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Abstract

We study the Rg-positivity and the existence of zero-temperature limits for a sequence
of infinite-volume Gibbs measures (1g(-))g>0 at inverse temperature B associated to a
family of nearest-neighbor matrices (Qg)g>o reflected at the origin. We use a proba-
bilistic approach based on the continued fraction theory previously introduced in Ferrari
and Martinez (1993) and sharpened in Littin and Martinez (2010). Some necessary and
sufficient conditions are provided to ensure (i) the existence of a unique infinite-volume
Gibbs measure for large but finite values of §, and (ii) the existence of weak limits as
B — oo. Some application examples are revised to put in context the main results of this
work.
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1. Introduction

We consider a family of nearest-neighbor matrices (Qg)g>0 on Zy =1{0, 1, ...} with
coefficients

exp(—=Bo(x, ) >0 if x—yl=1,
Op(x,y) = x=>0,y=0. (1.1)
Qpx,y)=0 if |x —y| #1,

Here, ¢(x, y) is a function depending on the two values x, y, commonly known as the potential
of a physical system. By calling Q(ﬁm) to the mth power of the matrix Qg, from irreducibil-

ity we get that Rg := R(Qp) = (lim sup,,_, o, (Qg”)(x, /2=l is a common convergence
radius, i.e. it is independent of x € Z, (see [17, Theorem 6.1]). For each fixed g > 0, we say
that the matrix Qg is Rg-recurrent if Z:io R%"Qg")(x, x) = oo for some (equivalently for all)
x € Z, and Rg-transient when the series converges. If Qg is Rg-recurrent, we say that it is
Rg-null recurrent if lim;,_, Qg”)(x, x)R%” =0, and Rg-positive recurrent if the limit is non-
zero ([17, 18] are recommended for more details on the definitions and classification of

non-negative matrices).
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Zero-temperature limits on nearest-neighbor matrices 559

For each fixed >0, the matrix Qg induces a Markov chain, say X = (X,’f :n>0),
which inherits the same recurrence properties as Qg. Two questions arise from this setting:
(i) Does the Rg classification depend on 87 (ii) Does there exist a Markov chain X°° such that
limg_, o X# = X in the finite-distributional sense?

The existence of weak limits as 8 — oo (also called zero-temperature limits) has been
widely studied under different settings: [5—7, 15] in the finite space state, and [9, 11, 13] in
the countable case. We also recommend [4] for results on ergodic optimal problems using
weak KAM methods, and [2] for results on large deviations. The aforementioned references
deal with the problem of zero-temperature limits under sufficient conditions over either the
potential or the space of trajectories. In this article, we prove the existence of zero-temperature
limits for our model through a probabilistic approach rather than the dynamical system point
of view. More precisely, we study the Rg-positivity dependence on 8 > 0 under different con-
ditions on the potential. Provided that the weak limit exists, a precise characterization of the
typical configurations of the limiting measure are described. The rest of this article is organized
as follows: In Section 2 we review known results related to the existence of an infinite-volume
Gibbs measure for a Hamiltonian defined on the set of nearest-neighbor trajectories reflected at
the origin. In Section 3 we provide some conditions for the existence of equilibrium measures
for finite values of B. In Section 4 we analyze the existence of weak limits (i.e. in the sense of
finite-dimensional distributions) as 8 — oo. Finally, in Section 5 we analyze some application
examples to contextualize our main theorems.

2. Markov chains on non-negative matrices

Observe that in the case of nearest-neighbor matrices (1.1), for each fixed g > 0 there exists
a strictly positive solution to the problem

Ophg =R;1h,3. (2.1)

For general irreducible non-negative matrices, the existence of a strictly positive solution to
(2.1) is only guaranteed for Rg-recurrent matrices (see [18, Corollary 2]). Note that the matrix
Pg = (pp(x,y) :x,y € Z ) defined by

Poe, ) = Ry exp(—poe LD ye, 2)
p(x)

is the stochastic matrix of an irreducible birth-and-death chain X# = (X,’i3 :n > 0) reflected at
0. The matrix Qg turns out to be Rg-positive recurrent (respectively Rg-null recurrent or Rg-
transient) if and only if X? is positive recurrent (respectively null recurrent or transient). Also,
we say that the matrix Qg is geometrically ergodic if the stopping time 7y, =inf{n > 0: Xl =
y} has exponential moment, i.e. Ex(0%):= E(@™ | Xo = x) < oo for some 6 > 1. In a similar
way to [16], we need to introduce the sequence of truncated matrices Q%"] =(0Qpx,y), x=m,

y > m) and the sequence Rg ,, := R;;(Ql[gm]), m > 0, of their corresponding convergence radius.
The Markov chain related to Qg"] will be denoted by X", Clearly, Rg o = Rg and X# [0 =
XP. Note that for each fixed B =0, the sequence (Rg m)m=0 is non-decreasing, i.e. Rg;; <
Rg 1 forallm > 0.

Theorem 2.1 ([16].) Let Qg be a nearest-neighbor matrix as in (1.1). Assume R(Qg) > 0. Then
Rg.m < Rg,ms1 for some m > 0 if and only if the matrix Qg is geometrically ergodic and con-

sequently is Rg-positive recurrent. Conversely, if Rg y = Rg 11 for all m > 0, the matrix QE;]
is Rg-transient and Qg cannot be geometrically ergodic.
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From (2.1) and (2.2) we observe that, for all x > 1, the transition probabilities defined in
(2.2) satisfy the recurrence formula

pp. x4+ Dpp(x+ 1, x) = R} exp(— By (x)). (2.3)

where ¥ (x) = ¢(x, x + 1) + ¢(x + 1, x). In order to simplify our presentation we set ug(x) =
pg(x, x 4+ 1). From the obvious relation pg(x + 1, x) =1 — ug(x 4 1) we have

RS exp(—B /()
__B
W=y =l 24

with the reflecting condition ug(0) = pg(0, 1) = 1. By iterating the formula in (2.4) we deduce
that ug(x) can be written as the continued fraction

R% exp(—B¥(x)
R exp(—By (x+ 1))
| Ry exp-py(x+2)
1—---

2.1. Hamiltonians and existence of Gibbs measures

In a similar way to [8, 16], we introduce a brief presentation concerning the existence of
Gibbs measures. Let 2 be the space of trajectories of nearest neighbors reflected at the origin,
ie. Q={xe Ng :|xk — xx+1| = 1 for all k € Z}. Given a discrete interval [i, j] C Z, i <j, and
x € 2, we denote by x[i, j] = (xi, Xiy1, . - ., Xj—1, X;) the coordinates of x in the interval [i, j],
and Q[i, j] = {x[i, j1: x € Q} the restriction of €2 into the interval [i, j]. For each x[i, j] € [, j]
we consider the Hamiltonian

j—1
M) =D ¢k Xy 1)- (2.6)

k=i

By keeping fixed the states u, v at sites i — 1 and j+ 1 respectively, we now define, for
x[i, j1~ (u, v), H'{i’j](x) =H[i jj(x0) + d(u, x;) + ¢(x;, v), where x[i, j]1 ~ (u, v) is used to denote
the restriction |x; — u| = |x; — v| = 1. The Gibbs measure over the finite interval [Z, j] at inverse
temperature § and boundary conditions (u, v) is

lil[li”;]’ﬂ(x) = exXp (_,BHIE,;](X)),

1
L
2118

where

u,v u,v
Zine= D exp(=BH{; ()
xeQlijl:
i j1~Gev)

is the partition function associated to the Hamiltonian "H,ﬁ;] in the interval [i, j]. For any
[¢, m] C [i, ] and X € Q2[£, m], we notice that
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- 1
iy, p®) = Z > exp (—BHHW).

[iJ1.B xeQlijl:

x[€,m]=x

From a direct calculation, we get, for X € Q[¢, m],
u,v 1 X,V
I'L[l]] ﬂ( x) = u,v Z[l 2—1], eXP( ﬂH £,m] (x))Z[m+1] 1.8
[i,j],ﬁ

where Z i e 1.8 and me Vl jl.p are the partition functions over the intervals [i, £ — 1] and

[m+1,/] respectlvely Recalhng the definition in (1.1), the following equalities are valid:

u,xg _ AU—=i+1) X,V (j—m+1)
Z[l',efl],ﬁ - Q/S (us Xg), Z[m+1]] ,B = Qﬁ (.Xm, V),

and therefore, for x € Q[¢, m],

t—it+1 j—m-+1
0 V. x4 " (. v)
)
Y . v)

Ml[di’;])ﬂ(i) exp(_ﬂH[ﬁ,m] ().

[10, Theorem C] states that in the thermodynamic limit [i, j] /' Z there exists a unique equilib-
rium measure pg(-) associated to the Hamiltonian H'[‘i’j]() at inverse temperature 8 > 0 if and
only if the matrix Qg is Rg-positive recurrent. In this latter case, there exist Ag = 1/Rg > 0, an
eigenvector hg > 0, and an eigenmeasure vg > 0 with strictly positive components such that

D exp(—Bpx, hp(y) =rghp(x), Y exp(—B(x, Y)vp(x) = 1pvp(y),

y=0 x=0
and hg, vg can be chosen satisfying Y o2 hg(x)vg(x) = 1. Moreover,

lim R?}n+A(x })Q(2n+A(x y))(x y) =g (y)hﬂ ()C)
n—oo

since A(x, y)=x —y (mod 2). The equilibrium measure g(-) (which is independent of the

boundary conditions u, v) is a Markov chain with stationary distribution 7g(x) = hg(x)vg(x),

x >0, and transition probabilities given by (2.2), so that, for all x € Q[I, m],

m—1 =~

i y hp(Xk+1)
BHem®) = Aphp(r)

xp (BHie,m (D) ”ﬂ(”)g Aphp (k)

g(Xe)hp(Xm) .

x) =
Hp X5 hg ()

exp(—Bo Gk, Xx+1))- (2.7)
Remark 2.1. The Hamiltonian defined in (2.6) can be written in terms of yr(-). We first set

Miji(xsa, b)= Zﬁ;ll 1{x,—a,x,,=b), the number of transitions from a to b. It is not difficult to
notice that

M@= ¢ a+ DNij(aa a+1)+oa+ 1 aNijxa+ 1, a).

a=0

In the particular case x;=x;, j=i (mod2), we necessarily have j\/[,-,j](x;a,a—i-
D=Mijix;a+1,a). Since Y(a)=¢(a, a+ 1)+ da+1,a), we now get Hjjj(x)=
Yoo V(@Niji(xa+ 1, a).

https://doi.org/10.1017/jpr.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2023.59

562 J. L. CURINAO AND G. C. RINCON

To conclude this section, we present some useful bounds for the sequence Rg ,, m > 0. Let

us define
2
2 = (@Y m = > exp(—pHaW), 2.8)
xeQ"0,2n]:
Xo=X2p=m

where QU = {x € Q: x; > m for all k € Z} and Ho,(x) = Hio.20)(x). Similarly, for m < m’ we
[m,m']

consider the finite matrices Q 6 with coordinates m <x <m’ and m <y <m’. In this case
we write
' ,m']\ (2n)
2 = (0" ) my= 3" exp(—BH(0),
xeQUmm'10,20]:
X0=Xo,=m

where Q"1 = {x € Q:m < x; <m' for all k € Z}. We now define the power series
o0
ZMn=>"r"zl, 2.9)
n=0

/ /
and similarly, for m < n?/, Zg"’m](r) =3 rz”Zé:l"’;f]. From the monotone convergence

theorem we get lim,y_, o Zgrﬁ’gl/](r) = Zé:i]ﬂ(r) for each 0 <r <Rg,, fixed. Let us deduce
now some general bounds for Rg,, and Rg = R(Ql[gm’m,]), 0<m<m'. First, we
set oy = infysy Y (X), Ay = MiNy<y oy ¥(x). For each x € QU such that xg = xa,, the
Hamiltonian satisfies H,(x) > no,, (see Remark 2.1). From (2.8) we get ng’]ﬂ 52&':,]0
exp(—nfoy). Since Z)') = Card(QU™[0, 2] : x0 = x2, =m), from (2.9) it follows that

Z/[Sm](r) < Z([)m](r exp (Bay,/2) ), and thus

Rg.m = exp(Bam/2)Rom. (2.10)

Following the same ideas, from the inequality Zg:”;"/] 5251"’6"/] exp (—nfay ) we

get Z/[gm’m’](r)fz([)m’m/](r exp (—Bd.w/2)) and hence we obtain the preliminary bound
Rg imm'] = exp (Botm,m'/2) Ro,jmm')- When =0, the values of Ro | and Ry can be
computed explicitly. Since Q([)m’m] is a tridiagonal matrix with constant coefficients, from

the Perron-Frobenius theorem we have that the convergence radius is strictly positive and
it is the inverse of the spectral radius. [14, Theorem 2.2] states the main eigenvalue is
ALY =2 cos (/' — m+2)), 50 Ropmmy = 1/28"™™). From [17, Theorem 6.8] and by
taking the limit m’ — oo we actually get Ry = Ry, = 1/2 for all m > 0, which implies that
le] is 1/2-transient. The sequence of truncated matrices Q([)m] remains constant, in particular
Q([)l] = Qo, and therefore the matrix Qg is always 1/2-transient.

3. Existence of equilibrium measures

The behavior of (¥(x))x>0 plays a crucial role in the recurrence properties of Q. Keeping
this in mind, we review in more detail the main assumptions of this work.

(CO) The function ¥ (x) has a minimum, denoted here by a(¢) := miny>o ¥ (x) > —oo. We
also assume that there exists a subset M C Z such that ¥/ (x) = a(¢) for all x € M and
infyez \ M ¥ (x) = a(p) + A for some A > 0.
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Provided that (1) holds, we have one of the following:

(C1) M is finite, i.e. the minimum is attained in a finite number of indices.
(C2) M is a sub-sequence {xi}i>0 satisfying limy_, oo X = 00.

Without loss of generality we can assume o(¢) =0, since in any other case we only
need to take J(x) =Y (x) — a(¢p) and the argument does not vary. Observe that when (CO)
and (C1) hold, liminf,_, o, ¥ (x) > a(¢) + A. Hence, there exists Ny > 0 and & > A such that
am > o) + ¢ for all m > Ny and oy, = a(¢). We now state our main results of this section.

Theorem 3.1. Assume that (C0O) and (C1) hold. Then there exists 0 < B, < 00 such that, for all
B > Bc, the matrix Qg is geometrically ergodic.

The following corollary establishes a similar result when v diverges to infinity.

Corollary 3.1. Assume that (CO) holds and that lim,_, o, ¥ (x) = 0o. Then, for all B > 0, the
matrix Qg is geometrically ergodic.

The proof of these results will be derived at the end of this section. The case (C2) has more
complex behavior depending on the local (and global) configurations of those values where
Y (x) = a(¢). To describe it in more detail the next definition is required.

Definition 3.1. We say that the discrete interval Iy, ¢ =[x, xo +£ — 1] is a run of size
£ > 2 (the value £ = oo is permitted) for the matrix Q/[Sm] if ¥ (x) = a(¢) forx € [xg, xo + € — 1),
Yxo+£€—1)>a(p),and y(xg — 1) > a(p) if xo >m+ 1.

Let R be all those values of x € Z, in some run of Qg. Each x € R belongs to a unique
run of size 2 < ¢ < 0o, so that R can be partitioned into the form R = U?‘;z Re, where Ry is
used to indicate the collection of runs of size £. If ¥ has no runs of size ¢ we write Ry = .
For each non-empty R, we can find {xt};<x<|r,| (possibly an infinite sequence) such that
Re= U}ﬁ{ I,.¢. From the construction, we notice that Iy, ¢ Ny, = @ if either k £k’ or
£ # £'. We now define

Lmax = Lmax(Qp) = sup{¢ >2: Ry # 0}, (3.1)

which is allowed to be infinite (the value of 8 has no influence in the definition of £,,x). The
following lemma establishes a preliminary bound on the convergence radius in terms of £yax.

Lemma 3.1. Assume that (CO) holds with a(¢) = 0. For every m >0, 8 > 0 we have
1 ) 1

- <R} < ,
477" 4 cos? (z/ (et + 1))

(3.2)

where Z%]x = Zmax(Ql[gm]). In particular, if Z%]x =00, then Rlzg = 71; is constant.

Proof. Suppose first that E%"a]x < 0o. Observe that, for each fixed m > 0, the inequality
% =R%’m < R}zgym applies when ¥ (x) > 0. Now, if I, ¢ is a run of Ql[gm], with2 </{ < EL’QX and
I, I,
xo = m, then Rg », < R(Qﬂo’e), where Qﬂol == (Qp(x, y); x, y € Iy, ¢). From [14, Theorem 2.2]
we know that
Iy

0ty 1
R(Qy )_2cos(n/(e+1))

(the inverse of its largest eigenvalue). The inequality (3.2) is obtained by taking £ = EI[T’;Q]X.
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Now observe that £;,x = co implies EL’{QX = oo for all m > 0. From its definition in (3.1),

we can find a sub-sequence {ELm]}kZ 1 satisfying limg_, o EL’"] = oo such that

o 1
—<RY <
4= 7P g cos2 (/ (6™ +1))

holds for every k > 1 (this is possible by taking the convergence radius of the truncated matrix
1 iml
x0.¢ . . . . . .
0 ﬂo K where IX0 (= 1s a discrete interval contained in some run of Q/[SM])' The proof finishes
s

by letting k — oo. (]

Remark 3.1. The matrix Qg is Rg-recurrent if and only if Po(7o < 0o) =1. From [8] we

know that this is equivalent to the condition Fo(Rg) =1, where {F(Rg)}>0 is defined

recursively as

R} exp(—BY (x)
1 —Fep1(Rp)

If (CO) holds with £;,x = 00 and a(¢) = 0, from Lemma 3.1 we get that Rg ,, = % forall m > 0,

B > 0. This implies that Ré exp(—Bv¢¥(x)) < JT for each x > 0, and thus

]:x(Rﬁ) =

x>0.

Fkrp<— M 1 (3.3)
P | 1/4 2
M
1—...

In particular, Fo(Rg) < % < 1, so that Qg is %—transient for all 8 > 0. The same occurs if the
limit limy—, o0 ¥ (x) = at(¢) = 0 exists. From (2.10), and recalling that R ,, = 3,

% exp(B inf Y()/2) = Rpm < % exp( sup ¥()/2).

x>m

By letting m — oo, since lim,_, o ¥ (x) = 0 the only option is lim;, 00 Rg m = %, and conse-
quently Rg ,, = % for all m > 0. Hence, (3.3) applies in this case and we conclude that Qg is
%-transient for all 8 > 0.

The next theorem establishes the behavior of Qg for finite £yax.

Theorem 3.2. Assume that (CO) and (C2) hold, and assume that Lmax < 00. If the number of
runs of size £max is finite, i.e. | Ry, | < 00, there exists B. < oo such that, for all B > B, the
matrix Qg is geometrically ergodic.

The proof relies on Proposition 3.1, so is given at the end of this section.
Proposition 3.1. If (CO) and (C1) hold with EH{;]X < 00 and a(¢) =0, for all m > 0 we have

1
" 4cos? (n/(&[,'{;]x +1))

= coo(2lM),

. 2
lim Rﬂ,m i

B—00

Proof. Since R2 18 a non-decreasing function of 8 and it takes values in the interval [}T, 1],

the limit exists. Moreover, from (3.2), we deduce that limg_, R%},m < Coo (Z%]x). To prove the
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converse, let us first introduce the random variable

Nout(n, XP:Imly .= ZN[O o (XPM: a, a4 D1y (@)>0}-

a=m
We also recall the identity
Q™ (x0, x0) = Ry Py (X5, = x0). (34
To simplify the proof, let us assume that the initial state is Xg oIl = xo, since [ o.M isarun
of size Er[ff’a]x. Observe that
n
P (X5 = x0) = > Py (X5, = x0, Now(n, XP 1) =1). (3.5)
=0

We now fix Nom(n, Xﬁ’[’"]) =t, with t>0. For any sequence X0, 2n]= (Xp, X1, ..
Xon—1, Xan) € QUM[0, 2n], let us define

i)

Tin(xX[0, 2n]) := {k € [0, 2n) : X and X4 belong to the same run},
Tow(x[0, 2n]) := [0, 2n) \ Tin(x[0, 2n]).

We emphasize that only sequences_ satisfying Xo =Xy, = xo are considered. For any subset
7 - [0 2n), we write x[0, 2n] ~7 to denote that Tin (X0, 2n])_I From the identity
Card(Z) = 2n — 2Ngy(n, XAy = 21 — 2¢, we have

Py (X" = x0, Now(n, XMy = 1) = Y Yo P (XM =T 1 <k <2m).

Zcj0.2n):  X0,2n)~Z
Card(Z)=2n—2t
~ (3.6)
Given a fixed Z C [0, 2n), from either (2.2) or (2.7) we have

Y P (M =% 1 <k <2n)
70,2n]~T

2n—1
RZ” Z exp(—,B Z ¢>(5Ck,56k+1)>

%0,2n)~Z k=0

=RZ, Y. exp (—ﬁ D oG T — B Y ¢l 5Ck+l))’

%0,2n)~Z keZ ke®

where O = [0, 2n) \ 7. For every k € O we know that Xy and Xy are not in the same run. On
the other hand, since Qg"] is a nearest-neighbor matrix, the number of visits coincides:

N0,2m &[0, 2115 X, K1) = No,20 (X(0, 2115 Xkt1, Xk). (3.7
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Recalling  that Card((5) =2t, since Xk, Xg+1) + ¢(Xk+1, X)) = A we  have
> ke PGk, Xrq1) > tA, leading to the inequality

Yo P M =1 <k <2m) < RPN exp(—ﬁ > bk ka).
[0.2n)~Z %0.2n)~Z ke

(3.8)
i>—n,,» With the conven-

i,m~€i,m}

In the rest of the proof, the runs of Ql[gm] will be labeled as {I

otm 18 the first run of length El[gé]x (i.e. for

stmax

tion that x; ,, < Xy, for i < i and xq_, = xo, since Ix0

[m]

—ny <i<O0therunly,, ¢ . has size at most £nz, — 1). For any %[0, 2n] ~ f, we now set

i,ms

Zim=1{k €10, 2n): %y and Fei1 belong to I, ¢, ), > "y, (3.9)
Observe that fi,m N f,-/,m =@ wheni#i. Sincegard(z',m) := 2t; for some t; > 1 iff,-‘m #0,it
follows that the number of non-empty subsets {Z; ,}i>—p,, is bounded by . Hence, there exists
a finite value, say imax, such that Z = U;‘:‘f Tim, SO

Nm
Imax

DG B =) Y Gk Tr).

keZ I=—npm kele-,m

Notice that 2t; = Card(fi,m), i > —n,y, is the total time that X#-[" stays in Iy; , ¢;,, up to the
instant 2n. Also, for i > 0, observe that Zkef,-m @ (Xk, Xg+1) is the contribution of a path of
nearest neighbors with 27; transitions that starts and ends on Xj,m» restricted to not leave I, , ¢ .-
For i < 0, the same argument applies, with the only difference that the path starts and ends in
Xim +Lim — 1. Let O] := (X1 be the restriction of X[0, 2n] onto O. For any sequence
%[0, 2n] such that X[O] =xg is fixed, the subsets Z-,m defined in (3.9) are kept fixed too.
Therefore,

D exp (—ﬁ > b, mn)

%0,2n1~Z: keZ
A[Ol=x5

= ) exp(—ﬂ > Z¢(5ck,5ck+1>>

(0,201~ i=—nm keZ; ,
Ol=x5

= Z l_[ eXP(—ﬂ Z ¢(5Ck,5fk+1)>

x0,2n]~T: I=—"m keZim
X[Ol=xs

imax 2—1
= 1_[ (xelnlax Z eXp(—ﬁ Z ¢(5C‘k1 -%k—i-l)))- (3.10)
. .

i=—tip, mebim 510,241 ~[0,24 k=0
Yoo =

Now, for each typical path considered on the right-hand side of (3.10), we know that X; and
Xk+1 are in the same run, and from (3.7) we deduce that Zigl @ (Xk, Xk+1) = 0. Also, the
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maximum in (3.10) is over the paths with 2 transitions restricted to not leave Iy, ,, ¢;,,- This

1,msAi,m ez m_l
can be computed by taking the 2¢;-power of the truncated and finite matrix Q, L X1.mt I

By using the Perron-Frobenius theorem, it can be shown that
O I (O

im
n=00 (208 (1/(Lim + 1))

where the limit only depends on x and ¢; ,, (see [14, p. 65] for a more precise characterization
of C(x, £; ) in terms of Chebyshev polynomials). Hence, for i > —n,,,

2ti—1
__max > ] em(—ﬁ > ¢>(5Ck,5€k+1))

=C(x, £im) > 0,

XimoLi

s X[O 21‘,] [0,2¢; k=0
Xo=Xpy;=x
Dy(¢;
—  max (Q[xo o+ m—11 )(2tl ( ) < ()( i, m)t (3 11)
xe,"l mlim (COO(el m)) !

where Dy(¢;,,) is a finite constant depending only on ¢; ,, and coo(4; m) > coo(E%]x). Since the
number of different configurations in O is bounded by (2;) < 4! the number of different runs
visited is at most ¢, and Z’.ma" . 2t; =2n — 2t, from (3.8), (3.10), and (3.11) it follows that

1I=—n,

B.lm] _~ 2n —BANt s D (EI[T’QX)
Yo P eRsl<k<2n) <RY, @Y [ — i
%0,2n)~T i=—n ( (zmaX))

5 Rﬂ’m 2n—2t
(4e Dz(ﬁmaX)Rﬁ m) —[m] ,
Coo (Emax)

(3.12)

where D(ZL’{QX) = max gl 1 Do(¢4;,,) and D2( max) max (l D(E%]X)) For fixed t > 0,

2<lim
we can find at most (2") dlfferent forms to choose Z. Combining (3.6) with (3.12), and setting

0 =2/ D (Chmk ) Rp.m exp(— B A /2), (3.13)
we now get

. " 5 R 2n—2t
p.0m] mly ") o2 pm
; ]P)XO (X2n =Xx0, Nout(n, Xﬁ [m]) - t) = Z <2t)9ﬁl( )

=0 Coo emax

2n
B <2n>9t ( Rﬂm )
=< . )8

=0 maX

2

( Rom ) " (Heﬁ coo(eLz’;]x))

= —27 —
Coo( %]x) pom

(3.14)
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From (3.4), (3.5), and (3.14),

nglm = lirrlrisolip ((Qg"])(zn)(xo, x0)) 1721 _ Jim sup Ry’ mIP’xO (X'zgr’l[m] =x0) 1/2n

B/ oo (Lo
! (1+ VS ( )> (3.15)
)

(K%x R'g’m

Finally, seeing that c (e}{,'g]x) <1, from (3.13) we get

04/ Coo (£
0< lim ﬁm mhm exp(—pA/2) =0,

B— o0 Rg.m
and the proof finishes by letting § — oo in (3.15). O

We now provide an analog result under the hypotheses (C0) and (C1).
Proposition 3.2. Assume that (CO) and (C1) hold with o(¢)=0. Then limg_ oo R,23 =

Coo(Cmax)-

Proof. As mentioned in the proof of Proposition 3.1, the limit exists and satisfies
limg_, oo R% < coo(@max)- Now, if (CO) and (C1) hold with a(¢p) = 0, there exist Ng > 0 and A >
0 such that 1 (Np) = 0 and y(x) > A for all x > Ny + 1. Given fixed M > 10, we now consider
a matrix Q;S such that v’ (x) =0 if x = Ng + kM for some k> 1, and ¥'(x) = v(x) in all the
other cases. Observe that Q;S fulfills (CO) and (C2) with ZmaX(Q:g) = lmax(Qp) = €max < 00 and
a(¢) = 0. By applying Proposition 3.1 to the matrix Qj for m =0 we have limg_. o R2(Q;3) =
coo(ﬁmax(Q;S)) = Coo(lmax). Since 0 < v'(x) < (x) for all x>0, it follows that R2(Qﬁ) >
RZ(Q;S) for all B >0, therefore coo(€max) = limg_s oo RZ(Q,g) > limg_, o0 RZ(Q:B) = Coo(max),
and the proof is done. (]

3.1. Proofs of the main theorems

We can assume «(¢) =0 without loss of generality. In fact, if Q,g is a matrix such that
w(x) Y (x) — a(¢) for all x > 0, from the definition of the convergence radius we have

Rz,m =exp (Ba(@)RS,.  B=0,m=>0, (3.16)

where R2 =R? (Q 5 ) =R? (é 5 ) Note that R2 5.m 15 the value obtained by letting
a(p)= O Slnce the multlphcatlve term exp (Ba(¢)) has no influence in the Rg-classification,
for every fixed 8 > 0, the matrices Qg and Qﬂ have the same recurrence properties. Moreover,
for every m > 0, the value of the quotient

Rem _ Rgm

R m+1 B T?,B,m+1
is independent of «(¢), and therefore the use of Theorem 2.1 does not depend on its value.

Proof of Theorem 3.1. Assume a(¢) = 0 for simplicity. From Theorem 2.1, we only need to
prove that, for some m > 0, we have Rg ;; < Rg u+1 for each B > .. From assumption (C1),
there exists Ng and & > A such that ¥ (x) > a(¢) + ¢ when x > m > N.
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Since Ry n = % from (2.10) we obtain Rg ,, > % exp (Be/2). On the other hand, if (CO) and
(C1) apply, the function ¥ has a run of size at most £max < No + 2 and therefore v/coo(€max) 1S
an upper bound for Rg. A sufficient condition to get Rg < Rg ,, for some m > Ny is

1 1
Rg < — 2) < Rg .
P = S cos () (b + 1)) ~ 2 SXPPED = Rpm

By choosing . = —(2/¢) In (cos (r /(€max + 1))) > 0, we have

Be 1
exp —) >
2 cos (77/(€max + 1))

for all B > B, finishing the proof. (]

Remark 3.2. Corollary 3.1 follows by using the same argument as in the proof of Theorem 3.1,
using the fact that, for all L > 0 large enough, we can find N;, < oo such that inf,. n, ¥ (x) > L.
This implies that, for all 8 > —(2/L) In (cos (7 /(€max + 1))) > 0, the matrix Qg is geometri-
cally ergodic. The proof finishes by letting L — oo.

Proof of Theorem 3.2. We follow a similar approach to Theorem 3.1 with a(¢)=0.
Under the main assumptions, there exists Ng > 1 such that the function ¥ (-) restricted to
[No + 1, 00) has a run of size at most £max — 1. By applying Proposition 3.1 to the matri-
ces Q%NOH] and Qg we get cm(C%’XJr”) :lim/g_woR,zg)No+1 and coo(emax):limﬁﬁooR%.

Clearly, coo(max) < Coo (Z%’;”) and thus, for all 8 large enough, R% < Coo(lmax) < Ré No+1 =
Coo (ZLI,\Z?XH]) because Rg and Rg n,+1 are non-decreasing on B. O

4. The existence of zero-temperature limits

This section is devoted to studying the existence of a weak limit for the family of equi-
librium measures (ug(-))g>g. as B — 0o, which is equivalent to the convergence of the
finite-dimensional distributions. In the countable case, this is reduced to the existence of a
measure, say [Loo(-), such that poo(¥) =limg, o ug(X) for each x € Q[i, j], i <j (more details
related to the convergence on probability measures can be found in [3]). Since pg(x, y) =0 if
|x —y| # 1, we only need to show the existence of a limit for the stationary measure 7g(-) and
the transition probabilities given the recursive formula (2.3). The following proposition shows
the convergence of ug(x) =pg(x, x+ 1), x > 0.

Proposition 4.1. Assume that (CO) and (C1) hold, or that (CO) and (C1) hold with £yax < 00.
Forall x> 1,

| 0 Y@ > o)
lim ug(x)(1 —ug(x+1))=
B— 00 Coolmax) Y (x) =a(g).

Proof. From (3.16) we know that R? :R/23 exp(—Ba(¢)), where k% is the convergence
radius obtained with a(¢)=0. By using Proposition 3.1 or 3.2 respectively, limg_, R%
exp(—Ba(¢)) = limg_, o Tefg = Coo(lmax). If ¥(x) = a(¢p), from (2.4) we deduce that

Jim (1 = pxF D) = Jim R exp(—per($)) = coo ).
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Similarly, if ¥ (x) > a(¢) + A,

0 <limsupug(x)(1 —ug(x+1)) < l1m R exp(—Ba(p)) hm exp(—BA) =0,

B—o00
concluding the proof. (]
Remark 4.1. If (CO) and (C1) hold, then

lim( sup u,g(x)>=o. @.1)
B—00 \ x>Ny+1

Since ¥ (x) > a(¢) + A, from (3.16) and Lemma 3.1 we have
eXp( Y(x) < R exp(—BA) < coo(Umax) eXp(—BA).
Combining this with (2.4) we get

Rlzg exp(—ﬁl/f(x)) < Coo(gmax) exXp (_IBA)

CEIIE T LG D S T—ma D)

. x>No+ 1. 4.2)

We now choose 8 > ﬁ with ,B =—(1/A)In(1/4co(€max)) > 0, so that coo(Zmax) exp(—BA) <
1 . By using the above inequality iteratively we have, forx>No+ 1, 8 > /3

0<ug(x) < Coo(€max) exp(—BA) - 1/4 _ l
N T o 7 S VR
" coollua) exp(—BA) A
| — Coo(€max) €xp(—BA) 1— ﬂ

In particular, 0 <ug(x+1) < 5 L for all x> Ny + 1. From (4.2), it follows that 0 < ug(x) <
2¢o0(Umax) eXp(—BA) unlformly onx>Ny+1, > ,8. By letting 8 — oo, we get (4.1) as
desired.

From (2.7), when a(¢) = 0 we see that, for each x € [0, 2n], n > 1, such that xg = xp,, the
equilibrium measure has the upper bound

(O = Ty(xo)Rg exp(—p max v(xo).

so that limg_, oo g (X) = 0 if ¥ (x;) > 0 for some 0 < k < 2n. Observe that when the conditions
of Proposition 3.1 or 3.2 are satisfied, if x; € Iy,,¢ for all 1 <k < 2n, since Iy, ¢ is a run of size
£ we have ug(x) =g (xo)R%”, so that limg_, oo g (X) = Moo (X0)(Coo(€max))" provided that the
limit w4, (-) exists. This means that the candidates to have strictly positive probability mass are
those trajectories restricted to R. The following theorem proves the tightness of the family of
stationary measures (7g(-))g> g, under our main assumptions.

Theorem 4.1. Assume that the number of runs of size €max < 00 is finite. Let mg(-) be the
stationary measure associated to XP, B > B.. Then, there exists a limiting probability measure
Too(-) satisfying limg_, oo Z:izv(ﬁ-z ng(x) =0 for some Ny > 0. In particular, m(x) =0 for
all x> Ng + 2.

https://doi.org/10.1017/jpr.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2023.59

Zero-temperature limits on nearest-neighbor matrices 571

Proof. Let us recall first that, up to a constant (see, for instance, [1, Theorem 3.2]), the
stationary measure 7g(-) can be represented in the form

Ta—l o0
wp(b) = Ea< > 1{X5:b}> =Y " PuX] =b.7,> k). 4.3)
k=0 k=0

We denote by No + 1 the largest non-negative integer belonging to a run of size £yax, Which
is well defined since v has a finite number of runs with size £yax < 00. We necessarily have
Y (No) =0 and ¥ (Ng + 1) > 0. From (4.3), by using a = Ny + 1 and by taking the sum over

b > Np + 2 it follows that
TNy +1 -1
p(INo +2, 00)) = Eny 11 ( > l{X,’szo+2}>'
k=0

Clearly, mg(No + 1) =1 for all 8 > B.. We remark that Typ1 Can take only even values. Now,
if TNl = 2n for some n > 1, in order to get at least one visit to the interval [Ny + 2, 0o) we

need Xg =X§n =No+1 andX,/f > No+2forall 1 <k<2n-—1, so that, for each fixed n > 1,

2n—1
2n ~[No+2]
]EN0+1< Z 1{X3>No+2 Ty, +1—2n}> = exp(=F¥ (Mo + DR nzznoz B’

where 2217\11042—2/5 was defined in (2.8). Therefore,

7(INo + 2, 00)) = R} exp(— ¥ (No + 1)) Z RZ"zg;’O;z .
n=0

By noticing that Zgjogr A g2 Pny+2 (Xéir,l[No+2] = Ny + 2), where X#:[No+2] i5 the Markov

Notn B.No+2
+
Q[ 0+2]

chain associated to , we now get the inequality

Rﬂ 2n
ma([No + 2, 00)) < Rg exp(— ﬂw(No—l—l))Z( ) . (4.4)

/3 No+2

We claim that Rg/Rg n,4+2 <« for some « <1 and B large enough. If (C2) holds, from
Proposition 3.1 we have

R% _coollma)
/3 No+2 Cm(er[r]:g)x+2])
If (C1) holds, we use the inequality Rg ny4+2 > 1 5 exp(BA /2) and Lemma 3.1 to deduce that
R2 /R,g Not2 = <4coo(lmax) exp(—BA). In both cases, there exists ,3 < o0 such that

@

R2
k2= sup e P -1
p=p Rp.ng+2

By taking the limit § — oo in (4.4) we get
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1
lim 7g([No +2, 00)) < —— lim Rj exp(—By(No + 1)) =0, (4.6)
B—>00 1 —«2 p>oo
concluding the proof. (|

From Prokhorov’s theorem the existence of accumulation points for the sequence
(mg(-))g>p. is guaranteed. On the other hand, our theorem implies that woo(Iy, ¢) =0 for
gach run of size ¢ < £max. In fact, if we consider the finite and strictly sub-stochastic matrix
Pg=(pp(x,y):x,y €Ly, ¢) with coefficients as in (2.2) and the stopping time Ty, xy+¢ =
min{ty,_1, Tyy+e¢}, We have, for y el ¢, Py, (X,'? =Y, Txp,xo+0 > n) = i’;")(xo, y). From the
Perron—Frobenius theorem, there exists an eigenvector }Nllg >0 and an eigenmeasure Vg >0
such that, for each y € I, ¢, we get lim, éénngA(xo,y (x0, y) = hg(x0)Dp(y) for some
é,g <1 (we recall that A(xg, y) =xo —y (mod2)). If we choose ¥ satisfying > Dg(y) =1
we also get

T Pry (XD, 4 Ay = | Troutorte > 21+ Alxo, ) = T(0).

Here, the parameter éﬁ =Rg/+/co() is the survival rate of the killed process XP =
(Xﬂ n> O). This means that, for large of values of B, the killed process 5(/3 has

n/\rxo,xo-%-(/,
a quasi-stationary distribution Vg with survival rate 6g. We know that if the assump-
tions of Proposition 3.1 or 3.2 are fulfilled, then limg_, R% = Coo(fmax) and consequently

1img 00 O = v/Coo(lmax)/Coo(£) < 1 When £ < £1nay. From the same analysis, we obtain, for
a run of size £yax, that its survival rate satisfies limg_, 55 = 1. Intuitively, for large values
of B, once the Markov chain is attracted for a run of £pax, it will remain trapped there for a
long time. The same occurs for each run of size 2« and this explains why 7o (-) gives strictly
positive mass to each of these runs of size €.

5. Examples

In this section we review in more detail some particular examples that can be analyzed more
explicitly. Let us introduce first, for all x > 0,

r 70 o0 r n
X :Ex —_— 1'[< = —_— ]P)x =n), OE Rg.
Fi(r) <<R,3) ™ oo}> ,Z(:)(Rﬂ) (to =n) r<Rg

For each fixed 0 <r < Rg, the sequence (Fx(r))x>0 satisfies the recurrence formula

Fo(r)=re PP =D E (1) + re PPFD (), x>2, (5.1
Fi(r)=re PPL0 4 e POUD T (1), (5.2)
Fo(r)=re PPODF (). (5.3)
Defining
_ A0 gt
Gr(r) = ]:x—l(r)e ,
from (5.2) and (5.3) we get
2e—BY0)
=1, Folr) = —————. 5.4
Gi1(r) o(r) G0 (5.4)
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From (5.1) we have
rle—BYG—1)

X =1-
Grt1 (1) Gu(r)

. x>2. (5.5)

5.1. Example 1: Ultimately constant potential, case 1

We first consider the case ¥ (0) = o, ¥ (x) =« + A, x > 1, for a pair of real values o, A € R.
This is a particular example of an ultimately constant potential, previously introduced in [8].
Note that, for x > 2, we get the continued fraction

P2e—Blatn) P2e—Bla+n)
Gx(r) = =G = Gun)= e Parh) (5.6)
- 2e—Blat+a)
- Ple—Blat+h)
|
In particular, G,(r) = G(r) is constant for all x> 2, and this can be deduced by solving the
equation
1 — /1 — 412e—Bla+n)
G = G(r) =rPe Perd o g = = , 5.7)

because from (5.6) we know that lim,_, g+ G(r) = 0. Recalling that ¥(0) = «, from (5.4) we
now deduce that

Fo(r) = ref =ef2 1= V1= Are7Fetd) )
1/l aere 2
B 2

Clearly, if A <0, then Fo(r) < %eﬂA 5% for all 0 <r < Rg. Therefore, the matrix Qg is
Rg-transient for all 8 > 0. When A > 0, the critical value 8. =1In (2)/A is such that

Rg-transient if 8 < B,
Qgp is | geometrically ergodic if 8 > f,
Rg-null recurrent if B =Be.

To prove this, we first remark that the convergence radius of Q/[Bm] is Rg m = 5eB/2@HA) for

allm > 1. Since Rg < Rg 1, we automatically have Fo(Rg) < Fo(Rg,1) = %eﬂA <l1for0<pB <
Be, so that Qg is Rg-transient. Similarly, for 8 = 8., we have Fo(Rg,1) = 1 and thus Rg = Rg 1,
giving Fo(Rg) =1 and consequently that Qg is Rg-recurrent. Recalling that lim,._, R; Fyr) =
Eo(70), the null recurrence is deduced by taking the derivative

) , o ePA 4re~Plath) ) 2re— B
lim Fy(r)= lim —— = lim =
r—>Ry r—Ry 2 V1 —4r2e Perd) o pe 1 —4re=Pleth)

Finally, for 8 > 8., we have Fo(Rg 1) > 1. The only option is Rg < Rg 1, therefore Qg is
geometrically ergodic. The value of Rg is the solution to the equation

1— /1 —4Rge Pt
JA( ):1, (5.8)

2
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giving R% =eP(1 —e P2). Since Qg is Rg-positive recurrent, for > B the main eigenvalue

is Ag =1'e/;1 = e B /(1 —eBD).

Let us compute now the transition probabilities and the stationary measure of X# when
A >0 and g8 > .. Since XP is reflected at the origin, pg(0, 1) =1 for all B > 0. To compute
ug(x) for x > 1 we use the recurrence formula (2.5):

REe—lata) RePlat)
x>1. (5.9)

up(x) = I—ugx+ 1) 1 R Petd

R%e_ﬂ(a"rA)

= R’ o—Ba+h)

From (5.9), we observe that pg < % is a solution to the equation pg(1 — pg) = Rlzge_ﬁ("”‘m, o)

1= /1 —4Rge=Pletn)
_ﬂA

pﬁz 2 =c

The last equality is deduced directly from (5.8). Obviously, pg(x,x —1)=1— e P2, The
stationary measure 7g(x) is the solution to the recurrence formula

7p(0) = (1 — e PMmp(1),
mp(1) =mp(0) + (1 — e PH)mp(2),
() =e Prrpx — )+ (1 —e PYmp(x + 1), x>2.

A direct computation shows that

) 1 1 e BA
=5\ T T2 )

1 e P4
1= -
() 2(1—e—ﬂA)( 1—e—ﬁA>’

. 1=2e7A e PA A\ -
M= B e PO \T—epa ) T

By taking the limit § — co we notice that

. . 1 L . e ha
ﬂlggonﬁ(o)zﬁlgrolonﬂ(l)zi, ﬁglgo;ﬂﬂ(X)ZﬁgngWZO.

In the limit B — oo, the transition probabilities are poo(0, 1) =1 and poo(x, x — 1) =1, x> 1.
This means that the limiting behavior of X8, denoted by X°°, is deterministic as 8 — oo. If
the initial state is x > 2, X°° attains the value 1 after x — 1 steps and then oscillates between 0O
and 1. This explains why the limiting stationary measure is 77(0) = w0 (1) = %
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5.2. Example 2: Ultimately constant potential, case 2

Related to the previous case, we now consider a potential such that {(x) = «, 0 <x < Ny,
and a(x) = a + A for x > Ny + 1 for some Ng > 1 (case 1 is recovered by letting Ng = 0). From
similar arguments, for x > No + 2 we find that G,(r) = G(r) is constant and takes the same form
as (5.7).

Since ¥ (Np) = «, from (5.5) we also get

rre—pe

gNo+1(”)= m

From (5.7) we know that Gyy42(r) < %, S0 Gny+1(r) <2r e P < leﬁA, because
4r2e7P@+2) < 1. When A <0, from (5.5) it follows that Gy(r) <1 for all x>2 and
consequently, from (5.4), we deduce that Fo(r) < % for all 0 < r < Rg. This implies that Qg is
Rg-transient for all 8 > 0. If A > 0, from Theorem 3.1 we know that there exists 0 < 8. < 00

such that Qg is geometrically ergodic for all g8 > Bc. In fact, by introducing the function
gﬂ(r 2)=r*P*/(1 —z) and g (r 2) =gp(r, g )(r, z)) for n> 1, with the convention

8p ¢, 2) =z, we have, for g > 0,

FoRp) = g5 V(Rs. GRp)). (5.10)
Given B > 0, note that R% eﬂ(“"’A) for x> Ny + 1 and g( eﬂ(““‘A)/z) = % The critical
value B can be specified through the equation
1 1
Wot D 2 pelet)/2 2 ) 511
gﬁc <2C ’ 2) . ( . )

For 0 < 8 < B. we have

]_-O<2eﬁ((x+A)/2> - ]_-0( e,sc(aJrA)/z) zg}(gil/0+l)<%eﬂc(a+A)/2’ %) —1.

This means that Rlz3 = %eﬂ(‘”m for B < B¢, and hence Qg cannot be geometrically ergodic.
More precisely, Qg is Rg-transient for 0 < 8 < . and Rg_-null recurrent for g = 8. because
ug,(x) = % for x > No + 1 (see (5.12)). For 8 > B¢, Op is geometrically ergodic. This can veri-
fied assuming that Ré’ = %eﬂ(‘”m (otherwise is deduced in an obvious manner); from (5.11)
we have g;NOH)(%eﬁ(“J’A)/z, %) > 1 and (5.10) implies Rg < Rg,1 because Fo(Rp) < 1.

To analyze the asymptotic behavior as B — oo, note that (5.9) applies for x > Ny + 1 and
B > 0, and thus ug(x) is a solution to the equation

ug()(1 — up(x)) = Rge Pt x>No+1. (5.12)

Since X# is geometrically ergodic for 8 > f., we get

1= /1 —4RgePlatn)

2

ug(x) = = pg, x>No+1. (5.13)
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In addition,
R2 5 —pe

l—uglx+1)’

and ug(0) = 1. The stationary distribution 7g(-) can be computed from the well-known formula
for x> 1 (see [12, p. 78]):

_(Tyrek=1k (i usk= D)
mp(x) = (Hp s )me(m— (1‘[ (k>>” ), (5.15)

k=1

ug(x) = 1 <x <Ny, (5.14)

where mg(0)=1— Z —1 7p(x). We now set uso(x) =limg_, oo ug(x). If Qﬂ is the matrix
obtained for & =0, then RZ(Q/g) —eﬂ"‘Rz(Q,g) (see (3.16)). From Proposition 3.2 we have
limg_, oo R? (Qﬁ) = Coo(Ng + 2), s0

lim Rge 7" = coo(No +2). (5.16)

B—o0

From (5.13) and (5.16) we get uso(x) = 0 for x > Ny + 1 (this was also shown in a more general
context in Remark 4.1). On the other hand, when 1 <x < Ny, by letting 8 — oo in (5.14) we
deduce the recurrence formula

Coo(No +2)

= = 1 <x<Np, 5.17
N e iy <x<Ny (5.17)

with ux(Ng + 1) = 0. Finally, from (5.15) note that

w1 .
wMNo+i=| [T 1= o e+ =2,
k=No+2 p

but ug(No +j) = pg for all j > 1, hence

-1
ﬂ,s(N0+])—7T/3(No+1)( ﬁpﬁ) , j=2.

Thus,

ps
—PB

j—1
mp([No +2. oo))—ﬂﬁ(No-i-l)Z( ) = p(No +1)

B
i 1 —2pg

Since mg(No + 1) <1 and limg_, o, pg =0, we conclude that limg_, » mg([No + 2, 00)) =0
(this is guaranteed by Theorem 4.1). For 0 <x < Ny + 1 the value of m(x) can be obtained
by direct computation combining (5.15) and (5.17) with the additional conditions us,(0) =1,

Uos(No + 1) =0, and Y 7 () =1.

5.3. Example 3: The periodical case

We assume ¢ (x) = ¥ (x + L), x € Z, for some L > 2, i.e. the function ¥/ (x) is periodic with
period L > 2. Here the interesting case is £max < L, because £max = L implies that ¥ (x) is con-
stant. Since Q QE;‘H‘ for all x > 0, from the definition of the convergence radius we have
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Rgx=Rpg i forallx e 7. Recalling that the sequence Rg . is non-decreasing in x, we have
deduced that Rg x = Rg is constant for all x > 0. This means that the sequence of matrices Q}[g]

is Rg-transient for all x > 1. Since ngL] = 0g, 0 is Rg-transient for all 8 > 0. Note that in the
periodical case, if £, < L, we automatically get an infinite number of runs with size €,,x. The
existence of an equilibrium measure is discarded for all § > 0 and hence 7 (-) cannot exist.
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