gradient is obtained by substituting (2.13a) into (2.7b). Integrating
these gradients would provide us with the mean velocity and temperature profiles, and
the corresponding integration constants are determined by the antisymmetry of the mean
fields (figure 1b), namely at y+ = u∗H/(2ν): u+ = 0 and T+ = ΔT/(2T∗). Consequently,
the mean velocity and temperature profiles near the channel centre are

u+ = c1
[
(Ky+)1/3 − K1/3

0
]
, (2.14a)

T+ = c2
[
(Ky+)−1/3 − K−1/3

0
]+ ΔT

2T∗
, (2.14b)

where K = νgβT∗/u3∗, K0 = gβT∗H/(2u2∗), c1 = −3[9/(2k2k1)]1/3 and c2 = 3k−1
2

[9/(2k2k1)]−1/3. Recalling ν(∂ ū/∂y)w = u2∗ and −α(∂T̄/∂y)w/u∗ = T∗, it is seen that K
and K0 actually depend on Pr, indicating that the fluid property would influence the mean
profiles, similar to the situation in RBC systems (Grossmann & Lohse 2012).

To sum up, this section develops the mean profiles in the region near the wall (y+ → 0)
and that near the channel centre (y+ → ∞), where the mean flow is dominated by
the molecular diffusion (2.5a,b) and the turbulent mixing (2.7a,b), respectively. For
convenience, these two regions are respectively referred to as the ‘viscosity-dominated
sublayer’ and ‘turbulence-dominated sublayer’ in the subsequent discussions. Accordingly,
the region connecting these two sublayers is referred to as the intermediate sublayer.
The intermediate sublayer encompasses the effects of both molecular diffusion and
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turbulent mixing, and its role is the same as that of the buffer sublayer in RBC
systems (Ahlers, Bodenschatz & He 2014) and wall shear flows (Pope 2000). Thus
the mean profiles in the intermediate sublayer would smoothly connect those in the
viscosity-dominated sublayer and those in the turbulence-dominated sublayer, but they
cannot be derived analytically by simplifying the governing equations (2.4a,b). In addition,
as the turbulent level increases, the intermediate sublayer will be squeezed gradually
by the turbulence-dominated sublayer, and eventually vanishes, as will be discussed in
the next section. Thus although the mean profiles in the intermediate sublayer are not
modelled, it will not cause a severe problem in vigorous turbulent channel VC. In fact, in
well-discussed RBC systems, the mean profiles in the intermediate (buffer) sublayer have
not been examined either (Ahlers et al. 2014).

3. Validations and discussions

In this section, we first validate the present profiles in (2.8a,b), (2.9a,b) and (2.14a,b)
by comparing them with data available in the literature, in a parameter space 5.4 × 105 ≤
Ra ≤ 109 and 0.709 ≤ Pr ≤ 100, which corresponds to the classical regime of turbulence.
Then the present profiles are compared with those reported in literature, also in the
classical regime. The final subsection is dedicated to the discussion of the profile analogy
between VC and RBC systems in the ultimate regime of turbulence.

3.1. Validations
The literature data for the verification of the present profiles include those from Versteegh
& Nieuwstadt (1999), Ng et al. (2017) and Howland et al. (2022), where the data set
by Versteegh & Nieuwstadt (1999) has been used widely as the benchmark in many
studies (Hölling & Herwig 2005; Pallares et al. 2010; Ng et al. 2013), and Ng et al.
(2017) and Howland et al. (2022) present the latest numerical data in channel VC. In
figure 2, we compare the present profiles with the data collected from the literature. It
is seen clearly that all the data show a linear relationship for u+ (y+) and T+ (y+) near
the hot wall (figures 2a,b), consistent with the predictions in (2.8a,b). Meanwhile, with
(Ky+)1/3 − K1/3

0 and (Ky+)−1/3 − K−1/3
0 being the horizontal axes, these data collapse

into straight lines close to the channel centre (figures 2c,d), as predicted by the power
profiles (2.14a,b). From figures 2(c,d), one could further obtain the unknown coefficients
c1 and c2 in (2.14a,b) via linear fittings as

c1 ≈ −10.0 and c2 ≈ −3.8. (3.1a,b)

To illustrate the universality of the fitted c1 and c2, more data from Howland et al.
(2022) are employed for further comparisons (figure 3). It is worth emphasising that
the data presented in figure 3 are produced at rather different Ra from those in figure 2.
Additionally, as a direct indicator of the turbulence level, the corresponding values of the
Reynolds number (Re) are also indicated in figure 3, which are estimated from the scaling
correlation developed by Howland et al. (2022):

Re = u∗H
ν

∼ Ra0.362 Pr−0.446. (3.2)

It is clear in figure 3 that the applied range of the cubic velocity profile (2.9a) is expanded
greatly compared with the linear one (2.8a), as expected. Moreover, the power mean
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Figure 2. Comparisons between the present profiles (red lines) and the literature data (discrete symbols)
(Versteegh & Nieuwstadt 1999; Ng et al. 2017; Howland et al. 2022). (a,b) Mean velocity and temperature
profiles near the wall (2.8a,b). (c,d) Mean velocity and temperature profiles near the channel centre (2.14a,b).

profiles (2.14a,b), computed with the fitted values of c1 and c2 (3.1a,b), agree well
with the literature data in the vicinity of the channel centre. At the same time, figure 3
also indicates that away from the channel centre, the applied range for the power mean
profiles and the fitted coefficients diminishes gradually with decreasing Reynolds number,
eventually becoming insignificant at very low Re. This behaviour is entirely expected and
does not suggest any issues with the present profiles or fitted coefficients, since the power
profiles arise from turbulent mixing, and naturally their applied range will diminish as the
turbulence level (the value of Re) decreases. Similar behaviour has also been observed in
wall shear flows, where the applied range for the well-known log velocity profile and the
von Kármán constant (typically approximately 0.4) also diminishes with decreasing Re,
eventually vanishing at very low Re, such as those indicative of a laminar state (Kundu,
Cohen & Dowling 2012, p. 586). Nevertheless, it is widely recognised that the log velocity
profile and its von Kármán constant are universal in wall shear flows. Likewise, the present

977 A51-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1020


M. Li, P. Jia, H. Liu, Z. Jiao and Y. Zhang

power profiles and the corresponding fitted coefficients can also be deemed as universal
in channel VC, as they describe effectively all available literature data, except for cases at
very low Re ≤ 109.1, as shown in figure 3 and in the next subsection.

In order to further quantify the effect of Re, we introduce a relative error (E) defined as

Eu = |upre − urep|
urep

and ET = |Tpre − Trep|
Trep

, (3.3a,b)

where the subscripts ‘pre’ and ‘rep’ refer to the predicted mean profiles and the
corresponding reported data in the literature, respectively. With this definition, we restrict
the viscosity-dominated velocity and temperature sublayers to regions Eu ≤ 10 % and
ET ≤ 10 %, when upre and Tpre are calculated from the viscous-form profiles (2.9a,b). The
procedure for identifying the turbulence-dominated velocity and temperature sublayers
is analogous, with the only difference being that upre and Tpre are calculated from the
turbulent-form profiles (2.14a,b). In this way, the applied range of the viscous-form
profiles and that of the turbulent-form profiles can be represented by the widths (W) of
viscosity-dominated and turbulence-dominated sublayers, respectively. These widths are
further normalised by the channel width (H), and reflect the space occupancy (SO) of each
sublayer:

SOu = 2Wu

H
and SOT = 2WT

H
, (3.4a,b)

where the subscripts u and T denote the sublayers of the velocity BL and those of the
temperature BL, respectively. The prefactor 2 is due to the fact that each sublayer appears
not only in the left half of the channel, but also in the right half. Obviously, the space
occupancy of each sublayer is a dimensionless quantity that measures the applied range of
the profile within that sublayer.

The space occupancy of each sublayer shown in figure 3 is calculated, and presented
as a function of the Reynolds number in figure 4. Clearly, it provides a confirmation that
the space occupancy of the turbulence-dominated sublayer, representing the applied range
of the power profiles, increases with increasing Re. Thus the narrow applied range of the
power profiles observed at low Re ∼ 43.9 (figures 3i,l) is an expected consequence.

In figure 4, other results are suggested as well. First, as Re increases to a sufficiently
high value, the space occupancy of the turbulence-dominated sublayer will be approaching
unity, meaning that this sublayer will eventually occupy the entire channel. In other words,
channel VC will be entirely turbulent, being consistent with the expectation for the ultimate
regime. Second, as the turbulence-dominated sublayer extends, the intermediate sublayer
will be squeezed gradually until vanishing, indicating that this sublayer is an impermanent
structure without fixed boundaries. Finally, although the space occupancies of the power
profiles are visually limited close to the channel centre (e.g. figure 3h), they are much larger
than they look since the horizontal axis is in log scale. In fact, following the criterion E ≤
10 %, it is found that when Re > 122, the predicted region of the velocity power profile
extends beyond 30 % of the channel, and that of the temperature power profile extends
beyond 80 % of the channel, as illustrated in figure 4. This demonstrates the validity of the
present mean profiles.

In addition, it is noticed that the temperature power profiles present a much wider
applied range than the velocity power profiles in figure 4. This is actually a natural
outcome, and can be understood in the following way. Although the power profiles for
velocity and temperature both arise from turbulent mixing, the scalars transferred via
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Figure 3. Three-sublayer structure of the mean fields in channel VC. The orange and blue backgrounds denote
the viscosity-dominated and the turbulence-dominated sublayers respectively, where the prediction relative
error of the present mean profiles is less than 10 %. The grey background represents the intermediate sublayer
that connects smoothly the two aforementioned sublayers. Only the results in the left half of the channel are
illustrated, and those in the right half can be obtained according to the antisymmetry of the mean fields. All the
discrete data points (black squares) presented in this figure are from Howland et al. (2022). Also note that the
horizontal axis is in log scale.

977 A51-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1020


M. Li, P. Jia, H. Liu, Z. Jiao and Y. Zhang

0.2

0.4

0.6

0.8

0

1.0

101 102 103 104

Re

SOT

Viscosity-dominated

sublayer in velocity BL

Intermediate sublayer

in velocity BL

Turbulence-dominated

sublayer in velocity BL

101 102 103 104

Re

0.2

0.4

0.6

0.8

0

1.0

SOu

Viscosity-dominated

sublayer in temperature BL

Intermediate sublayer

in temperature BL

Turbulence-dominated

sublayer in temperature BL

(b)(a)

Figure 4. Space occupancy for the three sublayers of (a) mean velocity and (b) mean temperature. The data
here are from figures 3 and 5. It is important to note that the space occupancy of each sublayer also represents
the dimensionless applied range for the profile within that sublayer.

turbulent mixing are different. Specifically, the velocity power profile results from the
mixing of kinetic energy, thus its applied range depends on the turbulent viscosity νt,
which measures the mixing intensity of kinetic energy. By contrast, the temperature power
profile originates from the mixing of heat, thus its applied range depends on the turbulent
thermal diffusivity αt, which measures the mixing intensity of heat. Consequently, the
ratio of applied range of the velocity power profile to the temperature power profile reads

applied range of velocity power profile
applied range of temperature power profile

∝ νt

αt
= Prt, (3.5)

where Prt is the turbulent Prandtl number and has been investigated thoroughly by Jischa
& Rieke (1979), who concluded that Prt < 1 for Pr � 1. Later, Hölling & Herwig (2005)
found Prt ≈ 0.9 numerically at Pr = 0.709. Thus in the parameter space considered in
this study (100 ≥ Pr ≥ 0.709), Prt should be less than 1, indicating that the applied
range of the velocity power profile should be lower than that of the temperature power
profile (3.5). This explains why it is much more difficult for the space occupancy of the
velocity turbulence-dominated sublayer to approach unity as Re increases, compared with
the temperature turbulence-dominated sublayer (figures 4a,b). Finally, it should be pointed
out that different applied ranges for the velocity and temperature power profiles are not in
contradiction with the derivations, where the mean velocity and temperature profiles are
derived simultaneously at the channel centre (y+ → ∞) only (see (2.7a,b)). This requires
that the upper bounds of these applied ranges must be overlapping at the channel centre,
but does not require the lower bounds to be the same, indicating that the two applied ranges
can be different.
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Mean velocity in turbulent vertical convection

3.2. Comparisons with the reported profiles in the classical regime
In the previous studies, considerable efforts have been devoted to determining the mean
profiles, and a consensus has been reached in the near-wall region, where the mean profiles
follow linear laws (2.8a,b). As stated before, the cubic velocity profile (2.9a) will reduce
to the linear one (2.8a) at y+ → 0. However, the reported mean profiles in the region at a
distance from the wall are rather debatable, which in the pioneer work of George & Capp
(1979) reads

ū
Ul

= φ1

(
y
η

)1/3

+ A(Pr), (3.6a)

Th − T̄
Tl

= −φ2

(
y
η

)−1/3

− B(Pr), (3.6b)

where φ1 and φ2 are dimensionless coefficients, and A(Pr) and B(Pr) are
unknown functions of the Prandtl number. By incorporating Tl = |F0|3/4(gβα)−1/4,
Ul = (gβ |F0|α)1/4 and η = [α3/(gβ |F0|)]1/4, these profiles are transformed into

u+ = φ1 (Ky+)1/3 + A(Pr) (αgβT∗/u3
∗)

1/4, (3.7a)

T+ = −φ2 (Ky+)−1/3 − B(Pr) (αgβT∗/u3
∗)

−1/4. (3.7b)

These results were developed originally for plate VC, and they were applied to channel
VC by subsequent studies (Versteegh & Nieuwstadt 1999; Ng et al. 2013). In these studies,
the mean temperature profile has been well confirmed, and the dimensionless coefficients
were fitted as φ2 = 4.2 and B = −5.0 when Pr = 0.709 (Versteegh & Nieuwstadt 1999;
Ng et al. 2013), while the mean velocity profile was found to be problematic, and no fitted
values for φ1 and A(Pr) were documented. As a result, Versteegh & Nieuwstadt (1999)
proposed a modified linear velocity profile

u+ = y+ − Ul

u∗
9.7( y/η)2

2.8 + y/η
, (3.8)

and Shiri & George (2008) proposed a log velocity profile

u+ = P ln( y+) + Q(Pr). (3.9)

However, this log profile was not compared with any numerical or experimental data, and
the fitted coefficients of P and Q(Pr) were not provided either. Then Hölling & Herwig
(2005) proposed another set of mean profiles:

u× = 0.427 Pr
0.9

y×
[
0.427(ln y× − 2) + 1.93 − T×0

]
+
[

0.49
(

∂u×
∂y×

)
w

− 2.27
]

ln y× + 1.28
(

∂u×
∂y×

)
w

+ 1.28, (3.10a)

T× = 0.427 ln y× + 1.93, (3.10b)
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where the dimensionless variables are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y× = y+(Pr3K)1/4,

T× = T+
(K

Pr

)1/4

,

T×0 = 0.5 ΔT
(

gβα

u3∗T3∗

)1/4

,

u× = u+

(
Pr5

K

)1/4

,

(
∂u×
∂y×

)
w

=
(

∂u+
∂y+

)
w

(
Pr
K
)1/2

.

(3.11)

However, a subsequent study by Kiš & Herwig (2012) pointed out that the constant
coefficient 0.427 in (3.10b) was problematic and should be replaced by a probability
density function. As a result, the log profile was modified as (Kiš & Herwig 2012)

T× = 0.5 + ln(2y×) + G( y×) − G(0.5), (3.12)

with

G( y×) = 0.8
0.877

√
π

2
erf[0.877(ln y× − 0.64)]. (3.13)

These reported profiles are compared with the present profiles in figure 5. It is evident that
the present mean profiles are the only ones that are able to interpret data from different
literatures, thus demonstrating much better versatility compared with the reported ones.
The improved versatility originates from the fact that the characteristic scales for velocity,
temperature and length in the present profiles come naturally from the normalisation of the
governing equations (2.4a,b), thus they possess a more sound mathematical basis than the
previous characteristic scales obtained from various heuristic understandings of channel
VC.

Further, figures 5(a–c) show that the mean velocity profiles can be described fully by
the cubic law (prior to the maximum velocity) and the present 1/3 power law (subsequent
to the maximum velocity), except the intermediate sublayer enclosing the velocity peak.
Obviously, this sublayer cannot be described by the log law. In addition, although a log law
(3.9) is proposed for the mean velocity by Shiri & George (2008), this was not verified.
Moreover, recent numerical studies by Ng et al. (2017) and Howland et al. (2022) have
also failed to observe the log law behaviour in the classical regime. Thus it is reasonable
to conclude that in the classical regime of turbulence, the mean velocity profile is unlikely
to be logarithmic in channel VC.

Similarly, figures 5(d–f ) show that the mean temperature profiles can be described
fully by the linear law (prior to the maximum velocity) and the present −1/3 power law
(subsequent to the maximum velocity), except the intermediate sublayer. This sublayer will
finally vanish at sufficiently high Re (figure 4b), and obviously cannot be described by the
log law. In addition, although the log law (3.10b) was proposed for the mean temperature
by Hölling & Herwig (2005), it can be applied only to certain parameters (figure 5d).
Moreover, even at the certain parameter (figure 5d), the log law (3.10b) exhibits only
a narrower agreement range, compared with the present −1/3 power profile. Thus it is
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Figure 5. Mean profiles from the present study and those reported in the previous studies (George & Capp
1979; Versteegh & Nieuwstadt 1999; Hölling & Herwig 2005; Kiš & Herwig 2012) in channel VC. The discrete
data are from (a,d) Ng et al. (2017) and (b,c,e, f ) Howland et al. (2022). The orange and blue backgrounds
denote the viscosity-dominated and turbulence-dominated sublayers, respectively, where the prediction relative
error of the present mean profiles is less than 10 %. The grey background represents the intermediate sublayer
that connects smoothly the two aforementioned sublayers. Only the results in the left half of the channel are
illustrated, and those in the right half can be obtained according to the antisymmetry of the mean fields. Also
note that the horizontal axis is in log scale.

reasonable to conclude that in the classical regime of turbulence, the mean temperature
profile in channel VC is unlikely to be logarithmic as well.

In summary, in the classical regime of channel VC, the mean velocity and temperature
profiles should not conform to log laws, in the region before, around or after the velocity
peak. As for the ultimate regime in channel VC, there are still no literature data available
to confirm the form of mean profiles, since the corresponding Rayleigh number needs to
be extremely high and exceeds the critical value Rac = 4.27 × 1011 × Pr1.89 (Howland
et al. 2022). This correlation provides Rac = 2.2 × 1011 at Pr = 0.709, aligning with the
expectation of Ng et al. (2017), in which it is suggested that the ultimate regime in channel
VC should occur at Ra � 1011 for the same Prandtl number.
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3.3. Mean profiles in the ultimate regime
In the ultimate regime of turbulence, the mean profiles are assumed to follow log laws in
channel VC, by analogy with RBC systems (Ng et al. 2017; Howland et al. 2022). Herein,
we find that this assumption could encounter some challenges, and that the form of mean
profiles in the ultimate regime may still follow power laws. Below, we present discussions
regarding the form of mean profiles in the ultimate regime. It is important to emphasise
that the discussions in this subsection are based merely on theoretical arguments, and
there are not yet reported data or direct evidence to eventually judge the form of the
mean profiles in the ultimate regime. Consequently, these envisioned power-law or log-law
forms in the ultimate regime badly need further numerical or experimental confirmation in
the future.

On the one hand, in fully developed turbulent channel VC, the turbulence statistics of
the velocity and temperature would not vary along streamwise and spanwise directions,
but depend on the normal coordinate only. Consequently, the equations of the mean flow
will remain identical in both classical and ultimate regimes, resulting in the same laws
for the mean profiles. In other words, once channel VC is in a fully developed turbulent
state, the form of the mean profiles will not be altered by increasing Re. This implies
that the linear, cubic and power laws derived in the classical regime may be still valid
in the ultimate regime, and that increasing Re, i.e. the transition of classical–ultimate
regimes, will not bring a new log profile. In fact, the Re-independent profile form has
been confirmed in turbulent RBC systems with infinite horizontal extent (abbreviated as
‘channel RBC’ hereafter) in previous studies (Grossmann & Lohse 2012; Ahlers et al.
2014). It is found that in channel RBC, the mean temperature profile always follows a
linear law close to the wall and a log law at a distance from the wall, and the transition of
classical–ultimate regimes does not introduce any new profile (Grossmann & Lohse 2012;
Ahlers et al. 2014). In addition, in turbulent wall shear flows, increasing Re continuously
will not bring any new form of profile either, and the well-known linear law near the wall
and the log law away from the wall always hold.

On the other hand, in the ultimate regime, the velocity and temperature BLs are fully
turbulent. This indicates that in this regime, both the viscosity-dominated and intermediate
sublayers will be completely squeezed out by the turbulence-dominated sublayer. Thus if
the log law is observed in the ultimate regime of channel VC, then it could appear only
in the turbulence-dominated sublayer. In channel RBC, the log-law profile was indeed
proposed in the turbulence-dominated sublayer (Grossmann & Lohse 2012; Ahlers et al.
2014). Since the turbulence-dominated sublayer is the only possible region to host the
log-law profile, channel VC and channel RBC must then share the same flow equations in
this sublayer, to ensure the validity of the profile analogy. In this sublayer, the equations
of the mean flow in channel VC are given in (2.7a,b). In channel RBC, the equations
governing the mean flow are derived as follows.

Consider a channel RBC system, with the horizontal (streamwise) and vertical
(wall-normal) directions denoted by x and y, respectively, and the fluid pressure denoted
by p. After the system reaches the fully developed turbulent state, the mean velocity
and temperature vary only along the vertical direction, thus the corresponding governing
equations reduce to

0 = ν
∂2ū
∂y2 − 1

ρ

∂ p̄
∂x

− ∂u′v′

∂y
, (3.14a)

0 = − 1
ρ

∂ p̄
∂y

+ gβ(T̄ − Tref ), (3.14b)
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0 = α
∂2T̄
∂y2 − ∂v′T ′

∂y
. (3.14c)

Differentiating (3.14b) with respect to x, the buoyancy term gβ(T̄ − Tref ) disappears
because the mean temperature field T̄ depends only on y. Consequently, one gets

∂2p̄
∂x ∂y

= 0, (3.15)

which indicates that the streamwise pressure gradient ∂ p̄/∂x stays the same along the
normal direction, thus it can be estimated at the outside of the velocity BL. Beyond the
velocity BL, the viscous effect becomes less important, and the corresponding streamwise
pressure gradient can be modelled by Bernoulli’s equation (Shishkina, Horn & Wagner
2013) as

∂ p̄
∂x

= −∂ρū2( y)/2
∂x

= 0. (3.16)

Then the equations of the mean flow (3.14a–c) can be simplified further into

0 = ν
∂2ū
∂y2 − ∂u′v′

∂y
, (3.17a)

0 = α
∂2T̄
∂y2 − ∂v′T ′

∂y
. (3.17b)

Following the same procedure as the derivations (2.1)–(2.4) for channel VC, the
dimensionless integration equations resulting from (3.17a,b) read

∂u+
∂y+

+ k1y2
+

∂u+
∂y+

∂u+
∂y+

= 1, (3.18a)

∂T+
∂y+

+ k2 Pr y2
+

∂u+
∂y+

∂T+
∂y+

= Pr. (3.18b)

These equations in the turbulence-dominated sublayer (y+ → ∞) reduce to

k1y2
+

∂u+
∂y+

∂u+
∂y+

= 1, (3.19a)

k2y2
+

∂u+
∂y+

∂T+
∂y+

= 1. (3.19b)

Obviously, in the turbulence-dominated sublayer, the equations of the mean flow in
channel VC (2.7a,b) are different from those in channel RBC (3.19a,b). Thus it is unlikely
that the log profiles, which appear in channel RBC, will also manifest in channel VC.
By comparison, the difference between the power profiles in channel VC and the log
profiles in channel RBC arises from the buoyancy effect. In channel VC, the buoyancy
is parallel to the mean flow, thus the buoyancy term should be included in the streamwise
momentum equation (2.7a). This then results in the mean gradients ∂u+/∂y+ ∼ y−2/3

+
and ∂T+/∂y+ ∼ y−4/3

+ (2.13a,b), further leading to power profiles. By contrast, in channel
RBC, the buoyancy is perpendicular to the mean flow, thus the buoyancy term is
absent from the streamwise momentum equation (3.19a). Accordingly, the mean gradients
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become ∂u+/∂y+ ∼ y−1
+ and ∂T+/∂y+ ∼ y−1

+ , and eventually result in the log profiles,
recovering the results derived from a single mean temperature equation (Grossmann &
Lohse 2012; Ahlers et al. 2014). In summary, in the turbulence-dominated sublayer where
the log profile could be possible, although the mean temperature equations are the same in
channel VC and channel RBC, (2.7b) and (3.19b), the streamwise momentum equations are
quite different due to the buoyancy effect, (2.7a) and (3.19a). As a result, the log profiles
in channel RBC may not be extended directly to channel VC in the ultimate regime by
analogy.

4. Concluding remarks

This study focuses on the mean velocity and temperature profiles in fully developed
turbulent channel VC. Instead of the conventional inner and outer two-region description,
we employ a three-sublayer structure to depict both velocity and temperature fields,
including the viscosity-dominated, intermediate and turbulence-dominated sublayers in
turn from the wall to the channel centre. Within this framework, analytical expressions
for the mean velocity and temperature profiles are developed in the viscosity- and
turbulence-dominated sublayers. In the derivations, the mixing length theory is employed
to close the turbulent mixing terms (2.3a,b), and it does not impose any restrictions on
the results. Thus the derived mean profiles are expected to be valid over the full ranges
of Ra and Pr in the turbulent state. This has been well confirmed by the reported data in
the literature (figures 3 and 5), demonstrating that the present profiles make a significant
improvement in versatility comparing with the reported ones, which are applicable only
to certain parameter space (figure 5). Moreover, it is found that the applied range of
the present power profiles increases as the Reynolds number rises (figure 4). Thus it is
expected that these power profiles can describe the complete velocity and temperature
distributions in channel VC as long as the turbulence becomes sufficiently vigorous. At
present, the data for the most vigorous turbulent case from Ng et al. (2017) (figures 5a,d)
have demonstrated that the present velocity power profile can predict 63.2 % of the
channel, and the present temperature power profile can predict 99.4 % of the channel, with
relative error no more than 10 %. In addition, the turbulent Prandtl number is introduced
to compare quantitatively the applied range of the velocity power profile and that of the
temperature power profile (3.5).

Furthermore, the mean profiles in the ultimate regime of turbulence are discussed.
We provide an analytical argument showing that the mean profiles of channel VC in the
ultimate regime may remain in power laws, and the profile analogy between channel RBC
and channel VC might need further consideration, since the flow dynamics is different
between these two thermal flows. The main difference arises from the effect of buoyancy,
which appears in the streamwise momentum transport of channel VC but is absent from
that of channel RBC. However, it is essential to emphasise that the discussion regarding
the power-law and log-law profiles envisioned in the ultimate regime is based merely on
analytical arguments. A solid confirmation of the profile form in the ultimate regime still
requires numerical or experimental data in the future. Additionally, we would like to point
out that the present mean profiles are verified directly only for Pr ≥ 0.709 via the data
available in the literature. For the cases Pr 
 1 (e.g. Pr = 0.01), there are no reported
data available in channel VC yet, and the corresponding verification is not performed in
this study. In spite of this, the present mean profiles are highly expected to be valid at
low values of Pr, since they have incorporated the effect of Pr without any assumptions,
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(2.9a,b) and (2.14a,b), and they have exhibited the ability to reconcile data at different Pr
in more than two decades (figure 5).

Finally, it is necessary to note that the present profiles are applicable to channel VC.
In cavity VC, the mean convection terms in the governing equations are kept due to the
effects of horizontal adiabatic walls, thus deserving further investigation. In plate VC,
the mean flow also has exclusive dependence on the wall-normal coordinate; yet at the
same time, this mean flow would consistently entrain the ambient fluid, leading to a
streamwise-growing flow region. Consequently, the mean profiles no longer exhibit the
antisymmetric characteristic, making them distinct from those in channel VC.
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