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NOTE ON CLASS NUMBER FACTORS AND

PRIME DECOMPOSITIONS

YOSHIOMI FURUTA

Introduction

Let K be a Galois extension of an algebraic number field k of finite
degree with Galois group g, 2) be a congruent ideal class group of K,
and M be the class field over K corresponding to 2). Assume that M
is normal over k. Then g acts on 2) as a group of automorphisms.
Donote by Ig the augmentation ideal of the group ring Zg over the ring
of integers Z. Then we have a sequence 2) ID 7̂ 2) z> 7JS) D and a
sequence of the corresponding class fields K = Jf j ^ c If$/λ. c Xg/* c .
We call K(£)k the i-£/& central class field of K in M with respect to k.

We put simply Ka) = K$/fc, when it is not in danger of confusion.

In the previous paper [10], we have shown that the Galois group
G(Ka+l)IK{i)) is isomorphic to a factor group of G(Ka)/K) or of slightly
modified group of G(Ka)/K) when K is non-cyclic over k.

In the present paper we apply the above result firstly to the case where
K is cyclic over k and we have more explicit structure of G(K(ί+1)/K{ί)).
In fact we have a formula of the extension degree of Ka+1)/Ka) in §2,
which generalize the genus formula in [8] when K is cyclic over k.
Furthermore in §3 we express the structure of G(Ka+1)/Ka)) by using
"Auflosung" characters of H. W. Leopoldt [19], when the ground field k
is the rational number field Q.

Secondly we study on prime decompositions in κa+1)/K(ί) and in §5
we have explicit criteria of prime decompositions for some non-abelian
extensions. As a special case we have a new expression of the reciprocity
of the biquadratic residue symbol. §2 and §3 are unnecessary to the
argument of §4 and §5.
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168 YOSHIOMIFURUTA

§ 1. Preliminaries

1.1. Notation being as in Introduction, suppose that K is a cyclic

extension of k, whose Galois group is g generated by σ. Then for i =

0,1,2, , we have easilyυ

(1) G(Ka+ι)/Ka)) s S)<-»7s< -"<+1

where ®(i) == ®w(2)) is the group of elements c of S) such that c(σ"1}< = 1.

Since K is cyclic over k, the field i£(1) coincides with the genus field

K* = ίC^/fc of Z in M, which is by definition the maximal extension of

K contained in M and obtained by composing an abelian extension over

k. We have2)

( 2) S)/©-1 ^ G(K™/K) = G(X*/*) - H(K/k)/(k*Nκ/kH(M/K)) ,

where H(M/K) and Ή{Kjk) are the idele group of i£ and fc corresponding

to M and i£ respectively, and kx is the principal idele group of k.

Denote by $(K/k) and $*(K/k) the congruent ideal group of k cor-

responding to H(K/k) and kxNκ/kH(M/k) respectively. Then we have

(3) G(K*/K) s &K/k)/$*(K/k) .

Denote by $(M/K) the congruent ideal group of K corresponding to M

and by g = %(M/K) the conductor of §(M/K). Let Sΐ^ be the group of

ideals α of k such that α = Nκπ$ί for some ideal 2Te®(ί). Then (1), (2)

and (3) imply

( 4 ) G(K«+1>/K™) s Q(K/k)/ap§*(K/k) .

1.2. The structure of §*(K/k) is known for many cases explicitly.3)

In the following we shall show a recursive method to get Sc<) or S^.

In order to determine ®(i), it is enough to get a finite number of integral

ideals by which all classes of S(<) are represented mod $(M/K). We call

a system of these ideals a /wK set of representatives of ®a\ We call

the set of norms of these ideals to k a full set of representatives of ®<f.

Suppose that for v — 1, , t€> ideals Sίυ consist a full set of repre-

sentatives of ® ω . When Nκ/kyive Nκ/k!g(M/K), we can choose an integral

ideal S3U of K such that

1) See Y. Furuta [10, §1],
2) Cf. Y. Furuta [10, §2].
3) See for instance H. W. Leopoldt [19], A. Frόhlich [5] and Y. Furuta [8].
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( 5) S3Γ1 = SI, mod. SRM/K) .

Then it follows from the definition of Ka) that ®v for v = 1, , tt and

Bv chosen as above make a full set of representatives of ® ( ί + 1 ).

Remark. Since the above SIy and S3V are representatives mod. !Q(M/K),

we can restrict them to be prime ideals of K of absolute degree 1. When

that is the case, we call the set of 2ίv and S3V resp. av = Nκ/k

<Hv and ίv

= Nκ/k%ίv a full set of prime representatives of degree 1 of ®{ί) resp. of

1.3. In the case where k is the rational number field Q, K is a

quadratic field and M is a ray class field over K mod. g for some divisor

g of K, we have further the following way4) of the determination of

$(*+« from $wβ We assume, by the above remark, that the representa-

tives of ®(ί) are prime ideals of K of degree 1. Let p be such a re-

presentative and assume p = JVjr/gp e NK/QSK(^)9 Sκ($) being the ray

mod. gί in K. Then there exists a prime ideal q of K of degree 1 such

that q""1 = p mod. Sκ(%). Hence for some (a) e Sκ(%) we have

a = pq1-' = pq2/Nκ/Qq = β/q ,

where σ is the non-trivial automorphism of K over Q, q = Nκ/Qq, the

rational prime, and β is an integer of K such that q = β mod. gf. Since

= Nκ/Qp = p, we have

( 6 ) VQ2 = NK/Qβ.

Conversely let p e S ^ , i.e., p — Nκ/Qp and p e ^ ( ί ) . Let g be a ra-

tional prime which satisfies (6) for some integer β of K such that g =

3̂ mod. g, 9̂ has no rational integral divisor, and q be decomposed com-

pletely in K. Then (6) implies β = pq2, iV^^q = g, hence pq1"'' = β/qe

Sκ(!$, which means geS? + 1 ) .

Now let D be the discriminant of K. Then the above q is a primi-

tive solution z of the Diophantine equation

( 7 ) x2 - Dy2 - άpz2 = 0 .

Therefore a full set of prime representatives of degree 1 of $Ji+1>

is obtained from the full set of prime representatives p of degree 1 of

^ by adding rational primes q of degree 1 such that q is a primitive

4) Cf. H. Hasse [14] and G. Gras [12, §IV, B].
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solution of (7) by z = q and j(x + yV D) = gmod. $.

§ 2 . Nilpotent factors of the ideal class group of cyclic extensions

2.1. We can study the structure of the ideal class group of cyclic
extensions of any degree by using (1). This is a generalization of H.
Hasse [14] and G. Gras [12] by means of dual way5) in some sense.

For the sake of simplicity we treate of the case where M is the
absolute class field of K, in wide sense or in narrow sense, which we
denote by K*.

For an algebraic number field K, we denote by Jκ the idele group,
by Kx the principal idele group and by Uκ the unit idele group of K
whose real infinite components are of all non-zero real numbers or posi-
tive real numbers according as we treate on the absolute class field in
wide sense or in narrow sense. Denote by Kξ the multiplicative group
of non-zero elements of the completion K% of K at ψ, and by U% the
unit group of K%, which are embedded in Jκ in usual way.

Now let Z/fc be a cyclic extension and let M = KK Let Ra) be a
full set of representatives of ®(ί) and assume6) that R(ί) is consisted by
prime ideals of degree 1 over fc. Let Rp be the set of all Nκ/kψ where
VβeR™. Denote further by Kf the class field over K corresponding to
$<*>S) -i# Then Kf is the maximal extension over K which is contained in
K* and in which all primes of Ra) are completely decomposed. We put

(8) H ^ = π ( # n #*&*),

where H = H(K/k) is the subgroup of Jk corresponding to K as in § 1.1,
and H* = JcxNκ/kUκ. Then (1) implies

1)/Ka)) ^ G(Kf/K) ^ H/Hω .

Moreover by [8, Proposition 2], we have H* = kx γ\p (H Π Up) where p
runs over all primes of k. Hence by simple calculations, (8) implies

H«) = kx π (B n up) π (B n kx)

- fcx Π (B n up) π

5) The investigation in this way has been treated in some cases by E. Inaba [15],
A. Frόhlich [3] and H. Koch [17].

6) See Remark of §1.2.
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Now (9) and (10) imply the following

PROPOSITION 2.1. Let K be a cyclic extension of k, and Ka) be the

ί-th central class field of K with respect to k in the absolute class field

K* of K. Let R^ be a full set of representatives of $<P which consists

of primes of k of degree 1 in K. Then we have

. π (H nuj. π

where H = H(K/k), the ίdele group of k corresponding to K.

2.2. Notation being as above, denote further by z%>/k the extension

degree (Ka): Ka~l)) for i ^ 1, where Z ( 0 ) = K. We call z$>/k the i-th

central class number of K with respect to k. Now by an analogous

calculation as the genus formula in [8, Theorem7)] we have a formula

for zjp/k as follows. By (9) we have

z§h = (K^: X«-») - (KU:K) = (KU: k)/(K: k) .

For a wile denote by p resp. q primes of k contained resp. not contained

in JB«-«. Then

(KU: k) = (Jk: H«-») = (jk: k» Π Uq Π K) (^x Π ^ Π ^ x : ^ ( ί

Denote by Sβ resp. O one of prime divisors of p resp. q in K fixed once

for all. Denote for a wile by N the norm for local fields. Then since

p is decomposed completely in K by the assumption, we have

fcx Π NUa π NKΪ n π u, π Λf = (fex n π ^ Π ̂ ) Π ̂ ^o Π
q P q p \ q | ) / q p

Moreover since NK$ = fc^x, we have

Π Uq Π fcpx: ί f ( i " υ ) = (fcx Π ^ Π ^ x : fcx Π ̂ ^ α Π
q p / \ q p q P

= (Π #, Π fex^x Π tfffo Π ̂ Kί n π u, Π
\ q p q P <\ P

((fex n π , ^ Π, K)
Now we have the following

7) Cf. also L. Goldstein [11, §2].
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PROPOSITION 2.2. Let K be a cyclic extension of k. For a prime

q of fc, denote by eq the ramification index of q in K. Let Rf be a full

set of representatives of Si^ which consists of primes of degree 1 in K.

Denote by E(R^) the group of all R^-unitsS) of k, and by E(R^) the

group of all elements of E(R^) which are everywhere locally norm from

K. Denote further by h(R^) the extension degree of the maximal ex-

tension over k which is contained in the absolute class field of k and

in which all primes of i?0

(ί) are decomposed completely. Then we have

Remark. For i = 0, the above formula coinsides with the genus

formula in [8] or in L. Goldstein [11], when K is cyclic over k.

§ 3 . Nilpotent factors of the ideal class group of cyclic extensions over Q

3.1. When K is an abelian extension over the rational number field

Q and M is the absolute class field of K in narrow sense, the genus

field K* = K$/k corresponds to the "Auflόsung" character group by

H. W. Leopoldt [19]. Thus by (1) and (2), we can study the structure

of G(Ka+1)IKa)) by means of the above character group.

For an abelian extension K/Q, let X be the corresponding character

group, namely the character group of the congruent ideal class group

corresponding to K, which is also the character group of G(K/Q) via

Artin's reciprocity. For a character χ in X denote by Kχ the abelian

field corresponding to χ. The p-component χp of χ for a rational prime

p is defined by

p

when ae Q and is prime to the conductor of χ. Then χp is a character

of some congruent ideal class group. The "Auflosung" X* of X is the

group generated by all χp where χ e X and p runs over all rational

primes. H. W. Leopoldt [19] has proved.

(11)

8) This means elements of k whose prime divisors are at most primes contained
in RQZ) and which are totally positive when K* is the absolute class field in narrow sense.
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3.2. Put H* = QX-NK/QUK. Then it follows from [8, Proposition

1] that

(12) G(K*/K)^H/H* ,

where H = H(K/Q). For the sake of convenience we shall imply9)

Leopolds s formula (11) from (12). Since we treate here the absolute

class field in narrow sense, we have to take the group of all positive real

numbers as the infinite component UPoo of UQ. Then JQ = Q*UQ and an

element α of JQ is expressed uniquely as α = αu, where a e Qx and u =

(up) e UQ. Let Hx be the subgroup of JQ corresponding to Kχ, and denote

by So the set of all finite primes of Q. Then we havep Q

H* = QX π (H n up)-uPoo - Qχ π ( ( n H Z ) n uXuPoo

= n Qx Π Όq {Htnυp).Όp,.
χ£X qΦp

peso qeso

F o r χ e X and 29 e So we define <pχtP by

where α = αu e JQ, ae Qx, u = (up) e UQ. Then ^χ,p is a differential of

/ Q in the sense of the class field theory. The kernel of <pXtP is equal to

Qx
 Π ? ^ Ϊ € 5 O Uq (Hx Π Up)-UPoo, and it follows from (13) that the character

group of JQ/H* is generated by ψXiP where χeX and p eSQ. Let ψ χ ) P

be the congruent ideal character corresponding to <pχ>p. Then since the

conductor of <pXfP is equal to the product of a power of p and p^ we see

for α e Q which is positive and prime to the conductor of χ. Hence X*

corresponds to Z * and (11) is implied.

3.3. Assume that K is cyclic extension over k = Q. Notation

i2(i), β̂ > and X? be as in §2.1. For the character group X of K/Q put

(14) X? = {χ e X* | χ(p) = 1 for all p e β^} .

Then by the definition of Kf, the character group corresponding Kf is

equal to XfX. Now we have

9) Cf. [8, Remark].
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PROPOSITION 3.1. Let K be a cyclic extension over Q, X be the

character group for K/Q, and K(i) be the i-th central class field of K

with respect to Q in the absolute class field of K in narrow sense. Then

Xf being as (14), we have

G(Ka+l)/K(ί)) s XfX/X s XfjiXf Π X) .

3.4. In the case where K = Q(V d), a quadratic field, we can de-

termine Xf as follows more explicitly by using the result of § 1.3.

Since ®(1) consists of ambigous classes and any ambigous class of

Q(Vd) is represented by a ramified prime ideal10), i?0

(1) consists of prime

divisors of the discriminant D of Q(V~d)/Q.

Let D — qf q* be the decomposition of D to prime discriminants,

namely q* = (—l)(<z~1)/2<? for a prime q Φ 2 and g* = —4 or ± 8 for q = 2.

Put

(15) x^ (
\ a

ThenΠ) X* is generated by χq*9 , χα*. Let p be a prime number such

that12) χq*(p) = 1 for £ = 1, , r. Assume further that the Diophantine

equation

(16) x2 -Dy2-Ap = 0

has no solution. Then by § 1.3 the Diophantine equation

(17) x2 - Dy2 - 4pz2 = 0

has a primitive solution x, y, z, where z can be taken as a prime number.

We call it a primitive prime solution of (17). Then a full set of repre-

sentatives Rki+1) is determined from R^ recursively as follows. Let S^

be a subset of Rp which consists of rational primes p e R^ such that

χq*(p) = 1 for i = 1, , r, and (16) has no solution. For every such p

choose a primitive prime solution pr = z of (17). Then as i?0

(ί+1) we can

take the union of primes pf and R^\

Then we can determine Xf by (14), and zψ/k by Proposition 2.2

explicitly.

10) See for instance G. Gras [12, Corollaire 4.2].
11) See also H. Hasse [13].
12) We set always χq*(<l)=l
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§4. JEL-genus central extensions

4.1. Let K be a Galois extension of an algebraic number field k of

finite degree. We call an extension K! of K a central extension of K

with respect to k, when K! is normal over k and the Galois group of

K! over K is contained in the center of the Galois group of K! over k.

We call Kf an EL-genus extension of K with respect to k, when each

local completion of K! is equal to the composite of the corresponding

local completion of K and an abelian extension of the corresponding local

completion of k. For an extension M of K, we denote by KM/k the

maximal extension of K which is contained in M and is a central -EL-

genus extension of K with respect to k. We denote further by K%/k the

genus field of K in M with respect to k. The structure of the Galois

group G(K$/k/K) and G(KM/k/K%/k) have been studied in [10]. For the

sake of simplicity and of later use, we treate here only the case where

M is a ray class field of K mod. g, g being any divisor of K.

For a finite or infinite prime Sβ of K we denote by K% the local

completion of K, by Jκ the idele group of K, and by Kx the multiplica-

tive group of non-zero elements of K. We embed K$ and JBΓ* in Jκ in

usual manner. Denote further by U$(r) the group of units u of K% such

that % = 1 mod. $ r , where r is a non-negative integer. When Sβ is an

infinite prime, we take r = 0 or 1 and by w = 1 mod. $β mean that u is

a positive unit or any unit according as $β is real or imaginary. For a

divisor g = Π» ̂  o f κ> s e * #*(§) = Π* U*(rJ.
Now let M be a ray class field of K mod. g. Then since KXNM/KJM

= Zxί7 i Γ(g), the following propositions imply immediately from Proposi-

tion 1, 2 and 3 of [10].

PROPOSITION 4.1. G(K%/k/K) s kχNκ/kJκ/k*Nκ/kUκ(%).

PROPOSITION 4.2.

G{KM/kIK*M/k) s (fcx Π Nκ/kJκ)/Nκ/kKx(Ek Π ΛΓ^C/^)) ,

where Ek is the group of units of k.

PROPOSITION 4.3. Notation K, k and M being as above, let L be a

subfίeld of M which contains K%/k. Then

G(L

https://doi.org/10.1017/S0027763000017797 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017797


176 YOSHIOMIFURUTA

Moreover by [10, § 3] we have

PROPOSITION 4.4. Notation being as Proposition 4.3, assume further

Ek Π Nκ/kUκ($) = 1. Let K and L be normal over k with Galois groups

g and G respectively, and let H be the Galois group of L over K. Then

G(LM/k/L) s H-\G9Z)/(cors,oH-\H,Z) + Σ cor*,,σ H~KGV, Z)) ,

G{KMίkIK*M/k) s H-\g, Z)/(Σ corgv,, ff-'fo,, Z)) ,

where Gv and gv are decomposition groups in L/k resp. K/k of an

arbitrarily fixed prime divisor in L resp. in K of a prime pv of k.

§5. Prime decomposition criteria

5.1. As an application of the previous sections § 1 and § 4, we shall

have some criteria of the prime decomposition in certain non-abelian

extensions over Q. This kind of criteria have been treated formerly by

L. Redei [20], S. Kuroda [18], A. Frόhlich [4] and [6] and Y. Furuta

[7], and recently by E. Brown [1], K. Burde [2] and P. Kaplan [16].

PROPOSITION 5.1. Let K be a cyclic extension of an algebraic number

field k with Galois group g, which is generated by σ. Let M be an

abelian extension of K which is normal over k. Let L be an inter-

mediate field between M and K, and abelian over k with Galois group

G. Then Kflf? =) L%k D K%k. Let further 3) = S>(M/X) be the ideal class

group of K corresponding to the class field M over K, and denote by

C(2ί) the class of S) represented by an ideal SI of K. Then the notation

&(L/K) and ®(ί) = ®(ί)(S)) being as in (1) and (3), we have

G(U£/kjK%k) s ft/CmL/IOW* s G(KJK) ,

where Kt is the largest extension of K in L such that every prime p of

K is completely decomposed in Kt when p is contained in a class of §i{i).

Moreover let SI be an ideal of K which is the norm of an ideal SI(ί)

of K$/k and prime to the conductor $(M/K), and S3 be an ideal of K

such that S3('-υί = SI mod. Q(M/K). Let σ and τ be elements of G(L$/k/K$/k)

and G(Ki/K) which correspond to SIα) and S3 respectively by Artίn's re-

ciprocity map. Then σ and τ correspond each other by the above iso-

morphism.
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Proof. It follows from the translation theorem of class field theory

that the subgroup of S) corresponding to L%h over K is equal to

C(NL/XPG($L)) = C ( ^ / J Γ ( S L ) ( ' - 1 } I ) = CmL/K)'-"*), where %L is the group

of ideals of L which is prime to the conductor g(M/L). Clearly

C(®(L/KY<-l)i) c S"-1'*. Hence L%% D Xfi>/Jb and we have G(L<$/kIK%k) s

W-^/CmLIKy-*). Moreover since L c # | / f c = ££>,*, C(φ(L/X)) D © - 1 .

Hence CίφCL/X)^""') D S^-"1-" and L$/fc c KfylK Now the isomorphism

of (1) in §1 implies immediately the proposition.

5.2 By considering the special case where K is a quadratic field,

L is a biquadratic field and i = 1, we have some criteria for the prime

decomposition in non-abelian normal fields of degree 8.

PROPOSITION 5.2. Let Q(V~dη) and Q(V~d2) be two quadratic fields,

L be their composite, and K = Q(V~d) be the intermediate field of L

over Q distinct from Q(V dj and Q(V d2). Let A be a quadratic extension

of L which is normal and non-abelian over Q. Let further M be a

normal extension over Q, abelian over K and contains A. Denote Mo the

largest subfield of M which is abelian over Q. Then notation being as

in § 1, every prime of K which represents a class of ®a)(D(M/K)) is de-

composed completely in L. Moreover let p be a prime ideal of L which

is degree 1 over Q and is decomposed completely in MQ. Then we have

(A/L,p) = (L/Q,q) ,

where q is any rational prime such that Apq2 = x2 — y2D, %(x + yV D)

= q mod. i$(M/K) for p = NL/Qp, some integers x, y and the discriminant

D of K/Q.

Proof. We have L%Q D K$/Q = K%/Q — L%/Q = Mo, and Proposition

5.1 implies

(18) (1)

which is isomorphic to a subgroup of G(L/K). Moreover L$/Q is quadratic

over K$/Q if and only if every prime of K which represents a class of

of ®(1) is decomposed completely in L. On the other hand since A is

quadratic over L, A is central over L with respect to Q. Moreover since

A is non-abelian over Q, we have L$/Q = AMQ ^Mo = K%Q. Thus our

first assertion of the proposition is proved.

Let p = NMo/L?β for a prime Sβ of Mo. Then Proposition 5.1 implies
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(Λ/L, p) = (ΛM0/MQ, Sβ) - (L/K, q) ,

where q*"1 = NMo/κψ mod. H(M/K), a being the generator of G(K/Q).
Now the last assertion of the proposition follows from §1.3.

PROPOSITION 5.3. Let K,L and A be as in Proposition 5.2. and
assume that A is an EL-genus extension of L with respect to Q. Then
every prime of K which is ramified over Q is decomposed completely in
L. Moreover let K* be the absolute class field of K in narrow sense
and Kf be the genus field of K in K* with respect to Q. Let p be a
prime of L which is of degree 1 over Q and decomposed completelyU)

in Kf. Then there exists an abelian extension A of Q such that

(A/L,p) = (L/Q,q)(A/Q,p),

where p = NL/Qp and Apq2 — x2 — y2D by the discriminant D of K/Q and
rational integers x and y such that (g, x, y) = 1.

Proof. It is well known that L is contained in K*. We apply Pro-
position 5.2 to the case where M contains KK Let g be the Galois group
of L over Q, and denote by L resp. L* the EX-genus central extension
resp. the genus field in X* with respect to Q. Then since

•Lfί/Q = K%IQ = MQ

13) This is characterized by using "Auflόsung" character.
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EQ Π NL/QUL(%(M/L)) QEQΠ NL/QUL(%(K«/L)) = 1 ,

Proposition 4.4 implies

(19) G(LM/Q/L%/Q) s G(L/L*) s H~Kg, Z)\ Σ cor,.,, H~\gp, Z) ,

where gv runs over the decomposition groups of primes in L ramified

over Q. Since A is contained in LM/Q and A is non-abelian over Q, LM/Q

is quadratic over L%/Q = K%/Q. Hence (19) implies gvQ g for every v,

which implies the first assertion of the proposition. Now we have £M/Q

= AL\IQ = LL%/Q. Hence there exists a quadratic extension A of Kf

such that A is contained in L%/Q and LA = JLA. Let p be a norm of a

prime ^ of Kf = L* to L. Then

Apply Proposition 5.1 to the case where k = Q, M = 2£# and i = 1.

Then since Ljfr* = L and X« / t = Kf = L*, we have (£/L*,$) = (L/K,q)f

where q""1 = ^α, ft = NL*/K?β and α is a totally positive element of K.

Moreover it follows from § 1.3 that (L/X, q) = (L/Q, q). Clearly U/L*, φ)

= (A/Q9p). Thus the proposition is proved.

5.3. We can have a reciprocity law of the restricted biquadratic

residue symbol, by applying Proposition 5.2 and 5.3 to the special case

d2 = -1.

Let q be a rational prime such that q = 1 mod. 4, and put K =

Q(V--5). Let L be the composite of K and QCv^Ί) and let B be the

subfield of degree 4 of the ray class field over Q mod. q. Let further

Λ be the subfield of L( ifq)B over L of degree 2 distinct from LB and

L( \/~q). Then it follows from [7, Theorem 2] that if p is a rational

prime such that (q/p) = 1, then

(20) (
\p

where (—)4 is the forth power residue symbol in Q and p is a prime

divisor of p in L.

Now let us apply Proposition 5.3 to the right hand side of (20).

PROPOSITION 5.4. Let p and q be rational primes such that p, q = 1

https://doi.org/10.1017/S0027763000017797 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017797


180 YOSHIOMIFURUTA

mod. 4 and (q/p) = 1. Then we haveU)

1\ (Z) =
p/Λq/t

where px is any rational prime which is a primitive solution1^ v of the

Diophantine equation pv2 — x2 + y2q or pv2 = x2 + Ay2q according as q = 1

or =£ 1 mod. 8.

Proof. Let notation L*,L,Kf,M and Mo be as in Proposition 5.3

and its proof. Then L = L* = Kf. Moreover L~^L* if and only if the

class number of K is divisible by 4, which is equivalent1*" to q = 1 mod. 8.

(i) Assume q ~1 mod. 8. Then L 2 L*, which implies LM/Q 2 L^/Q

by (19) and AMQ = LM/Q. Since prime divisors of 2 in Q(V q) are

unramiίied over Q(V q), we choose M to be the ray class field over K

mod. q. Then LB is the unique quadratic extension of L* = L in Λf0.

Since L 2 L = L*, it follows from the definition of Λ that A is equal to

L and the field A in Proposition 5.3 is equal to L. Now Proposition

5.3 and (20) imply the present proposition in the case q = 1 mod. 8.

(ii) Assume q =£ 1 mod. 8. Then L = L* = L as seen above. More-

over we can see17) that prime divisors of 2 in Q( v7 g) are ramified over

Q(*J~q) This implies that the only prime divisors of 2 are ramified in

A over L. Thus we choose M to be the ray class field over K mod 2.

We note that A is not an I?L-genus extension of K with respect to Q,

for otherwise the above equality L = L* contradicts to (19). Now the

proposition is followed from Proposition 5.2 and (20).

5.4. The following table is a numerical example for Proposition 5.4

when p and q are smaller than 53 and px is smaller than 19.

The numbers n for (g/p)4 means nA = q mod. p, and the symbol Δ

means (q/p)4 — — 1.

14) This reciprocity has other expression from that of E. Brown [1], K. Burde
[2] or P. Kaplan [16], The latters follow from S. Kuroda [18]. See also A. Frόhlich
[16].

15) There exists such pi except the case p=χ2-\-y2q by some integers x and y.
Cf. §1.3.

16) See for instance H. Hasse [14].
17) See for instance Hasse's Bericht la, §11, Satz 9 and II, §9, XL
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V

5

5

13

13

17

17

29

29

37

37

41

41

53

53

53

Q

29

41

17

53

13

53

5

53

41

53

5

37

17

29

37

4<Z

116

212

52

212

20

212

212

20

148

116

148

v=pι

5

13

3

7

11

19

3

7

11

13

17

2

7

11

19

13

17

1

3

19

3

7

11

19

3

19

2

3

7

2

19

1

3

2

19

X

3

27

2

9

21

42

7

5

31

17

43

4

1

43

77

45

39

3

7

9

13

38

34

109

11

107

12

17

27

4

73

6

19

8

109

V

1

1

1

2

2

1

2

6

6

3

3

1

4

2

2

2

4

1

1

7

2

3

9

6

1

3

1

2

8

1

8

1

1

1

7

(q/p)i

Δ

1

Δ

1

3

Δ

4

Δ

2

Δ

8

Δ

Δ

Δ

Δ

3

11

Δ

Δ

Δ

8

Δ

1

Δ

4

2

(Pi/ςf)

1

1

^

-1
^

-1

Ĵ

-1

-1

1

1

-1

-1

-1

-1

1

1

-1
"L

-1

-1

-1

-1

-1

-1

-1
•£

-1

-1

-1

-1

-1
-̂
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