Y. Furuta
Nagoya Math. J.
Vol. 66 (1977), 167-182

NOTE ON CLASS NUMBER FACTORS AND
PRIME DECOMPOSITIONS

YOSHIOMI FURUTA

Introduction

Let K be a Galois extension of an algebraic number field %k of finite
degree with Galois group g, © be a congruent ideal class group of K,
and M be the class field over K corresponding to ©. Assume that M
is normal over k. Then g acts on © as a group of automorphisms.
Donote by I, the augmentation ideal of the group ring Z, over the ring
of integers Z. Then we have a sequence DD DDLEDD --- and a
sequence of the corresponding class fields K = K@, C K@, C K@, C ---.
We call K, the i-th central class field of K in M with respect to k.
We put simply K® = K@,, when it is not in danger of confusion.

In the previous paper [10], we have shown that the Galois group
G(K®*V/K®) is isomorphic to a factor group of G(K®/K) or of slightly
modified group of G(K’/K) when K is non-cyclic over k.

In the present paper we apply the above result firstly to the case where
K is cyclic over k and we have more explicit structure of G(K“*V/K®),
In fact we have a formula of the extension degree of K“*V/K® in §2,
which generalize the genus formula in [8] when K is cyclic over k.
Furthermore in §3 we express the structure of G(K“*/K®) by using
“Auflosung” characters of H. W. Leopoldt [19], when the ground field %
is the rational number field Q.

Secondly we study on prime decompositions in K¢*V/K® and in §5
we have explicit criteria of prime decompositions for some non-abelian
extensions. As a special case we have a new expression of the reciprocity
of the biquadratic residue symbol. §2 and §3 are unnecessary to the
argument of §4 and §5.
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§1. Preliminaries

1.1. Notation being as in Introduction, suppose that K is a cyclic
extension of &, whose Galois group is ¢ generated by ¢. Then for ¢ =
0,1,2, ..., we have easily?

( 1 ) G(K(’i-l-l)/K(i)) =~ @(a—l)‘/@(o--l)“’1 =~ @/(@(i)@a—l) R

where f® = (D) is the group of elements ¢ of © such that ¢~V =1.
Since K is cyclic over k, the field K coincides with the genus field
K* = K%, of K in M, which is by definition the maximal extension of
K contained in M and obtained by composing an abelian extension over
k. We have®

(2) D/D'=GEY/K) =GEK*/K)=HK/K)| (N HM|K)) ,

where H(M/K) and H(K/k) are the idele group of K and k corresponding

to M and K respectively, and k> is the principal idele group of k.
Denote by 9(K/k) and $*(K/k) the congruent ideal group of % cor-

responding to H(K/k) and k*Ng, H(M/k) respectively. Then we have

(3) GE*K) = QK[ k)| 9* (K[ k) .

Denote by $(M/K) the congruent ideal group of K corresponding to M
and by § = F(M/K) the conductor of H(M/K). Let K be the group of
ideals a of k such that a = Ng,% for some ideal % e &¥. Then (1), (2)
and (3) imply

(4) GEP[K?Y) = HK [ B) | KPO* (K[ k)

1.2. The structure of $*(K/k) is known for many cases explicitly.®
In the following we shall show a recursive method to get {9 or f(.
In order to determine &%, it is enough to get a finite number of integral
ideals by which all classes of &% are represented mod H(M/K). We call
a system of these ideals a full set of representatives of ®%. We call
the set of norms of these ideals to k a full set of representatives of K.

Suppose that for v =1, ...,¢, ideals U, consist a full set of repre-
sentatives of 8®. When Ny, %, € N¢,.9(M/K), we can choose an integral
ideal B, of K such that

1) See Y. Furuta [10, §1].

2) Cf. Y. Furuta [10, §21.
3) See for instance H. W. Leopoldt [19], A. Frohlich [5] and Y. Furuta [8].
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(5) Bt = A, mod. H(M/K) .

Then it follows from the definition of K® that &, for v=1,...,¢, and
B, chosen as above make a full set of representatives of R¢+V,

Remark. Since the above %, and B, are representatives mod. $(M/K),
we can restrict them to be prime ideals of K of absolute degree 1. When
that is the case, we call the set of %, and B, resp. a, = Ng,¥%, and b,
= Ng,;8, a full set of prime representatives of degree 1 of & resp. of
KO,

1.3. In the case where k is the rational number field @, K is a
quadratic field and M is a ray class field over K mod. § for some divisor
% of K, we have further the following way? of the determination of
KEDY from KP. We assume, by the above remark, that the representa-
tives of 8% are prime ideals of K of degree 1. Let p be such a re-
presentative and assume p = Ng,ob € Ng/oSk(F), Sk(F) being the ray
mod. ¥ in K. Then there exists a prime ideal q of K of degree 1 such
that q°! = pmod. Sx(§). Hence for some (a) € Sx(F) we have

a =pq'~° = pq’/Ng,q = B/q,

where ¢ is the non-trivial automorphism of K over @, ¢ = Nk, 0, the
rational prime, and g is an integer of K such that ¢ = fmod. §. Since
NK/QCY = NK/Qp = p, we have

(6) PG = Ngsof

Conversely let p e &?, i.e., p = Ng, b and pe &®. Let q be a ra-
tional prime which satisfies (6) for some integer g of K such that ¢ =
pmod. F, p has no rational integral divisor, and ¢ be decomposed com-
pletely in K. Then (6) implies 8 = pg’, Nxeq = ¢, hence pg'~* = §/qe
Sk(®), which means q e &*.

Now let D be the discriminant of K. Then the above ¢ is a primi-
tive solution z of the Diophantine equation

(1) 2? — Dyt —4pz* =0.

Therefore a full set of prime representatives of degree 1 of K+
is obtained from the full set of prime representatives p of degree 1 of
K by adding rational primes g of degree 1 such that ¢ is a primitive

4) Cf. H. Hasse [14] and G. Gras [12, §IV, B].
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solution of (7) by z = q and i(z + yv D) = ¢ mod. F.

§2. Nilpotent factors of the ideal class group of cyclic extensions

2.1. We can study the structure of the ideal class group of cyclic
extensions of any degree by using (1). This is a generalization of H.
Hasse [14] and G. Gras [12] by means of dual way® in some sense.

For the sake of simplicity we treate of the case where M is the
absolute class field of K, in wide sense or in narrow sense, which we
denote by K*.

For an algebraic number field K, we denote by Jz the idele group,
by K* the principal idele group and by Ug the unit idele group of K
whose real infinite components are of all non-zero real numbers or posi-
tive real numbers according as we treate on the absolute class field in
wide sense or in narrow sense. Denote by K3 the multiplicative group
of non-zero elements of the completion K, of K at %5, and by U, the
unit group of K, which are embedded in Jr in usual way.

Now let K/k be a cyclic extension and let M = K*. Let R® be a
full set of representatives of 8% and assume® that R® is consisted by
prime ideals of degree 1 over k. Let R{® be the set of all Ng, B where
BeR®, Denote further by K} the class field over K corresponding to
KOYe-t, Then K¥ is the maximal extension over K which is contained in
K* and in which all primes of R® are completely decomposed. We put
(8) H® = [ (HNH*EY),

pe B
where H = H(K/k) is the subgroup of J, corresponding to K as in §1.1,
and H* = k*Ng,,Ugx. Then (1) implies

(9) GEK@Y[K®)y = G(K¥/K)= H/H® .

Moreover by [8, Proposition 2], we have H* = k* [[, (H N U,) where p
runs over all primes of k. Hence by simple calculations, (8) implies

Ho =< ] HNU)- [ HNEK

ve B pe RS
(10)
=k ] HNU)- [] k.
pe B{D pe RN

5) The investigation in this way has been treated in some cases by E. Inaba [15],
A. Fréhlich [3] and H. Koch [17].
6) See Remark of §1.2.
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Now (9) and (10) imply the following

PROPOSITION 2.1. Let K be a cyclic extension of k, and K® be the
i-th central class field of K with respect to k in the absolute class field
K* of K. Let R® be a full set of representatives of & which consists
of primes of k of degree 1 in K. Then we have

GK ) [K®) = H / <ch-];[ HOU) ] k;‘) :

ve B{D
where H = H(K k), the idele group of k corresponding to K.

2.2. Notation being as above, denote further by 2§, the extension
degree (K®:K""V) for 1=1, where K® =K. We call z{, the i-th
central class number of K with respect to k. Now by an analogous
calculation as the genus formula in [8, Theorem”] we have a formula
for 2%, as follows. By (9) we have

29, = (K®: K%)= (Kf: K) = Kf.: b)/(K: k) .

For a wile denote by p resp. q primes of & contained resp. not contained
in R¢-Y. Then

(KF i k) = (Jy: HEY) = (Jk: k< U, T] kg)-(kx U1k H“"”) .
a b q

Denote by 3 resp. £ one of prime divisors of p resp. q in K fixed once
for all. Denote for a wile by N the norm for local fields. Then since
p is decomposed completely in K by the assumption, we have

k¥ T] NUs T NKG 1) ];[U,,['Ik,f:(kxﬂ E[Uql;[k;).l;]NUgl;[NK;.
Moreover since NKj = kY, we have
(kx U1 ks H""“) - (k [ U 0] ks b [ NUG ] NK;)
= (11 0. T ko T NUS TINKG 0 T U, 1] )

[1.(U,: NUy) .
(& N 1, U, T, 9 G 0 1, N0 11, NE§)

Now we have the following

7) Cfi. also L. Goldstein [11, §27.
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PROPOSITION 2.2. Let K be a cyclic extension of k. For a prime
q of k, denote by e, the ramification index of q in K. Let R{® be a full
set of representatives of K which consists of primes of degree 1 in K.
Denote by E(RP) the group of all R®-units® of k, and by ER®) the
group of all elements of E(R{’) which are everywhere locally norm from
K. Denote further by h(R{) the extension degree of the maximal ex-
tension over k which is contained in the absolute class field of k and
in which all primes of R{® are decomposed completely. Then we have

26D WEP) Tloerg €
ETU(K: R(ERP): ERP))

Remark. For ¢ =0, the above formula coinsides with the genus
formula in [8] or in L. Goldstein [11], when K is cyclic over k.

§3. Nilpotent factors of the ideal class group of cyclic extensions over Q

3.1. When K is an abelian extension over the rational number field
@ and M is the absolute class field of K in narrow sense, the genus
field K* = K%, corresponds to the “Auflosung” character group by
H. W. Leopoldt [19]. Thus by (1) and (2), we can study the structure
of G(K®*/K®) by means of the above character group.

For an abelian extension K/Q, let X be the corresponding character
group, namely the character group of the congruent ideal class group
corresponding to K, which is also the character group of G(K/Q) via
Artin’s reciprocity. For a character y in X denote by K, the abelian
field corresponding to y. The p-component y, of y for a rational prime
p is defined by

1@ = (A2 Ex ),

when a € @ and is prime to the conductor of y. Then y, is a character
of some congruent ideal class group. The “Auflésung” X* of X is the
group generated by all y, where ye€X and p runs over all rational
primes. H.W. Leopoldt [19] has proved.

11 GK*|K) = X*|X .

8) This means elements of k¥ whose prime divisors are at most primes contained
in R{¥; and which are totally positive when K* is the absolute class field in narrow sense.
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3.2. Put H* = Q*-Ng,Ug. Then it follows from [8, Proposition
1] that

12) GK*|/K) = H/H* ,

where H = H(K/Q). For the sake of convenience we shall imply®
Leopoldt’s formula (11) from (12). Since we treate here the absolute
class field in narrow sense, we have to take the group of all positive real
numbers as the infinite component U,  of U, Then J, = @*U, and an
element a of J, is expressed uniquely as a = au, where a € @ and u =
(u,) € Uy. Let H, be the subgroup of J, corresponding to K,, and denote
by S, the set of all finite primes of @. Then we have

H =@ ] HNU,)-U,. = @] ((ﬂ H) n Up>.Upm

(13) PESO PESo 1€EX
=N @ [l U H,NU, Uy, .
35 &%

For ye X and pe S, we define ¢, , by
0ur@ = pypfan) = (1)

where a =aueldy ac @, u=(u, Uy Then ¢,, is a differential of
Jo in the sense of the class field theory. The kernel of ¢, , is equal to
Q" M 4xp, qes, Ug-H, N U, -U,., and it follows from (13) that the character
group of Jo/H* is generated by ¢,, where ye¢X and peS, Let v,,
be the congruent ideal character corresponding to ¢,,. Then since the
conductor of ¢,,, is equal to the product of a power of p and p., we see

Wy, (@) = x(—‘i’pK—")_1 = 5'@ ,

for @ ¢ @ which is positive and prime to the conductor of y. Hence X*
corresponds to K* and (11) is implied.

3.3. Assume that K is cyclic extension over k# = Q. Notation &®,
R®, R{® and K¥ be as in §2.1. For the character group X of K/ @ put

(14) Xf={eX*yp)=1 for all pe B{} .

Then by the definition of K¥, the character group corresponding K} is
equal to X*X. Now we have
9) Cf. [8, Remark].
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PROPOSITION 3.1. Let K be a cyclic extension over Q, X be the
character group for K/Q, and K be the i-th central class field of K
with respect to Q in the absolute class field of K in norrow sense. Then
X¥ being as (14), we have

GE@Y [K) = X#X/X = X¥/(X5 N X) .

3.4. In the case where K = Q(v d), a quadratic field, we can de-
termine X} as follows more explicitly by using the result of §1.3.

Since K consists of ambigous classes and any ambigous class of
Q(v/ d) is represented by a ramified prime ideal, R{" consists of prime
divisors of the discriminant D of Qv d)/Q.

Let D = ¢¥ .. ¢* be the decomposition of D to prime discriminants,
namely ¢* = (—1)¢"92q for a prime q #= 2 and ¢* = —4 or +8 for ¢ = 2.

Put

%
(15) 1o(@) = (‘1_) .

o
Then'™ X* is generated by ye, -+, %s Let p be a prime number such
that® y,() =1 for ¢ =1,...,7. Assume further that the Diophantine
equation
16) 2 — Dy —4p =0

has no solution. Then by §1.3 the Diophantine equation
an 22— Dy — 4pz2 =0

has a primitive solution z, y, 2, where z can be taken as a prime number.
We call it a primitive prime solution of (17). Then a full set of repre-
sentatives R{*V is determined from R{® recursively as follows. Let S
be a subset of R{® which consists of rational primes pe R{® such that
Xg®) =1 for ¢ =1,.--,7, and (16) has no solution. For every such p
choose a primitive prime solution p’ = z of (17). Then as R{*Y we can
take the union of primes p’ and R{®.

Then we can determine X¥ by (14), and z@, by Proposition 2.2
explicitly.

10) See for instance G. Gras [12, Corollaire 4.27.

11) See also H. Hasse [13].
12) We set always xqo+(q)=1.
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§4. EL-genus central extensions

4,1. Let K be a Galois extension of an algebraic number field & of
finite degree. We call an extension K’ of K a central extension of K
with respect to k, when K’ is normal over k and the Galois group of
K’ over K is contained in the center of the Galois group of K’ over k.
We call K’ an EL-genus extension of K with respect to k, when each
local completion of K’ is equal to the composite of the corresponding
local completion of K and an abelian extension of the corresponding local
completion of k. For an extension M of K, we denote by K ue the
maximal extension of K which is contained in M and is a central EL-
genus extension of K with respect to k. We denote further by K3, the
genus field of K in M with respect to k. The structure of the Galois
group G(K%,./K) and G(K wi/KE) have been studied in [10]. For the
sake of simplicity and of later use, we treate here only the case where
M is a ray class field of K mod. §, § being any divisor of K.

For a finite or infinite prime B of K we denote by K, the local
completion of K, by Jx the idele group of K, and by K* the multiplica-
tive group of non-zero elements of K. We embed K, and K* in J in
usual manner. Denote further by Ug(r) the group of units u of Ky such
that # =1 mod. ", where 7 is a non-negative integer. When P is an
infinite prime, we take r =0 or 1 and by 4 =1 mod. § mean that u is
a positive unit or any unit according as ¥ is real or imaginary. For a
divisor § = [[3 B™® of K, set U@ = [[s Us(ry).

Now let M be a ray class field of K mod. §. Then since K*Ny xJ
= KXUx(3), the following propositions imply immediately from Proposi-
tion 1, 2 and 3 of [10].

PROPOSITION 4.1. G(K%,:/K) = k*Ngpd x| B*N g/ Ur(F).
PROPOSITION 4.2.
GK upu/ K ) = (¥ 0 N 2) [ NepK*(E N NepUx(®))
where E, is the group of units of k.

PROPOSITION 4.3. Notation K,k and M being as above, let L be a
subfield of M which contains K%, Then

kX 0 Ny

G(Lyn/ L) = )
el L) & e R A N T ) - (B (1 NapeU 2 )
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Moreover by [10, §3] we have

PROPOSITION 4.4. Notation being as Proposition 4.3, assume further
E. N Ng, Ug(® =1. Let K and L be normal over k with Galois groups
g and G respectively, and let H be the Galois group of L over K. Then

G(fM,k/L) =~ H ¥@G, Z)/(corH,G H%H,Z) + 3 corg, ¢ HG,, Z)) ,
s Kip) = H9,2) /(2 cor,.,, H9, 2)) ,

where G, and g, are decomposition groups in L[k resp. K|k of an
arbitrarily fixed prime divisor in L resp. in K of a prime p, of k.

§5. Prime decomposition criteria

5.1. As an application of the previous sections §1 and §4, we shall
have some criteria of the prime decomposition in certain non-abelian
extensions over . This kind of criteria have been treated formerly by
L. Rédei [20], S. Kuroda [18], A. Frohlich [4] and [6] and Y. Furuta
[7], and recently by E. Brown [1], K. Burde [2] and P. Kaplan [16].

PROPOSITION 5.1. Let K be a cyclic extension of an algebraic number
field k& with Galots group g, which is generated by o. Let M be an
abelion extension of K which is normal over k. Let L be an inter-
mediate field between M and K, and abelian over k with Galois group
G. Then K¢ D LY, D K. Let further © = D(M/K) be the ideal class
group of K corresponding to the class field M over K, and denote by
C) the class of © represented by an ideal U of K. Then the notation
QLK) and &© = KD(D) being as in (1) and (3), we have

G(L57x/ K = D COL/KNR? = GK,/K) ,

where K, is the largest extension of K in L such that every prime p of
K is completely decomposed in K; when p is contained in a class of K.

Moreover let U be an tdeal of K which is the norm of an ideal AP
of K@, and prime to the conductor F(M/K), and B be an ideal of K
such that B~V =U mod. Y(M/K). Let ¢ and ¢ be elements of G(LY,./ K,
and G(K;/K) which correspond to UY and B respectively by Artin’s re-
ciprocity map. Then o and t correspond each other by the above iso-
morphism.
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Proof. It follows from the translation theorem of class field theory
that the subgroup of © corresponding to L§{, over K is equal to
CINLxl4(3) = C(N /(¥ %) = C(HL/K)“"*), where J; is the group
of ideals of L which is prime to the conductor F(M/L). Clearly
COL/K)-v) c D', Hence LY, D K%, and we have G(L$,/K$,) =
DD C(QUL/K)~P). Moreover since L € K%/, = K%, C(H(L/K)) D DL
Hence C(H(L/K)“~b") D Db and LY, < K¢P. Now the isomorphism
of (1) in §1 implies immediately the proposition.

5.2. By considering the special case where K is a quadratic field,
L is a biquadratic field and ¢ = 1, we have some criteria for the prime
decomposition in non-abelian normal fields of degree 8.

PROPOSITION 5.2. Let QW d) and QW d,) be two quadratic fields,
L be their composite, and K = Q(+/ d) be the intermediate field of L
over Q distinct from Qv d,) and Q(v/ d;). Let A be a quadratic extension
of L which is normal and non-abelian over Q. Let further M be a
normal extension over @, abelian over K and contains A. Denote M, the
largest subfield of M which is abelian over Q. Then notation being as
in §1, every prime of K which represents a class of RV(D(M/K)) is de-
composed completely in L. Moreover let p be a prime ideal of L which
1s degree 1 over Q and is decomposed completely in M,. Then we have

where q is any rational prime such that 4pg* = x* — y’D, Xz + yv/ D)
= q mod. FM/K) for p = N,qb, some integers x,y and the discriminant

D of K/Q.

Proof. We have L$q D K3 = K¥%o = L, = M,, and Proposition
5.1 implies
(13 G(L7/o/ Kitsg) = D/ CHL/KNKR® ,

which is isomorphic to a subgroup of G(L/K). Moreover L§, is quadratic
over K@, if and only if every prime of K which represents a class of
of &Y is decomposed completely in L. On the other hand since 4 is
quadratic over L, 4 is central over L with respect to . Moreover since
A is non-abelian over @, we have Ly, = AM, 2 M, = K$4. Thus our
first assertion of the proposition is proved.

Let p = Ny, B for a prime P of M, Then Proposition 5.1 implies
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(4/L, p) = (AM,/ My, ) = (L/K, 9) ,

where q°7' = Ny, z¥ mod. HM/K), ¢ being the generator of G(K/Q).
Now the last assertion of the proposition follows from §1.3.

PROPOSITION 5.3. Let K,L and A be as in Proposition 5.2. and
assume that A is an EL-genus extension of L with respect to Q. Then
every prime of K which is ramified over Q is decomposed completely in
L. Moreover let K* be the absolute class field of K in narrow sense
and K¥ be the genus field of K in K* with respect to Q. Let p be a
prime of L which ts of degree 1 over Q and decomposed completely'
in K¥. Then there exists an abelian extension A of Q such that

(4/L,p) = (L/Q, )(A/Q, D) ,
where p = Np,p and 4pg* = x* — y*D by the discriminant D of K/Q and

rational integers x and y such that (q,z,y) = 1.

Proof. It is well known that L is contained in K*. We apply Pro-
position 5.2 to the case where M contains K*. Let g be the Galois group
of L over @, and denote by L resp. L* the EL-genus central extension
resp. the genus field in K* with respect to Q. Then since

M

I

Lise

('S

A/LTI/Q = Ko = M,

L* = K¥

e
/ \= cs)

Qvd) K Q

N7

Q
18) This is characterized by using “Auflosung’ character.
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Eq N N U (FM|L) S Eq N N, U (FEK¥L) =1,
Proposition 4.4 implies

19 GLye/Lie = GL/L* = H g, Z)/ 2 cory,, H(9,, 2) ,

where g, runs over the decomposition groups of primes in L ramified
over Q. Since A is contained in EM,Q and 4 is non-abelian over @Q, I:M,Q
is quadratic over L%, = K%, Hence (19) implies g, & g for every v,
which implies the first assertion of the proposition. Now we have fM,Q
= AL}, = LL%,, Hence there exists a quadratic extension A of Kj
such that A is contained in Lj, and L4 = LA. Let p be a norm of a
prime B of K} = L* to L. Then

(4L, p) = (AL*|L*, ) = (L/L*, R)(A/L*, ) .

Apply Proposition 5.1 to the case where k=@, M =K* and 7 =1.
Then since Ly, = L and K@, = K§f = L*, we have (E/L*, B) = (L/K,q),
where q°~' = P, P, = NzxB and « is a totally positive element of K.
Moreover it follows from §1.3 that (L/K, q) = (L/Q, q). Clearly (4/L*, %)
= (A/Q,p). Thus the proposition is proved.

5.3. We can have a reciprocity law of the restricted biquadratic
residue symbol, by applying Proposition 5.2 and 5.3 to the special case
d, = —1.

Let ¢ be a rational prime such that ¢ =1 mod. 4, and put K =
Q(v=¢q). Let L be the composite of K and Q@+ —1) and let B be the
subfield of degree 4 of the ray class field over @ mod. ¢. Let further
A be the subfield of L(4%¥ q)B over L of degree 2 distinct from LB and
L(%¥ q). Then it follows from [7, Theorem 2] that if p is a rational
prime such that (¢/p) = 1, then

20) (%)(%) = WU/Ly),

where (—), is the forth power residue symbol in @ and p is a prime
divisor of p in L.
Now let us apply Proposition 5.8 to the right hand side of (20).

PROPOSITION 5.4. Let p and q be rational primes such that p, ¢ =1
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mod. 4 and (¢/p) =1. Then we have®

()= (%)= (50)
p/aNnq/e q Y24
where p, is any rational prime which is a primitive solution v of the

Diophantine equation pv? = x* + y°q or pv® = x* 4 4y°q according as ¢ =1
or =1 mod. 8.

Proof. Let notation L*, L,K¥ M and M, be as in Proposition 5.3
and its proof. Then L = L* = K}. Moreover L 2 L* if and only if the
class number of K is divisible by 4, which is equivalent® to ¢ = 1 mod. 8.

(i) Assume ¢ =1 mod.8. Then L 2 L*, which implies Ly,o 2 Li/q
by (19) and AM, = fM,Q. Since prime divisors of 2 in Q(#¥ ¢q) are
unramified over Q(v ¢q), we choose M to be the ray class field over K
mod. ¢. Then LB is the unique quadratic extension of L* =L in M,.
Since L 2 L = L*, it follows from the definition of 4 that A is equal to
L and the field A in Proposition 5.3 is equal to L. Now Proposition
5.3 and (20) imply the present proposition in the case ¢ =1 mod. 8.

(ii) Assume ¢ %1 mod. 8. Then [ = L* = L as seen above. More-
over we can see'” that prime divisors of 2 in Q(#¥ q) are ramified over
Qv q). This implies that the only prime divisors of 2 are ramified in
A over L. Thus we choose M to be the ray class field over K mod 2.
We note that 4 is not an FL-genus extension of K with respect to @,
for otherwise the above equality L = L* contradicts to (19). Now the
proposition is followed from Proposition 5.2 and (20).

5.4. The following table is a numerical example for Proposition 5.4
when p and ¢ are smaller than 53 and p, is smaller than 19.

The numbers n for (q/p), means %*= q mod.p, and the symbol 4
means (g/p), = —1.

14) This reciprocity has other expression from that of E. Brown [1], K. Burde
[2] or P. Kaplan [16]. The latters follow from S. Kuroda [18]. See also A. Frohlich
[16].

15) There exists such p. except the case p=w’+y°q by some integers x and y.
Cf. §1.3.

16) See for instance H. Hasse [14].

17) See for instance Hasse’s Bericht Ia, §11, Satz 9 and II, §9, XI.
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CLASS NUMBER FACTORS

P q 4q V=p1 x Y @/p)e | @/ | (P1/9)
5 29 116 5 3 1 L
13 27 1 4 4 1
3 2 1 —1
5 41 7 9 2 1 -1
11 21 2 4 -1
19 42 1 -1
3 7 2 -1
13 17 7 5 6 A 3 -1
11 31 6 -1
13 17 3
13 53 212 7 3 . 1 1
2 4 1 -1
7 1 4 -1
17 13 52 a " . 3 A .
19 it 2 —1
. o1 13 45 2 1
53 17 39 4 L & 1
29 5 20 1 3 1
29 53 212 3 7 . 4 -1
19 9 7 4 -1
3 13 2 -1
a 7 38 3 A . -1
87 1 34 9 -1
19 109 6 -1
. 53 3 11 1 -1
7 212 | g9 107 3 2 — -1
2 12 1 -1
41 5 20 3 17 2 A 1 1
7 27 8 —1
o 2 4 1 -1
4 148 19 2 g 8 A 1
53 17 1 6 1
53 29 116 3 19 1 A 4 -1
53 3 148 2 8 L 2 -t
7 19 109 7 A —1
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