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Abstract

The now well-known Coale-Lopez theorem, and variants of it, state that, under certain
conditions, the product of the first r members of an infinite inhomogeneous sequence of
nonnegative matrices approaches, as r— %, the class of matrices which, apart from scalar
multiples, have only one distinct column. The aim of the present paper is to lay down conditions
under which such products approach the class of matrices which, apart from scalar multiples, have
no more than d distinct columns. A stronger result is then obtained by considering stochastic
matrices instead of just nonnegative ones.

1. Terminology

Before stating and attempting to accomplish our aims, it will be apposite
to review some of the standard terminology surrounding nonnegative ma-
trices. In doing this, we shall follow the terminology described in the recent
elegant exposition by Seneta (1973).

DerFINITIONS. A matrix A = (a;) is said to be nonnegative if a; = 0 for
each (i,j). Write A 2 0. The matrix is said to be positive if a; >0 for each
(i,j). Write A > 0. The period of an index i of a nonnegative matrix A is the
gcd of those positive integers k for which the (i, i)-element of A* is >0. A
nonnegative matrix A is irreducible if, for any given pair i, j of its index set,
there exists a positive integer k for which the (i, j)-element of A* is >0.

It can be shown (see e.g. Seneta, 1973, 14) that, in an irreducible
nonnegative matrix, all members of the index set have the same period. This
enables the next

DEeFintTION. An irreducible nonnegative matrix is said to be cyclic with
period d if one of (and therefore each of) its indexes has period d (> 1). If
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d = 1, the matrix is called acyclic. An acyclic irreducible nonnegative matrix
is sometimes called a primitive matrix.

In what follows the norm || A || of an n x n matrix A = (a;) will have the
meaning:

lal=3 3 lal.

i=1j

2. Some standard results

One standard result to which we shall have recourse is the fact that any
irreducible nonnegative matrix has a canonical form in which primitive
matrices play an important role. For the present purposes, the important
result is as stated in the following. It summarizes the relevant portions of
Seneta (1973, 15-7).

THeoreM 0.1. If A is a cyclic matrix with period d, then by a permutation
of its index set A can be put in a canonical form A. such that A? has the
following partitioned form :

Z(l)

Z(Z)
Al= :

'Z(d)

where each of the blocks Z®,---, Z'¥ is a primitive matrix.
Let us now consider a sequence A", A®, etc. of n X n matrices. We can
form products from this sequence:

B(p")= A(p+')A(p+’—l), . ,A(pﬂ)

If the A are not all equal we refer to these products as inhomogeneous.

Now a considerable amount of work has been done on the properties of
these inhomogeneous products. The general form of the results which have
been obtained is contained in Theorem 0.2 below. The theorem is essentially
due to Coale and Lopez (Lopez, 1961) in a demographic context, but is stated
here in the somewhat generalized form given by Seneta (1973, 69).

THEOREM 0.2 (Coale-Lopez). Let A™ be a sequence of n X n nonnega-

tive matrices satisfying the two conditions:
(i) B®"=A®"-. - A®V>( forp =0 and r = r, where r, = 1 is some

fixed integer independent of p;
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(i) min};a{’= A >0 and max;;a{’ =y <o uniformly for k =1,2,- -,
where min” refers to the minimum among all positive entries.
Then as r—>x, for all i, j, p, s:
b(}pn)
(p.7)
bi¢

- VP >0,

where the limit V" is independent of s.

The general idea of this theorem is that, for any fixed p, the sequence
B®” converges in some sense to the class of matrices of rank one. A precise
statement of the result in this form is given by Parlett (1970):

THEOREM 0.3 (Alternative statement of Theorem 0.2). If the hypotheses
of Theorem 0.2 hold, then, for each fixed p, there exist sequences {G*"} and
{H®"} of matrices with the following three properties:

(a) B(p.r)= G(p.r)+ H(w);

(b) G*” is positive with rank 1;

© HH*IN G -0 as r—=.

Theorems such as 0.2 and 0.3 are called weak ergodic theorems. Wol-
fowitz (1963) proved such a theorem for the case where the A were chosen
from a finite set of stochastic matrices. Hajnal (1956, 1958) also dealt with
stochastic matrices but under more general conditions. The whole subject of
weak ergodicity is thoroughly surveyed by Seneta (1973, chapters 3 and 4).

As a motivation of the next section, it is instructive to examine a simple
corollary of Theorem 0.2. If condition (i) is replaced by the stronger condition
that the A® be all primitive with identical graphs, then the conclusion of the
theorem still holds. Now primitive matrices have period 1, and this theorem
says that inhomogeneous products of them tend to the class of matrices of
rank 1. Is there any relation between period and rank? If we were to replace
the primitive matrices with cyclic matrices of period d, would the in-
homogeneous products of them tend to the class of matrices of rank d?

3. A weak ergodic theorem for cyclic irreducible nonnegative matrices

In this section, we answer the questions raised at the end of the last
section.

THEOREM 1. Let {A“} be a sequence of n X n nonnegative matrices
satisfying the two conditions:

(i) foreach fixed p, there exist positive integers d, r, (independent of p) and
a matrix M of period d such that, for r=r, and 0=s<d, B®** V=
AP A®*D has the same graph as M™*;
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(i) min/;ay’ = A >0 and max;,;ayy’ =y < uniformly fork =1,2,....

Then, for each fixed p, there exist sequences {G "} and {H""} of matrices
with the following three properties:

(a) B(p")z G(p.r)+ H(P");

(b) G™ is nonnegative and, apart from scalar multiples, has no more
than d distinct columns;

() |H®|/|G®”|—0 as r— .

ProoF. Without loss of generality, we may assume M to be in the
canonical form described in Theorem 0.1, whereupon we can write, for some

z rll’
Z(l)
Z(Z)
M = :
Z(d)

where ZV, - - -, Z‘ are primitive. By condition (i), it then follows that, for any

»

given p, we have

Z(l‘p.qd)

Z(vav qd)

(1) B(P-qd)z
’ Z(d,p.qd)

with Z®pab ... 7@, primitive. We note also that the graph of Z“» is
independent of p.
It follows from (1) that

B(p.lqd) — B(p+(r71)qd‘qd) B(p+(r*2)qdqu) e B(p-qd)

Z (.ptad)
Z2.p.1qd)
) =
’ Z(d.p‘lqd)
where
(3) Z(Lp.rqd) — Z(Lp+(!fl)qdqu) Z(Lp*(le)qd.qd) A Z(I'P'qd)
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Since all of the matrices on the right side of (3) are primitive with identical
graphs we have immediately, for each p,

4) Z4rad > () for all t = some .

It is easy to see that

&) mlip+ Z{PaD = )9 > (),

and

©) max 27 = (my)" <=
[N}

uniformly over [ and p for fixed q.

Considering now that sequence of matrices Z* 99, Z¢p2ad  Zdpdad) ...
we see, after comparing (4), (5) and (6) with conditions (i) and (ii) of Theorem
0.3, that that theorem can be applied in the present context to give, for fixed [,
p and g, sequences {X“""“®} and { Y *»“"} of matrices with the following three

properties:

(7) Z(Ln tqd) — X(Lp‘ tqd) + Y(va lqd);

(8) X744 is nonnegative with rank 1;
©9) y e | XEpadl— 0 as t — .

We can now define:

X(lvp.!qd)
(2.p.1qd)
(10) G = e
X pad)
and
Y(l.p.'qd)
Y(va,tqd)
(11) H(Pvlqd) —
Y(d»lqu)
By (2), (10) and (11),
(12) B ®ad) — G(pvrqd)+ H(P‘lqd)'
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By (8) and (10),
G®" is nonnegative and, apart from scalar multiples,
(13) has only d distinct columns.
By (10) and (11),
e Gl = 5 el S jxesee)

whence it follows from (9) that
(14) | H® /| G#®|— 0 as t — .

In (12), (13) and (14), we have proved the theorem in respect of those B®"
for which r is a multiple of gd. For r = tqd + 5, 0 < s < qd, define

, . tqd
(15) G(pvr) — B(p-qu.S) G(p.rqd)’ H(p,r) — B(Pﬂqd s) H(p 1q: ).

Since B®*“** is a product of at most qd matrices, it is bounded above and
below by a matrix of form pU where p is a finite positive number independent
of t and U is n x n and consists of one’s (e.g. B® “**)>min,, by U >
AU > AU if A <1). However || UA {|= nl{ A ||if A isnon-negative and (¢} is
immediate.

4. A weak ergodic theorem for cyclic irreducible stochastic matrices

In this section we restrict the set of matrices considered in Section 3
further by requiring that they be stochastic, i.e. that they have all row sums
equal to unity. This enables us to obtain results which are, in some respects,
stronger than Theorem 1. This is not surprising in view of the fact that the
Coale~Lopez theorem can be strengthened when the matrices under consid-
eration are stochastic instead of just nonnegative. The main result here is due
to Hajnal (1958).

For a stochastic matrix A, define

21 8(A) = max max | des — dus |,
B8 a o’
and
(22) A(A)=min > min (d.e, aus).
aa’ B

The value A(A) is called the scrambling power of A, whilst 8(A) is, in
informal terms, a measure of amount by which A fails to have rank one.

TueoreM 0.4 (Hajnal). If P, G are n X n stochastic matrices and F =
PG then 8(F)=(1- A (P)S(G).
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Treorem 0.5 (Hajnal). Let {A™} be a sequence of nx n stochastic
matrices. We have
S(Am' . ‘A(k))—>0 ask — o,
if
@) JI a-r(A®)) diverges to zero;
k=1

or equivalently

(i) D A(A™) diverges.
k=1

For our present purposes we find it advantageous to extend the defini-
tions of 8(A) and A(A) to non-square A. If A is any nonnegative matrix with
all row sums equal to unity, we define §*(A ) and A *(A) to be the right sides of
(21) and (22) respectively.

With this terminology, we can establish

THeOREM 2. Let {A™} be a sequence of n X n stochastic matrices, and
suppose that the index set of each can be subdivided into d mutually exclusive
and exhaustive subsets €., - - -, €, (independent of k) such that, for any given k
and i, A® sends € into some €, (j possibly varying with k). Let A} denote the
submatrix of A relating to the transition from €, to 6,, and suppose that

(23) > min{A*(A%)| A% # 0} diverges.
k

Deﬁne C(p.r) — A(p+1) . A(’”'),

Then, for each fixed p, there exist sequences G*” and H®"” of matrices
with following three properties:

(a) C(p")= G(p")-f' H(p.');

(b) G*™” is a stochastic matrix with no more than d distinct rows,

© [H""|

—0 asr—>.

Proor. We begin by fixing p arbitrarily. It is clear from the hypotheses of
the theorem that, for any given r and i, C*” sends € to some €, and
moreover that, if C{ is the submatrix relating to the transition from % to
€, then

C?z")) — A(i,’;H)A(-p-”) e A§P+()

I, oyl
We now wish to show that §*(C{)— 0 as r — . This is quite simple
upon a review of Hajnal’s (1958) work, an examination of which (in particular,
Lemma 3, pp. 237-8) shows that Theorem 0.4 holds with 8, A replaced by 6%,
A* and P, G any nonnegative matrices with all rows sums equal to unity. This
immediately yields the following result, analogous to Theorem 0.5:
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s

s (e =M1 n-ararmsrary

=[T-a=ae.
s=1
where j, =i
Thus,
s*(Cty =11 [1- min{(A*(AL) | AL 0],
s=1

v

which diverges to zero by the hypothesis (23). We have now proved that
(24) 3*(CE)—>0asr—e.

We now construct G®” as follows. Within C*" replace C{7 by the
matrix whose rows are all equal to the first row of Cﬁf}"')), Do this for each
i(=1,2,---,d), and call the resulting matrix G*”_ It is immediately clear
that condition (b) of the theorem is satisfied.

Now define H®” so that condition (a) is satisfied and, from (24), we have

”H(p,r) — ” C(p.r)_ G(p.r)”

IA

= n’max §*(C¥").
Hence ||H*"”]|— 0, by (24) and so condition (c) holds.

References

J. Hajnal (1956). *The ergodic properties of non-homogeneous finite Markov chains’, Proceedings
of the Cambridge Philosophical Society, 52, 67-77.
J. Hajnal (1958), *Weak ergodicity in non-homogeneous finite Markov chains’, Proceedings of the
Cambridge Philosophical Society, 54, 233-46.
A. Lopez (1961), Problems in stable population theory, Office of Population Research, Princeton
University.
B. K. Parlett (1970), ‘Ergodic properties of populations I: the one sex model’, Theoretical
Population Biology, 1, 191-207.
E. Seneta (1973), Non-negative matrices. An introduction to theory and applications, George Allen
and Unwin Limited.
J. Wolfwitz (1963), ‘Products of indecomposable, aperiodic, stochastic matrices’, Proceedings of
the American Mathematical Society, 733-7.
Present address:
School of Economic and Financial Studies, E. S. Knight and Co..
Macquarie University, Consulting Actuaries.
1 York Street,
North Ryde 2113 N.S.W._, Sydney.
Australia. Australia.

https://doi.org/10.1017/51446788700020784 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700020784

