ON THE DERIVATION ALGEBRAS OF LIE ALGEBRAS
SHIGEAKI TOGO

Let L be a Lie algebra over a field of characteristic 0 and let D(L) be the
derivation algebra of L, that is, the Lie algebra of all derivations of L. Then
it is natural to ask the following questions: What is the structure of D(L)?
What are the relations of the structures of D(L) and L? It is the main purpose
of this paper to present some results on D (L) as the answers to these questions
in simple cases.

Concerning the questions above, we give an example showing that there
exist non-isomorphic Lie algebras whose derivation algebras are isomorphic
(Example 3 in § 5). Therefore the structure of a Lie algebra L is not com-
pletely determined by the structure of D(L). However, there is still some
intimate connection between the structure of D (L) and that of L.

Let L = L D(L) = {> x;D;:x; € L, D, € D(L)} and define LI*+11 =
L™ D(L) inductively. L is called characteristically nilpotent provided there
exists an integer % such that L™ = (0) (4,p. 157). Then L is characteristically
nilpotent if and only if D(L) is nilpotent and L is not one-dimensional (6,
Theorem 1). As an analogue, we call L characteristically solvable provided D (L)
is solvable and the centre of L is contained in [L, L]. Then characteristically
nilpotent Lie algebras are characteristically solvable. It is known that D (L)
is semi-simple if and only if L is semi-simple (5, Theorem 4.4) and that D(L)
is nilpotent if and only if L is characteristically nilpotent or one-dimensional.
In § 2, we shall show that D(L) is the direct sum of a semi-simple ideal and
the radical if and only if either L is reductive or L is the direct sum of a semi-
simple ideal, a characteristically solvable ideal and a central ideal whose
dimension is at most one (Theorem 1). We also prove that D(L) is the direct
sum of a semi-simple ideal and the nilpotent radical if and only if either L
is reductive or L is the direct sum of a semi-simple ideal and a characteristically
nilpotent ideal (Theorem 2). It is known that, as an algebraic Lie algebra,
D(L) has the following structure: D(L) = & + A 4+ N with [S, A] = (0)
where & is a maximal semi-simple subalgebra, 2 is a maximal abelian sub-
algebra of the radical consisting of semi-simple elements, and N is the ideal
of all nilpotent elements in the radical (1, p. 144). If D(L) is especially the
direct sum of ideals &, ¥, and N, then either D(L) = S + N or D(L) =
& 4+ A where ¥ is one-dimensional (Corollary 1 of Theorem 2).

In §§ 1 and 3, we study the derivation algebra of L when L is the direct
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sum of the ideals L; (¢ =1,2,...,n). D(L) is the direct sum of a semi-
simple ideal and the non-abelian nilpotent radical (resp. non-abelian nil-
potent, reductive) if and only if D(L,), for each 7, is also; in the case that the
dimension of the image of the centre of L in L/[L, L] is at most one, D(L) is
the direct sum of a semi-simple ideal and the radical (resp. solvable) if and
only if D(L;), for each 17, is also (Theorem 4). In § 4 we show that if the nil-
radical of L is characteristically solvable, then the radical of L is characteris-
tically solvable and is the direct summand of L (Proposition 2). We also show
some other properties of characteristically solvable Lie algebra (Propositions
3, 4, and 5) and give some examples of such Lie algebras.

Section 5 contains some remarks and the partial answers to the questions
asked in the first paragraph (Theorems 5 and 6).

1. Throughout this paper we denote by L a Lie algebra over a field K of
characteristic 0, by D (L) the derivation algebra of L and by Z(L) the centre
of L. For any element x of L, the adjoint mapping ad x: y — [y, x] is a deriva-
tion of L which is called inner. Given a subset M of L, we denote by ad M the
set of all ad x with x in M. L is called reductive provided L is the direct sum
of a semi-simple ideal and the centre Z(L).

Let L be the direct sum of the ideals L; (z = 1,2,...,n). Let p,; denote
the projection of L onto L,. Let E(L) be the set of all linear transformations of
L into L and let £(L,, L;) be the set of those of L; into L;. We shall identify
an element 7°;; of E(L,;, L;) with an element p;7";; of E(L). Thus we have
E(L;, L;) C E(L).PutD(L,, L;) = D(L) N\E(L;, L;). Then it is obvious that
D(L, L;) = D(L;). We prove the following

LEMMA 1. Let L be the direct sum of the ideals L; (1 = 1,2,...,n). Then

(1) D) = 3 DLy Ly

1, j=
(2) For i 5= j, D(L;, L;) consists of all elements T;; of E(Ls, L;) such that
(3) For ¢ # j, D(Ly, L;) is abelian and
[D(Li, L), .I; D(Lk):l C D(L;, Ly).

Proof. We shall first prove (2). Let D;; be an element of D(L;, L,) with
1 # j. Then, for x; in L; and x; in L;, we have

0= [xi, QCj]Dij = [xiD“', xj].

Therefore L;D;; C Z(L;). Furthermore, for elements x; and v, of L, we
have

(s ¥idDiy = [wDy yil + [xs, Dyl = 0,
which shows that [L;, L;]D;; = (0). Conversely, suppose that 77;; is an
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element of E(L;, L,;) satisfying the conditions in (2). Then it is immediate
that

[, xl]Tz'j = [kaijy %] = [xky szU] =0

for all x; in Ly and all x; in L,. It follows that T, is a derivation of L, that is,
that 7Ty, belongs to D(L;, L;). Thus (2) is proved.

Let D be any element of D(L). Put T;; = p,Dp,. Then

D= 21 Ty

i, J=

where T';; belongs to E(L;, L;). It is easy to see that 7T';; is a derivation of
L; and that, for ¢ # j, T';; satisfies the conditions in (2). Therefore it follows
from (2) proved above that T';; belongs to D(L,, ;). Thus we have

D(L)»C iélD(L,», L;).
Since the converse inclusion is evident, we have
D) = 3 DTy L)
and (1) is proved.
(3) is evident. Thus the lemma is proved.

Let D(L) denote the subalgebra of D(L) consisting of all elements D of
D (L) such that L D C Z(L). Then we have

LEMMA 2. Let L be the direct sum of the ideals L, (i = 1,2, ..., n). Suppose
that Z(L;) C [Ly, L;] for some j. Then

(1) D(L;) is an abelian ideal of D(L);
(2) [D(Ly Ly), D(Ly, L)) C D(L,) for all i # j.

Proof. Let D;; be any element of D(L;). Then it is immediate that [L,, L,]
D,; = (0) and therefore that Z(L,)D,; = (0). By using the fact that the centre
of L, is stable under all derivations of L,, it is easy to see that D(L;) is an
abelian ideal of D(L,). By Lemma 1 (2) it is clear that any element D;; of
D(L;, L;) with i # j satisfies Z(L;)D;; = (0). Therefore it is immediate that

[D_(Lj)r ; D(L,) + 2; D(Ly, Lk):l = (0).
=+7 iFk

We can now use Lemma 1 (1) to conclude that D(L,) isan abelian ideal of D (L),

and (1) is proved.

For 7 # j, let D;; and D;; be any elements of D(L,, L;) and D(L;, L,)
respectively. Then, by Lemma 1 (2), we have
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Li[Di]‘y Dji] = LiDi]'Dji C Z(Lj)Dji = (0),
Lj[Dij: Dji] = LijiDij C Z(Li)Dij C Z(Lj),

which shows that [D,;, D;;] belongs to D(L;). Thus we have (2), completing
the proof.

2. In this section we determine the structure of the Lie algebra L such that
D(L) is the direct sum of a semi-simple ideal and the radical. We begin with

LemMa 3. Let L be a solvable Lie algebra such that Z(L)C [L, L]. If D(L)
is the direct sum of a semi-simple ideal and the radical, then L is characteristically
solvable.

Proof. It is clear that L is not abelian. Write D(L) = & + & where &
is a semi-simple ideal and 9 is the radical of D(L). Since ad L is a solvable
ideal of D(L), it follows that ad LC . Let D be any element of €. Then
ad LD = [ad L, D] = (0) by hypothesis. Therefore L D C Z(L). Since
Z(L) C [L, L] by hypothesis, it follows that D? = 0, which shows that all
elements of & are nilpotent. By Engel’s theorem, & is nilpotent and therefore
& = (0). Thus D(L) is solvable and L is characteristically solvable, com-
pleting the proof.

Lemma 4. Let L be a non-abelian solvable Lie algebra. If D (L) is the direct
sum of a semi-simple ideal and the radical, then D (L) is solvable, and L is either
characteristically solvable or the direct sum of a characteristically solvable ideal
and a one-dimensional central ideal.

Proof. By virtue of Lemma 3, it suffices to prove the lemma when Z(L) ¢
[L, L]. Let L; and Z be subspaces of Z(L) such that

Z(L)y =L+ Z, LiN[L, L] = (0),and Z C [L, L].
Let L, be a subspace of L containing [L, L] such that
L=L1+L2, leL2=(0).

Then it is clear that L; is a non-zero central ideal of L and that L, is a non-zero
ideal of L such that Z(L.) C [Ls, Ls].

By hypothesis, D(L) = & 4+ R where & is a semi-simple ideal and 9% is
the radical of D(L). Write D(L;) = S, + R with S, a semi-simple sub-
algebra and R, the radical of D(Ls). Then, since Z(Ly) C [Ls, L], it follows
from Lemma 2 (1) that R, contains D(L,). Let D be the identity derivation
of L; and let M be the space spanned by Dy, D(Ly, Ls), D(Ls, L;) and N..
Then, by Lemma 1 (1), (3) and Lemma 2 (2), it is immediate that I is an
ideal of D(L). We assert that I is solvable. In fact, by Lemma 1 (3) and
Lemma 2 (2), we have

MP TR 4+ (D(Ly) + D(Ly, Lo) + D(Ly, Ly)).
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Since R.® = (0) for some integer %, it follows that
M® C D(Lz) + D(Ly, Lo) + D(Le, Ly).

By Lemma 2 we have M*+D C D(L,). It now follows from Lemma 2 (1)
that ME+D = (0), that is, that I is solvable, as was asserted. Thus I is a
solvable ideal of D (L) and therefore it is contained in R. Since & is a unique
maximal semi-simple subalgebra of D (L), it contains ©,. Therefore [S,, Iy] =
(0), which shows that D(L,) is the direct sum of a semi-simple ideal and the
radical. Therefore we can use Lemma 3 to see that L. is characteristically
solvable and we see that

M = (D1) + D(Ly, Ls) + D(Ls, Ly) + D(L»).

Furthermore, we assert that dim L, = 1. In fact, if dim L; > 1, then
D(L,) = &S; + (D,) where &; is a non-zero semi-simple ideal of D(L,).
Therefore D(L) = &, + M and [S,, M] = (0) by hypothesis. Let D;; be any
element of &;. Then

DyDyy = [Dzl, Du] =0

for any element Dy of D(Ls, L;). But, since L; is abelian and L, % (0), it
follows from Lemma 1 (2) that LsD(Ls, L) = L;. Therefore we have D;; =
0, whence ©; = (0), which isa contradiction. Thus L; must be one-dimensional,
as was asserted. We now see that D(L;) = (D) and therefore that D(L) = IN.
Thus D(L) is solvable and the lemma is proved.

We can now prove the following

THEOREM 1. D(L) s the direct sum of a semi-simple ideal and the radical if
and only if L is one of the following Lie algebras:

(1) L is reductive;

(2) L 1s the direct sum of a semi-simple ideal and a characteristically solvable
wdeal;

(3) L is the direct sum of a semi-simple ideal, a characteristically solvable
ideal, and a one-dimensional central ideal.

Proof. Suppose that D(L) is the direct sum of a semi-simple ideal & and
the radical R. Write L = .S + R where S is a semi-simple subalgebra and R
is the radical of L. Then it is clear that ad S and ad R are contained in & and
N respectively. Therefore

ad [S, R] = [ad S, ad R] = (0),

from which it follows that [S, [S, R]] = (0). Since ad S is completely reducible,
it follows that [S, R] = (0). Thus L is the direct sum of the ideals .S and R.
Since Z(S) = (0) and S = (S, S], by Lemma 1 (2) it is clear that D(S, R) =
D(R,S) = (0). Therefore by Lemma 1(1) we have D(L) = D(S) + D(R).
It now follows that % is the radical of D(R) and therefore that D(R) = & N
D(R) + R. Since S M D(R) is semi-simple as an ideal of &, D(R) is the
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direct sum of a semi-simple ideal and the radical. We can use Lemma 4 to see
that R is abelian or characteristically solvable or the direct sum of a character-
istically solvable ideal and a one-dimensional central ideal. Thus the necessity
of the condition is proved.

To prove the sufficiency of the condition, if L is reductive, write L = .S +
with .S a semi-simple ideal and 4 an abelian ideal. Then by Lemma 1 we have
D(L) = D(S) + D(A1). Since D(A) is the direct sum of a semi-simple ideal
and the one-dimensional central ideal, so is D(L). If L is the Lie algebra as in
(2), then D(L) is clearly the direct sum of a semi-simple ideal and the radical.
If L is the Lie algebra as in (3), write L =.S + R + Z where S is a semi-simple
ideal, R is a characteristically solvable ideal, and Z is a one-dimensional central
ideal. Then D (L) is the direct sum of the ideals D(S) and D(R + Z), the latter
being the radical of D (L) (cf. the fact that I is solvable in the proof of Lemma
4). Thus the theorem is proved.

As an immediate consequence of Theorem 1, we have

CoRrOLLARY 1. D (L) is solvable if and only if L is characteristically solvable
or one-dimensional or the direct sum of a characteristically solvable ideal and a
one-dimensional central ideal.

The following corollary is remarked in (6, § 3).

COROLLARY 2. If D(L) consists of semi-simple elements, then L is a reductive
Lie algebra whose centre is at most one-dimensional.

Proof. Since the radical of D(L) consists of semi-simple elements, it follows
from the structure theorem on algebraic Lie algebras (1, p. 144) that D(L)
is reductive. By Theorem 1 we see that L is reductive. If dim Z(L) > 1, then
it is evident that L has a non-zero nilpotent derivation. Therefore dim Z(L) <
1, completing the proof.

Let Do(L) = L, D:(L) = D(L) and let D,(L) be the derivation algebra
of D,_;(L). Then we have the following corollary correcting (7, Theorem 4).

CoroLLARY 3. For any integers m, n > 0, D, (L) is reductive if and only
if D,(L) is reductive. Then all the D,(L)'s with n > 1 are completely reducible
and isomorphic to each other.

Proof. It follows from Theorem 1 that D,(L) is reductive if and only if
D, _1(L) is reductive. Therefore the first part of the corollary is evident. If
some D, (L) is reductive, then all the D,(L) with # > 1 are completely
reducible. Since the centre of D(L) is at most one-dimensional, it is im-
mediate that all the D,(L)’s with #» > 1 are isomorphic to each other, com-
pleting the proof.

In Theorem 1, if L is not reductive, then the maximal semi-simple sub-
algebra of D(L) is ad S with S the maximal semi-simple ideal of L. We here
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note the following proposition which is an easy consequence of (5, Theorem
4.3).

ProrosiTION 1. Let S be a maximal semi-simple subalgebra of L. Let R be
the radical of L and let M be the subalgebra of D(R) consisting of all derivations
D of R which can be trivially extended to the derivation of L, that is, such that,
by putting S D = (0), D is a derivation of L. Then ad S is a maximal semi-
simple subalgebra of D(L) if and only if M is solvable.

Proof. We identify an element of It with the trivially extended derivation
of L. Therefore M C D(L). Let D be any element of D(L). Then, as is well
known, there exists an element x of L such that the restriction of D to S is
equal to the restriction of ad x to .S as the derivations of Sinto L. Put D’ = D
— ad x. Then it is clear that D’ belongs to I, which shows that D(L) = ad L
+ M. If we write Ny = ad R + M, then it is immediate that PN, is an ideal
of D(L) and ad SM Py = (0). Let K be the radical of D(L). Then, since
D(L)/IM, is semi-simple, it follows that & is contained in M.

If M is solvable, then P, is solvable and therefore ad .S is a maximal semi-
simple subalgebra of D(L). Conversely, if ad S is such a subalgebra of D (L),
then it is clear that dim R = dim M;. Since R C M1, we have R = M.
Therefore I is solvable, completing the proof.

Before we state the second theorem, we prove

LEMMA 5. Let L be a non-abelian nilpotent Lie algebra such that Z (L) is not
contained in [L, L]. Then D (L) is not nilpotent. D (L) actually contains a solvable
non-nilpotent ideal.

Proof. Let L; and Z be the subspaces of Z(L) such that
Z(L)y=Li+Z, LiN[L, L] = (0),and Z C [L, L].

Let L, be a subspace of L, complementary to L; and containing [L, L]. Then
it is clear that Z(Ly) C [Ls, Ls]. Let D, be the identity derivation of L; and
let M be the space spanned by Dy, D(Ly, Ls), D(Ls, Ly), and D(Ls). We assert
that MM is a solvable non-nilpotent ideal of D(L). In fact, by Lemma 1 (1),
(3) and Lemma 2 (2), we see that I is an ideal of D(L). It is obvious that

MO C D(Ly) + D(Ly, Ly) + D(Ly, Ly).

Therefore it follows from Lemma 2 that IM® = (0), that is, that N is solvable.
By the hypothesis that L is non-abelian and nilpotent, we have D(Ly, L)
(0). Since

[Dy1, D(Ly, L)] = D(Ly, Lo),

it follows that M is not nilpotent. Thus IM is a solvable non-nilpotent ideal
of D(L), as was asserted. The proof is complete.

We can now prove the following
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TuroreMm 2. D(L) is the direct sum of a semi-simple ideal and the nilpotent
radical if and only if either L is reductive or L is the direct sum of a semi-simple
ideal and a characteristically nilpotent ideal.

Proof. The sufficiency of the condition is immediate by Lemma 1. To prove
the necessity, suppose that D(L) is the direct sum of a semi-simple ideal
and the nilpotent radical. Then, by Theorem 1, we have that (1) L is reductive
or (2) L is the direct sum of a semi-simple ideal .S and a characteristically
solvable ideal R, or (3) L is the direct sum of a semi-simple ideal .S, a character-
istically solvable ideal R, and a one-dimensional ideal Z. In the case (2),
D(R) must be nilpotent and R is not one-dimensional. Therefore by (6,
Theorem 1) R is characteristically nilpotent. It now suffices to show that the
case (3) does not happen. If L is the Lie algebra in (3), then it follows from
Lemma 1 that D(L) = D(S) + D(R + Z). Since D(R + Z) is a solvable ideal
of D(L) by Theorem 1, it must be nilpotent by our assumption. Therefore
R + Z is a non-abelian nilpotent Lie algebra. Then Lemma 5 tells us that
D(R + Z) is not nilpotent, which is a contradiction. Therefore we cannot
have the case (3). Thus the theorem is proved.

CoROLLARY 1. If D(L) is the direct sum of a semi-simple ideal and the nil-
potent radical, then the radical of D(L) s either one-dimensional and consists
of semi-simple elements or consists of nilpotent elements.

Proof. This is immediate from Theorem 2 and the fact that NV is a character-
istically nilpotent Lie algebra if and only if all the derivations of \" are nil-
potent.

COROLLARY 2. Let R and N be the radical and the nil-radical of L respectively.
Then the following conditions are equivalent:

(1) D(L) us the direct sum of a semi-simple ideal and the radical consisting
of nilpotent elements;

(2) R s characteristically nilpotent;

(3) N 1s characteristically nilpotent;

&) N D(L)* = (0) for some integer n.
If L satisfies one of these conditions, then R = \.

Proof. (1) — (2) is an immediate consequence of Theorem 2. (2) — (3) is
evident, since (2) implies that R = N. (3) — (4) is immediate by the fact
that " is stable under all derivations of L. Therefore it suffices to prove that
(4) — (1). Suppose that L satisfies the condition (4). Let S be a maximal semi-
simple subalgebra of L. Then L = .S + R. Since N(ad S)" = (0) and [R, S] C
N, it follows that R(ad S)"*! = (0). Since ad S is completely reducible, we
have R(ad S) = (0), that is, [R, S] = (0). Then, by Lemma 1, D(L) is the
direct sum of the ideals D(S) and D(R). It is obvious that D(S) is semi-simple.
From the fact that R D C N for any D in D(R), it follows that R D(R)*+! =
(0) and therefore that D(R) consists of nilpotent elements. Thus we see that
(1) is satisfied by L. The proof is complete.
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3. This section is devoted to the study of D(L) in the case that L is the
direct sum of the ideals. By using Lemma 1, we can first prove

THEOREM 3. Let L be the direct sum of the ideals L; (i = 1,2,...,n). Then
D(L)y = D(Ly) + D(Ls) + ...+ D(L,) if and only if L satisfies one of the
following conditions:

(1) Z(L) = (0);

(2) L =I[L, L]

(3) All the L;'s except one are such that Z(L;) = (0) and L; = [L;, L;].

Proof. 1f Z(L) = (0) (resp. L = [L, L]), then it is clear that Z(L;) = (0)
(resp. L; = [Ly, L;]) for all . Therefore, if one of the three conditions in the
statement is satisfied by L, it follows from Lemma 1 (2) that D(ZL,;, L,) = (0)
for all 7 # j. By Lemma 1 (1) we have D(L) = > ,-/"D(L,). Conversely,
suppose that D(L) = X "D (L,). If Z(L) # (0) and L 5= [L, L], let 7 and
j be respectively any integers such that Z(L;) % (0) and such that L; =
[L;, L,]. If ¢ # j, then by Lemma 1 (2) we have D(L;, L;) # (0), contrary to
our assumption. Therefore ¢ = j. This shows that there exists only one L; such
that Z(L,) # (0) and L, # [L;, L,], and that all the other L,'s satisfy the
conditions Z(L;) = (0) and L, = [L;, L;]. The proof is complete.

LevwMa 6. If D(L) is abelian, then L is one-dimensional.

Proof. If D(L) is abelian, then we have
ad[L, L] = [ad L,ad L] = (0),

from which it follows that L3 = (0). Then it is easy to construct a non-zero
semi-simple derivation of L, whence L is not characteristically nilpotent. By
(6, Theorem 1) we see that L is one-dimensional.

We now prove the following

TurorREM 4. Let L be the direct sum of the ideals L; (1 = 1,2,...,n). Then

(1) D(L) is reductive (resp. semi-simple) if and only if D(L,), for each 1, is
reductive (resp. semi-simple);

(2) D(L) 1s the direct sum of a semi-simple ideal and the non-abelian nil-
potent radical if and only if D(L;), for each 1, is such a direct sum;

(3) D(L) 1is non-abelian nilpotent if and only if D(L;), for each i, is non-
abelian nilpotent.

If dim (Z(L) + [L, L]/[L, L]) < 1, then

(4) D(L) 1s the direct sum of a semi-simple ideal and the radical if and only if
D (L)), for each 1, is such a direct sum,

(5) D(L) 1s solvable if and only if D(L;), for each 1, is solvable.

Proof. (1) is immediate from Corollary 3 of Theorem 1, Lemma 1 (1), (2),
and the fact that L is reductive (resp. semi-simple) if and only if L;, for each
7, is reductive (resp. semi-simple).

(3) is a consequence of (6, Theorem 6), but for completeness we write the
proof in a slightly different way. Suppose that all D(L,)’s are non-abelian
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nilpotent. Then all L,s are characteristically nilpotent, whence we have
Z(L;) C [Ls, L] for all 4. Therefore L D(L;, L;)D(L;, Ly) = (0) {or all 4, 7, &
such that 7 # j, 7 # k. Let m, and [; be the integers such that

D(L;)™ = (0) and Lt = (0),

and let m be the maximal integer of all m; and [,. By Lemma 1 (1), we have
2m—1

D(L)™ = ZD(LJ"’”JrZ S L. D@, DLy LN, DALY, - .., DIL))]

p=0 iFj

+.o.+ X [...[DWLy L), D(L; Ly)), ..., DL, L),

7, iFk. ..., IFq

where D(L;)® means the identity transformation of L, into L; for each 1.
It is clear that all the terms except the ones

m=1...[DE&)* DL, Ly, D(Ly),...,D(L,)] with i # j and p < m,
are equal to (0). But we have

L 9)} C LjD<Lj>2mvp——1 C Lg2m—p-1] — (0)’

since 2m — p — 1 > m > I;. Therefore M = (0). Thus we see that D(L)>" =
(0). Since m > 1, D(L) is non-abelian nilpotent. Conversely, suppose that
D (L) is non-abelian nilpotent. Then it is clear that all D(L,)’s are nilpotent.
If some D(L,) is abelian, it follows from Lemma 6 that L, is one-dimensional
and therefore from Lemma 5 that D(L) is not nilpotent, contrary to our
supposition. Therefore all D(L,)’s are not abelian. Thus (3) is proved.

To prove (5), suppose that dim (Z(L) + [L, L]/[L, L]) < 1. Then either
there exists only one suffix 7y such that

Z(Llo) CZ [Lioy Lio]y
or Z(L;) C [L; L;]forall 4. In the first (resp. second) case, let I be

> D(L,L)+ X D) (resp. S DL, Lj)>.

=*] 10 =+J

For 7 #£ kand j #£ k, by Lemma 1 (2) and Lemma 2 (2) we have

(= (0) if 75 jand k # 4,

l C DLy, L)y if 2 jand kB = 4,
[D(L;, Ly), D(Ly, L))] { C D(Ly) if 2 =7 and k = 1,

|CD(Lk) ifi=j:i0,

{ = (0) if 2 =73 4pand k 5= 1,

and

[D(L;, L), D(L) + D] = (0) ifi 5 igand k # 7.
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In the first case, we have

mMPC X D@,L)+ 2 DLy

4510, i =)
and therefore M@ = (0). In the second case, we have IMD = (0). Thus M
is a solvable subalgebra of D(L). Furthermore, by Lemma 1 (3) and Lemma
2 (1), it is immediate that I is an ideal of D (L). Therefore, if D(L;) is solvable
for each 7, then > ,_;"D(L;) is solvable. Since D(L) = Y "D(L;) + M, it
follows that D(L) is solvable. The converse is evident and (5) is proved.

To prove (2) (resp. (4)), let L be any Lie algebra (resp. a Lie algebra such
that dim (Z(L) + [L, L]/[L, L]) < 1). If D(L)), for each 4, is the direct sum
of a semi-simple ideal and the non-abelian nilpotent radical (resp. the radical),
then it follows from Theorem 2 (resp. Theorem 1) that L, for each 4, is the
direct sum of a semi-simple ideal .S; and the radical R, with D(R;) non-abelian
nilpotent (resp. solvable). Put S = Y ,_/"S; and R = Y ="R;. Then L is the
direct sum of a semi-simple ideal .S and the radical R. Then D(R) is non-
abelian nilpotent by (3) (resp. solvable by (5), since it is clear that dim
(Z(R) + [R, R]/[R, R]) < 1). By Lemma 1 we see that D(L) is the direct
sum of a semi-simple ideal D(S) and the non-abelian nilpotent radical (resp.
the radical) D(R).

Conversely, if D(L) is the direct sum of a semi-simple ideal and the non-
abelian nilpotent radical (resp. the radical), then it follows from Theorem 2
(resp. Theorem 1) that L is the direct sum of a semi-simple ideal S and the
radical R with D(R) non-abelian nilpotent (resp. solvable). Then L, for each
i, is the direct sum of a semi-simple ideal .S; and the radical R;, and we have
S=>1"S;and R = Y ;- R;. Therefore it follows from (3) that D(R;)
is non-abelian nilpotent (resp. solvable) for all 2. By Lemma 1 D(L;), for each
1, is the direct sum of a semi-simple ideal D(S;) and the non-abelian nilpotent
radical (resp. the radical) D(R;). Thus (2) and (4) are proved. The proof is
complete.

We note that, by Lemma 6 and (6, Theorem 1), Theorem 4 (2) is equivalent
to the following statement: D (L) is the direct sum of a semi-simple ideal and
the radical consisting of nilpotent elements if and only if D(L,), for each 1, is such
a direct sum.

4. In this section we show some properties and some examples of character-
istically solvable Lie algebras. We first prove the following

ProprosiTION 2. (1) If the radical of L is characteristically solvable (resp. the
direct sum of a characteristically solvable ideal and a omne-dimensional central
ideal), then it is a direct summand of L.

(2) If the nil-radical of L is characteristically solvable, then the radical of L is
also characteristically solvable.
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Proof. Let S and R be respectively a maximal semi-simple subalgebra and
the radical of L. If R satisfies the assumption in (1), then D(R) is solvable,
whence the image of the restriction homomorphism of ad .S into D(R) is semi-
simple and solvable. Therefore the image is (0), which shows that [R, S] =
(0), that is, that R is the direct summand of L, proving (1).

To prove (2), suppose that the nil-radical N of L is characteristically solvable.
Let © be a maximal semi-simple subalgebra of D(R). Then, since N is stable
under all derivations of L, it is immediate that the image of the restriction
homomorphism of & into D(XN) is equal to (0), which shows that ¥ & = (0).
Since R D C N for any D in D(R), we have R ©* = (0). Since & is completely
reducible, it follows that R & = (0). Thus & = (0), that is, D(R) is solvable.
[f R is not characteristically solvable, then by Lemma 4 we see that R con-
tains a one-dimensional ideal Z as a direct summand. Therefore N contains Z
as its direct summand, whence Z(N) ¢ [N, V], contrary to the characteristic
solvability of .V. Thus we conclude that R is characteristically solvable.The
proof is complete.

We remark that, in Proposition 2 (2), we cannot assert that the nil-radical
of L is the radical of L, though it is true for characteristic nilpotence case
(cf. Example 2).

As a generalization of (6, Theorem 4), we prove

ProposITION 3. If a Cartan subalgebra of L is characteristically solvable, then
L is solvable.

Proof. Let S and R be a maximal semi-simple subalgebra and the radical of
L respectively. Then a Cartan subalgebra I of L is the sum of a Cartan sub-
algebra H, of S and a subalgebra of R, and I, is a central ideal of H (2,
Proposition 1). Therefore, if H is characteristically solvable, then we have
I, = (0), whence S = (0), that is, L is solvable.

We here remark that it is easy to construct a solvable Lie algebra which is
not nilpotent and whose Cartan subalgebras are characteristically solvable.

PropPOSITION 4. Let L be the direct sum of the ideals L; (1 = 1,2,...,n).
Then L is characteristically solvable if and only if L;, for each 1, s characteristically
solvable.

Proof. This is immediate from Theorem 4 (5) and from the fact that Z(L) C
[L, L] if and only if Z(L,;) C[L;, L] for all 1.

PROPOSITION 5. Let L be a Lie algebra which has no proper subalgebra whose
derived algebra is equal to [L, L]. If [L, L] is characteristically solvable, then L
1s characteristically solvable.

Proof. Let & be a maximal semi-simple subalgebra of D(L) and suppose
that & s (0). Then there exists a non-zero semi-simple derivation D in &,
Let I be the set of all elements of L annihilated by D. Then H is an ideal of
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L containing [L, L], since we have [L, L] © = (0) by the characteristic sol-
vability of [L, L]. There exists a non-empty subspace U of L such that

L=U+H and UDCU.

We assert that [U, H] = (0). In fact, let K be the algebraic closure of the
basic field K, let LX = L @ Kand UX=U ®x K. As usual, we consider that
UX C LE and we identify D with its extended derlvatlon of LE, Let X be an
eigenvalue of D and let x be an element of UX corresponding to A. Then, for
any element y of H, we have
[x, y1D = [xD, y] = Ax, y] = 0.

Since N # 0, we have [x, y] = 0. Since U¥ is spanned by those elements x, it
follows that [UZX, II] = (0) and therefore [U, H] = (0), as was asserted. It
now follows that

(tu, vl, L] C (U, L], U] = [[U, U], U] C [H, U] = (0).
Therefore we have
(L, L] = [U, U] + [H, H],
where [U, U] is a central ideal of [L, L]. Since [L, L] is characteristically
solvable, it follows that [U, U] C [H, H] and therefore that [L, L] = [H, H].
This contradicts our hypothesis since H is a proper subalgebra of L. Thus we
see that © = (0), that is, that D(L) is solvable. By our hypothesis, L cannot

contain a central ideal as its direct summand. Therefore we conclude that L
is characteristically solvable. The proof is complete.

ExaMPLE 1. Let L be the Lie algebra over K with a basis x4, x» such that

[xlv ()Cz] = X, [x2, xl] = —Xa.

As is well known, L is a solvable Lie algebra whose derivation algebra is iso-
morphic to L. Therefore L is characteristically solvable.

ExampLE 2. Let L be the algebra over K described in terms of a basis x;,

X2, . .., x5 by the following multiplication table:
[1, X2] = %o, [x1, x3] = w3, [x1, x4] = 2xy,
[x1, x5] = 3xs, [, x3] = x4, [%2, x4] = ws.
In addition [x; x;] = =[x, ;] and for z < j [x; x,;] = 0 if it is not in the
table above. Then L is a solvable Lie algebra and [L, L] = (xq, ..., x5).
Let D be a derivation of L and let x;,D = Y ,-*Nyjx; (¢ = 1,2,...,5). Then
the matrix of D is
O >\12 )\13 }\14 )\15
0 oo Aog A3 z>\14
0 0 )\33 '“'>\12 .
0 0 0 Aoz ~+ Ass —)\12
0 0 0 0 2)\22 + )\39
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Let [L, L] = (y1,...,y0) withy; = x4, (1 = 1,...,4). Let D’ be a deriva-
tion of [L, L] and let ;D" = 3 ,1*uiy; (i = 1,...,4). Then the matrix of
D' is

M1t M12 M13 M14

0 o2 o3 Moy

0 0 i1+ oo M23

0 0 0 2u11 + poo

Therefore L and [L, L] are characteristically solvable Lie algebras. The nil-
radical of L is [L, L] and there is no proper subalgebra of L whose derived
algebra is equal to [L, L].

5. In this section, we summarize some obtained results and give some
remarks as the partial answers to the questions stated in the beginning of the
introduction.

For the first question in the introduction, we have the following

THEOREM 5. We have the following statements for the derivation algebras of Lie
algebras:

(1) An abelian derivation algebra is one-dimensional and consists of semi-
simple elements;

(2) 4 non-abelian nilpotent derivation algebra consists of nilpotent elements;

(3) A reductive derivation algebra is the direct sum of a semi-simple ideal and a
one-dimenstonal ideal consisting of semi-simple elements;

(1) A derwation algebra, which is the direct sum of a semi-simple 1deal and a
non-abelian nilpotent ideal, is the direct sum of a semi-simple ideal and an ideal
which is another derivation algebra consisting of nilpotent elements.

It would be interesting to know

(1) whether or not there exists a characteristically nilpotent derivation
algebra;

(2) whether or not there exists a derivation algebra whose radical consists
of nilpotent elements and is not a direct summand.

In connection with (1), we note that there exists a characteristically solvable
derivation algebra, for instance, the derivation algebra of the Lie algebra in
Example 1. In connection with (2), we note that, if D(L) is such a derivation
algebra of a solvable Lie algebra L, then L must be nilpotent, L? 5 (0) and
dim L > 6. In fact, it is clear that L is nilpotent. Write D(L) = & 4+ N where
S is a semi-simple subalgebra and 9 is the radical of D(L). If L? = (0), then
there exists a subspace U of L such that

L=U+L1 UNL*=(0), and USCU.
Define a derivation D of L in the following way:

x D =
yD =

forxin U,
for y in L2

[N
(o)
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Then it is immediate that [D, @] = (0). Therefore D is a semi-simple deriva-
tion of L which does not belong to &. Write D = D, + D, with D; in & and
D, in N. Let D, = S; 4+ N; be the Jordan sum decomposition of D;:.S; and
Ny are respectively semi-simple and nilpotent derivations of L and [S;, N;] =
0. Since [D, D] = 0, we see that [D,S;] =0 and [D, N;] = 0. Therefore
D — S, is a semi-simple derivation of L and [D — S}, N;] = 0, which shows
that Dy = (D — S1) + (—N)) is the Jordan sum decomposition of D,. Since
D is nilpotent, it follows that D — .S; = 0, that is, that D = .S;. Since &
is splittable, D belongs to &, which is a contradiction. Therefore L? = (0).
All the nilpotent Lie algebras whose dimensions are < 5 are determined in
(3, Proposition 1). Therefore we can calculate the derivation algebras of those
Lie algebras to see that their radicals contain non-zero semi-simple derivations.
Thus dim L > 6.
As for the second question in the introduction, we have the following

THEOREM 6. Let D(L) be the derivation algebra of a Lie algebra L. Then:

(1) D(L) is abelian if and only if L is one-dimensional;

(2) D(L) s non-abelian nilpotent if and only if L is characteristically nil-
potent;

(3) D(L) s non-nilpotent solvabdle if and only if either L is characteristically
solvable and not characteristically nilpotent or L is the direct sum of a character-
istically solvable ideal and a one-dimensional central ideal;

(4) D(L) 1s reductive (resp. semi-simple) if and only if L 1is reductive (resp.
semi-simple);

(5) D(L) s the direct sum of a semi-simple ideal and the non-abelian nil-
potent radical if and only if L is the direct sum of a semi-simple ideal and a
characteristically nilpotent ideal;

(6) D(L) 1s the direct sum of a semi-simple ideal and the non-nilpotent radical
if and only if either L is the direct sum of a semi-simple ideal and a characteris-
tically solvable ideal which is mot characteristically nilpotent or L s the direct
sum of a semi-simple ideal, a characteristically solvable ideal and a one-dimen-
stonal central ideal.

Finally, we note the following example, which shows that non-isomorphic
Lie algebras can have isomorphic derivation algebras:

ExaMPLE 3. Let 44, 4. be abelian Lie algebras such that dim A; # dim 4.
Then D (4 ;) is the direct sum of a semi-simgle ideal S; and the one-dimensional
ideal Z; (i = 1,2). Let L; (resp. L») be the direct sum of S, and 4, (resp.
S: and 4,). Then, by using Lemma 1, we see that D(L,) (resp. D(Ls)) is the
direct sum of ideals D(S,), Si, and Z; (resp. D(S1), Ss, and Z,). Since D(S;)
is isomorphic to S; (z = 1, 2), it follows that D(L,) is isomorphic to D(L,).
But L; is not isomorphic to Lo.
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