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1. Introduction

Let k be a field. The plane Cremona group Cr2(k) over k is the group of birational trans-
formations of P2 that are defined over k, or equivalently the group of k-automorphisms
of the field k(x, y). The study of finite subgroups of Cr2(C) has a history of nearly one
and a half centuries. But dealing with fields k, which are not algebraically closed, started
only a few years ago, in [2].

A finite abelian group A is called a p-elementary group, where p is a prime number,
if A ∼= (Z/p)r; r is called the rank of A and is denoted by rankA. In [1], Beauville
classified maximal p-elementary subgroups in Cr2(k) over an algebraically closed field k

of arbitrary characteristic up to conjugacy. The purpose of the present paper is to find
a sharp bound for p-elementary subgroups in the plane Cremona group Cr2(k) over an
arbitrary perfect field k.

For a perfect field k, denote by k̄ its algebraic closure and set Γk = Gal(k̄/k). For a
prime number p it is always assumed that p �= Char(k). Note that in the case p = Char(k)
there exist groups isomorphic to (Z/p)r in Cr2(k) for any r > 0 (for instance the group
generated by (x, y) �→ (x, y + xq), q = 1, . . . , r). Define t = [k(ζp) : k], where ζp ∈ k̄ is
any primitive root of unity of degree p. It is clear that t divides p − 1.

Our main result is the following.
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Theorem 1.1. Let A ⊂ Cr2(k) be a p-elementary subgroup, where k is a perfect field.
Then

rankA �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4 if p = 2,

3 if p = 3, t = 1,

2 if p = 3, t = 2 and p > 3, t = 1, 2,

1 if t = 3, 4, 6,

0 otherwise.

(1.1)

Moreover, this bound is attained for any p �= Char(k).

2. Bounds for a p-torsion subgroup of a torus

2.1. Let T be an algebraic torus of dimension d defined over k. In [3], Serre obtained a
sharp bound for the order of finite p-subgroups in T (k). Below we give a similar bound
for p-elementary subgroups.

Theorem 2.1. In the notation above, rankT (k)[p] � d/ϕ(t), where T (k)[p] is a
p-torsion subgroup of T (k) and ϕ is Euler’s function. Moreover, this bound is attained
for a suitable torus defined over k.

Proof. Let X(T ) and Υ (T ) be the groups of characters and cocharacters of T over k̄,
where ρ : Γk → Aut(Υ (T )) is the action of the Galois group and ρp : Γk → Aut(Υ (T )/p)
is its reduction modulo p. In addition, let µp ⊂ k̄∗ be the group of the roots of unity of
degree p, and let χ : Γk → Aut(µp) ∼= (Z/p)∗ be the action of the Galois group.

It is clear that

T (k)[p] = T (k̄)[p]Γk and T (k̄)[p] ∼= Hom(X(T )/p, µp) ∼= Υ (T )/p ⊗ µp,

with all isomorphisms being compatible with the actions of the Galois group. Obviously,

rank(Υ (T )/p ⊗ µp)Γk � rank(Υ (T )/p ⊗ µp)g for any g ∈ Γk

and g acts on Υ (T )/p ⊗ µp as ρp(g) ⊗ χ(g) = χ(g)ρp(g) ⊗ 1. Using any isomorphism
µp

∼= Z/p and Υ (T )/p ⊗ µp
∼= Υ (T )/p, it is possible to identify the set of fixed points of

g in Υ (T )/p ⊗ µp with the set of fixed points of χ(g)ρp(g) in Υ (T )/p, which is merely
the eigenspace of ρp(g) with eigenvalue χ(g)−1.

We fix g ∈ Γk such that χ(g) is of order t and set χ(g)−1 = ε. Since ρ(g) has finite order,
its characteristic polynomial F is the product of cyclotomic polynomials, F =

∏
i Φdi

, and
the characteristic polynomial of ρp(g) is F̄ =

∏
i Φ̄di

, where Φ̄ denotes the reduction a
polynomial Φ modulo p. To prove the theorem, we need to find an upper bound for the
multiplicity of ε as the root of Φ̄di

.

Lemma 2.2. In the above notation, the multiplicity of ε ∈ (Z/p)∗ as the root of Φ̄n

is the same for all ε of the fixed order t, and it is positive if and only if n = tpf .
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Proof of Lemma 2.2. First, if p�n and q = pf , then Φ̄nq ≡ Φ̄
ϕ(q)
n (mod p), so we can

assume that p�n.
Let O be the integral closure of Z in the field Q(ζn), where ζn ∈ C is any primitive

root of unity of degree n, µn ⊂ O∗ is the group of the roots of unity of degree n and
p ⊂ O is any prime ideal such that p ∩ Z = pZ. Then

Φn(X) =
∏
ζ

(X − ζ) and Φ̄n(X) =
∏
ζ

(X − ζ̄)

in O/p, where ζ runs through all primitive roots of unity of degree n. It is well known
that the natural map µn → (O/p)∗ is injective, so ζ̄ is of order n in (O/p)∗ for any ζ.
This implies that the set of roots of Φ̄n in O/p coincides with the set of all elements of
order n in (O/p)∗.

Suppose that Φ̄n has a root ε ∈ (Z/p)∗ of order t; then t = n and any element of order
t in (Z/p)∗ is a simple root of Φ̄n. This proves all statements of the lemma. �

Going back to the proof of Theorem 2.1 we see that it follows from the above lemma
that the multiplicity of ε as the root of Φ̄di

is bounded from above by ϕ(di)/ϕ(t), and
its multiplicity as the root of F̄ is bounded from above by d/ϕ(t), since

∑
i ϕ(di) = d.

To prove the second statement of Theorem 2.1, it is enough to construct a torus of
dimension d = ϕ(t) defined over k such that rankT (k)[p] > 0. This is done in [3] (see
the proof of Theorem 4′ therein). �

3. Proof of the main theorem

In this section we prove Theorem 1.1.

3.1. Let A ⊂ Cr2(k) be a p-elementary subgroup. It is known [2, Theorem 5] that A

can be represented as a subgroup of Autk(S), where S is a smooth projective surface
defined and rational over k, which is of one of the following two types.

(i) There exists an A-equivariant conic bundle structure f : S → C, where C is a
smooth curve of genus 0, such that rank Pic(S/C)A = 1 (though we do not need
this fact, note that if S is rational over k, then C ∼= P1 over k since S(k) �= ∅ and
thus C(k) �= ∅).

(ii) S is a Del Pezzo surface such that rank Pic(S)A = 1.

Proposition 3.1. If p�n, any p-elementary subgroup A ⊂ G(k), where G is a k-form
of PGLn, is contained in a maximal torus defined over k.

Proof. This statement was proved in [1, Lemma 3.1] for k = k̄. The centralizer of
A in G, which is defined over k as A itself is, contains a maximal torus defined over k,
which is the maximal torus in G. Since A consists of semisimple elements, any maximal
torus that centralizes A must contain it. �
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3.2. In what follows we shall study all possible cases for rankA in order to find in each
case the restrictions on t and then we shall prove that under the restrictions obtained
such an A exists. The case p = 2 will be dealt with separately, as it does not involve the
value of t.

3.3. Suppose that rankA � 1. It was proved in [2, Theorem 2] that in this case t ∈
{1, 2, 3, 4, 6} and, moreover, for these values of t there is an element of order p in A ⊂
Cr2(k).

3.4. Suppose that rankA � 2. We shall prove that t � 2. We can assume that p > 3
(as otherwise there is nothing to prove) and that A is a subgroup of Autk(S) as it is
described above. Define S̄ = S ⊗ k̄. We have two possibilities for S specified in § 3.1.

Let f : S → C be an A-equivariant conic bundle. The action of A on the base defines
the homomorphism A → Autk(C). Denote by Ā its image and by A0 its kernel. Obviously,
A0 is an automorphism group of the generic fibre of f , which is a smooth curve of genus
0 over the field k(C). The automorphism group of the base is a k-form of PGL2, and
the automorphism group of the generic fibre is a k(C)-form of PGL2. It is readily seen
that t has the same value for k and k(C). Since p is odd, it follows from Proposition 3.1
that Ā and A0 are contained in tori of dimension 1 defined over k and k(C), respectively.
Theorem 2.1 yields that rankA0 � 1 and rank Ā � 1, with the equality being possible
only if t � 2. Finally, we obtain that rankA � 2, and the equality implies that t � 2.

Let S be a Del Pezzo surface. It follows from [1, Proposition 3.9] and [2, Theorem 5]
that 9 � K2

S � 6 and K2
S �= 7. We consider the possibilities for K2

S case by case.

(i) If K2
S = 9, then S̄ ∼= P2. Therefore, Aut(S) is a k-form of PGL3 and Proposition 3.1

gives that A is contained in a torus of dimension 2 defined over k. According to
Theorem 2.1 this is possible only if t � 2.

(ii) If K2
S = 8, then S̄ ∼= P1 × P1 (otherwise S̄ contains a unique (−1)-curve which

must be defined over k; this contradicts rank Pic(S)A = 1). Then the connected
component Aut(S)◦ is a k-form of PGL2 × PGL2 of index 2 in Aut(S). It is clear
that A ⊂ Aut(S)◦ since p > 3, and by Proposition 3.1 A is contained in a torus of
dimension 2, and thus t � 2.

(iii) If K2
S = 6, then the connected component Aut(S)◦ is a two-dimensional torus and

Aut(S)/ Aut(S)◦ ⊗ k̄ ∼= S3 × Z/2. As above, A ⊂ Aut(S)◦ since p > 3, and we
obtain that t � 2.

Now we prove that there exists a p-elementary subgroup of rank 2 in Cr2(k) whenever
t � 2. Applying Theorem 2.1, we obtain that for such t there exists a two-dimensional
torus T defined over k such that T (k) contains a p-elementary subgroup A of rank 2.
Thus, the well-known fact that T is rational over k [4, § 4.9] yields that A ⊂ Cr2(k).
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3.5. Suppose now that rankA � 3 and p is odd. It is shown in [1, Propositions 2.6
and 3.10] that p = 3, rankA = 3 and S must be a cubic surface in P3. We claim that
t = 1.

It follows from Proposition 3.1 that A ⊂ T (k), where T ⊂ PGL4 is a maximal torus
defined over k. We use notation from the proof of Theorem 2.1. Since PGL4 is a group
of inner type, for any g ∈ Γk, ρ(g) acts on Υ (T ) as an element of the Weyl group. Let
F =

∏
i Φdi

be the characteristic polynomial of ρ(g) and let F̄ =
∏

i Φ̄di
be its reduction

modulo 3. Note that each di divides one of the invariant degrees of the Weyl group;
therefore, each di ∈ {1, 2, 3, 4}. Suppose that t = 2; then the multiplicity of −1 ∈ (Z/3)∗

as the root of F̄ is equal to 3. It follows easily from Lemma 2.2 that each di = 2 and
F (X) = (X + 1)3. Since ρ(g) has finite order, ρ(g) = −1, but it is well known that
−1 does not belong to the Weyl group of PGL4. So we conclude that the case t = 2 is
impossible. This completes the proof of (1.1) for p > 2.

To prove the second statement of Theorem 1.1 in the case p = 3 and t = 1, i.e. k

contains the primitive cubic root of unity, consider the Fermat cubic given by equation
X3

0 + X3
1 + X3

2 + X3
3 = 0 in P3. It is rational over k and evidently admits the action of

3-elementary group A with rankA = 3, so A ⊂ Cr2(k).

3.6. Finally, suppose that p = 2. It was proved in [1, Propositions 2.6 and 3.11] that
rankA � 4. On the other hand, P1 admits (Z/2)2 as the automorphism group for every
field k; hence, there exists an action of the group A ∼= (Z/2)4 on P1 ×P1 and A ⊂ Cr2(k).
This completes the proof of the main theorem.
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