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SUMMARY

Recently, human cases of nephropathia epidemica (NE) due to Puumala virus infection in Europe

have increased. Following the hypothesis that high reservoir host abundance induces higher

transmission rates to humans, explanations for this altered epidemiology must be sought in

factors that cause bank vole (Myodes glareolus) abundance peaks. In Western Europe, these

abundance peaks are often related to high tree seed production, which is supposedly triggered by

specific weather conditions. We evaluated the relationship between tree seed production, climate

and NE incidence in Belgium and show that NE epidemics are indeed preceded by abundant tree

seed production. Moreover, a direct link between climate and NE incidence is found. High

summer and autumn temperatures, 2 years and 1 year respectively before NE occurrence, relate

to high NE incidence. This enables early forecasting of NE outbreaks. Since future climate

change scenarios predict higher temperatures in Europe, we should regard Puumala virus as an

increasing health threat.

Key words: Climate, ecology, epidemiology, hantavirus infection, Myodes glareolus,

Puumala virus, seed production.

INTRODUCTION

Many zoonoses are listed as recent emerging or

re-emerging infectious diseases [1]. Often it is the

synergistic relationship between anthropogenic and

ecological parameters which leads to an increased

number of reported infections. Recently, 15 emerging

endemic zoonoses with potential human health risks

were reported within Europe during the period

2000–2006 and most of these zoonoses were related to

changes in ecological variables, e.g. increasing host

population abundance, climate change or host mi-

gration [2, 3]. The rodent-borne hantaviruses (genus

Hantavirus, family Bunyaviridae) are part of this list,

partly due to the abrupt increase in nephropathia

epidemica (NE) incidence during 2005 in Belgium,

Germany, France, Luxembourg and The Nether-

lands [4, 5]. NE, caused by Puumala virus (PUUV)
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infection, is a widespread zoonosis throughout Eur-

ope. The disease is marked by a range of symptoms

going from abrupt onset of fever and headache to-

wards vomiting and acute renal failure [6]. The dis-

tribution of NE is mostly related to the occurrence of

the predominant reservoir host Myodes glareolus

(bank vole). The virus is transmitted among bank

voles through virus particles shed in their excretions.

Transmission occurs directly through aggressive or

sexual contacts among voles or indirectly by inhaling

virus aerosols originated from contaminated urine or

faeces. The latter is also assumed to be the main

transmission route to accidental hosts, e.g. humans,

who are, as far as we know, dead-end hosts. If

humans get infected with PUUV, it can take up to

several weeks to develop symptoms due to PUUV

infection [6].

In the present study, we focus on NE in Belgium.

A distinct difference in NE incidence is present

throughout this small country with rare occurrence

of NE in the north, yet high incidences in south

Belgium [7, 8]. Additionally, there is a lot of annual

variation between ‘epidemic ’ and ‘non-epidemic ’

years. Until 2000 a 3-year epidemic cycle was de-

scribed, after which it abruptly changed into a 2-year

cycle that currently remains [5, 7]. Furthermore, in

2005, 365 human cases were reported, this was the

highest incidence ever recorded after the 1996 out-

break (224 cases). Previous studies have shown that

environmental conditions which favour the indirect

transmission route, combined with specific human

activities, could play a major role in explaining the

spatial distribution patterns of both bank vole and

human infection [8–10]. Temporal variation in PUUV

infection risk, however, was rarely assessed. When

it comes to actual risk of infection as previously de-

scribed [11], it is hypothesized that it is the abundance

of infected voles at a given time that remains pre-

dominantly crucial. This seems to hold as increased

densities of infected bank voles have been related to

outbreak years on several occasions [9, 12]. A recent

model, however, suggests importance of the abun-

dance of ‘newly’ infected voles [13], due to the higher

rate of infectious virus shedding in their excretions

[14]. Thus the model states that only extreme changes

in bank vole demography can affect PUUV infection

risk towards humans. Rodent dynamics are influenced

by many aspects in the environment. Unlike the situ-

ation in Northern Europe where high bank vole abun-

dance is mostly explained by density-dependent effects

on predators and vole maturation [15], major peaks in

bank vole abundance in the West–Central European

region have almost solely been related to mast years in

tree seed production [16–19]. High seed production

affects bank vole abundance in several ways. It can

improve winter survival, elongate the bank vole breed-

ing period and even induce winter breeding [17–19].

Reproduction of bank voles is regulated by a density-

dependent process involving social interaction and

occupancy of female breeding territories. In case of

high resource availability, female territories become

smaller. Hence, during high tree seed production, new

unoccupied territories are created in autumn. As a

consequence, young female subadults, who would

normally delay breeding until the next spring, will

still be able to acquire their own breeding territory

and initiate reproduction in autumn. Due to the syn-

ergistic effect of higher winter survival, extension

of the breeding period and a high proportion of

breeding females, the population density can remain

high until the next spring [17–21]. It is generally be-

lieved that rodent peaks are caused by massive pro-

duction of seeds by native oak or beech and relate

to subsequent NE outbreaks in Belgium [7, 12, 22],

although this was never thoroughly investigated.

Furthermore, if tree seeding is indeed the driving force

behind NE outbreaks in Belgium, the ultimate ex-

planations for the recent patterns in NE epidemiology

must be sought in those factors that trigger tree seed

production. Forestry studies indicate that, in case

of sufficient tree resources, it is mainly climate that

affects tree fructification. For Fagus sylvatica,Quercus

robur and Q. petraea there is a period of dormancy

between flower bud initiation (early summer/summer)

and flowering (pollination)/seeding (respectively

spring and autumn in the following year). Both flower

bud induction and flowering (pollination) can be af-

fected by local weather conditions and there is no

overall consensus on the dominant factors due to in-

ter-species differences [23–25]. Only one factor seems

to be consistent through most of the literature and

that is summer conditions. Especially for beech there

is a general agreement that warm or dry summer

conditions during flower bud formation is a pre-

dominant factor for high seed production in the next

year [25, 26]. Climate conditions during high bank

vole abundances, however, can also affect human be-

haviour and transmission to humans as humid and

colder conditions could lead to better survival of the

virus in the surroundings, hence, increasing the

probability of transmission between voles and to

humans [8, 27].
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The aim of this study is first to evaluate the relation-

ship between NE numbers and categories of tree seed

production in Belgium. Second, to test whether known

climatic factors that trigger high seed production can

be directly related to human NE incidence or if cli-

matic conditions during the period of human infec-

tion cause a higher number of NE cases.

METHODS

NE data

NE data were provided by the Scientific Institute of

Public Health (IPH) and the Reference Laboratory

for hantavirus infection. The surveillance of human

hantavirus infections in Belgium is carried out through

a network of sentinel laboratories, coordinated by the

IPH. These sentinel laboratories send positive sam-

ples to the Reference Laboratory for confirmation.

Reliable annual NE case numbers are available from

1994 until 2007.

Tree seed production categories

Categories of seed production of beech and native oak

species (Q. robur, Q. petraea) were provided by the

Tree Seed Centre of the Ministry of the Walloon

Region. Since 1995, this centre has collected seeds for

economic purposes. Due to their access to indepen-

dent information sources, they are able to make re-

liable global assessments of tree seed production

throughout southern Belgium. These assessments are

based on tree flowering, pollination and seed pro-

duction evaluations in the field, which are related to

information from the forest service that gives the po-

tential of seed collection in their selected stands. Tree

seed production for each tree species is divided into

four categories. Very good years (the species is fruit-

ing throughout the Walloon territory and practically

all trees are bearing seed in high quantities), Good

years (the species is fruiting throughout the territory,

but the trees are bearing much less seed and some

trees do not fruit), Moderate years (there is a reduced

number of trees bearing seeds and sometimes only

located in a portion of the territory) and Low years

(years without fructification in significant quantities).

Climate data

The meteorogical data were provided by the Royal

Meteorological Institute from Belgium (Ukkel).

Average monthly and seasonal temperature and pre-

cipitation values were calculated from daily weather

data. Meteorological seasons were used: winter (Dec-

ember, January, February), spring (March, April,

May), summer (June, July, August), autumn (Sep-

tember, October, November).

Statistical analyses

Generalized Linear Models (GLM) in SAS1 version

9.1 [28] were used to investigate the effect of beech and

native oak tree seed categories on the number of NE

cases in the following year. Log-linear models with

log link function and both a Poisson and negative bi-

nomial distribution were compared using the likeli-

hood ratio model comparison method [29]. The model

with a negative binomial error distribution fitted our

data significantly better (P<0.001). Pairwise com-

parisons were assessed using least square means.

Similar GLM analyses were used to evaluate the

relationship between annual NE occurrence in year t

and ecologically relevant monthly and seasonal values

of average daily temperature and precipitation from

summer of year tx3 until autumn of year t. Monthly

data were only used for those months or combi-

nations that have been shown to be ecologically

relevant in previous studies; June–July (year tx2),

June–July (year tx3), July (year tx2), April (year

tx1), May (year tx1), June (year tx2), June (year

tx3), July (year tx2), July (year tx3), September

(year tx2) [17, 23–26].

To take into account first-order autocorrelation,

the effect of the preceding year tx1 number of NE

cases was added to the model and independence

among explanatory variables was tested using Spear-

man correlations. All variables were modelled in log-

linear models with log link function and both a

Poisson and negative binomial distribution. Again,

likelihood ratio model comparison showed that

models with a negative binomial response distribution

fitted best (P<0.001). Overall results however did not

differ significantly. Final model selection was based

on AIC (Akaike Information Criterion) statistics [29].

RESULTS

Variation in NE case numbers and tree seed

production

Figure 1 shows the number of human PUUV cases

(NE) from 1995 to 2007, demonstrating an abrupt

increase in the number of NE cases in 2005. This
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pattern of increased human infection did not cease

in the following years, 160 cases were confirmed in

2006 and again 290 in 2007. Remarkably, as prior to

2005, each epidemic year (>100 NE cases annually)

was followed by at least one non-epidemic year with

<60 annual NE cases.

The categorical evaluation of annual beach and

native oak fruiting in southern Belgium is indicated in

Figure 1. We can observe that each peak year in NE

incidence is preceded by a year with high seed pro-

duction of at least native oak, beech or both. Separate

analyses show a significant main effect of both beech

(F2,9=9.85, P=0.007) and oak fruiting (F3,8=12.79,

P=0.005). Very good or good seed production re-

sulted in a significantly higher number of NE cases in

the following year compared to low seed production

for both beech (0–2: x 1
2 =7.67, P=0.006; 0–3: x 1

2 =
12.37, P=<0.001) and native oak (0–1: x 1

2 =9.68,

P=0.002; 0–2: x 1
2 =13.11, P=<0.001; 0–3: x 1

2 =
7.21, P=<0.007). No significant differences were

found among the higher seed production categories.

Climate

Only a limited number of significant explanatory

variables were found. All showed a positive relation-

ship to NE case numbers and most of the parameters

are related to the summer season before tree seeding,

i.e. 2 years before NE occurrence; summer tempera-

ture year tx2 (x 1
2 =8.01, P=0.005) ; June–July tem-

perature year tx2 (x 1
2 =8.43, P=0.004) ; June

temperature year tx2 (x 1
2 =4.30, P=0.038). All of

these parameters were correlated (P<0.01). More-

over, June temperature year tx3 was significant

(x 1
2 =4.76, P=0.029). Additionally, we also found a

significant effect of temperature during autumn, the

year preceding human case occurrence; autumn tem-

perature year tx1 (x 1
2 =5.35, P=0.021). The number

of NE cases in year tx1 did not affect the NE cases

in year t significantly throughout the time-series

(x 1
2 =0.01, P=0.936). All combinations of significant

independent parameters were made and the model

with the lowest AIC value included summer tem-

perature year tx2 and autumn temperature year tx1

(DAIC>13) (Table 1, Figs 2, 3].

DISCUSSION

Our analyses show that regional homogeneous high

seed production of both beech and native oak are

closely related to increased numbers of NE cases in

Belgium. These results, together with the known re-

lationships between both bank vole abundance/high

seed production and bank vole abundance/PUUV

infection risk [9, 12, 16, 18, 30], make us confident in

stating that, if either beech, native oak or both show a

very high seed production during autumn, this can be

regarded as an early warning tool for public health
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Fig. 1. Annual number of nephropathia epidemica (NE) cases and the category of seed production in the whole southern
Belgian territory of beech, F. sylvatica (white boxes) and native oak, Q. robur and Q. petraea (grey boxes) in the respective
years. Categories of fructification are ordered from 0 to 3 (0=low, 1=moderate, 2=good, 3=very good).

Table 1. Parameter estimates (log scale) of the

best fitting model of annual nephropathia epidemica

cases (year) and climate factors; average summer

temperature year x2 (xC) and average autumn

temperature year x1 (xC)

Parameter Estimate S.E. x2 P value

Intercept x12.577 2.286 30.28 <0.0001

Autumn temp.
(year x1)

0.700 0.113 38.33 <0.0001

Summer temp.

(year x2)

0.421 0.075 31.72 <0.0001

Deviance/D.F. 1.271
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workers. Centres like the Tree Seed Centre of the

Walloon Region can therefore play a key role in

alerting the IPH during the autumn seasons preceding

NE outbreaks.

Furthermore, we gained insight in the ultimate

processes changing NE epidemiology in Belgium and

the rest of Western Europe. These processes seem to

be directly related to climate. Although climate vari-

ables typically have a subtle or no measurable effect

on disease systems, hantavirus infection has been

shown to be very sensitive to climate variability [31].

There is the well known example of Sin nombre virus

infection in the United States and its close link to in-

creased precipitation patterns [32, 33]. Even though it

remains under discussion, a higher vegetation growth

due to humid conditions causing increased resource

availability would lead to higher deer mouse densities

and a consequent higher infection risk. This process is

known as the Trophic Cascade Hypothesis [34, 35].

Our system seems highly similar although other

parameters link climate and human infection pat-

terns. We found a significant effect of average autumn

temperature 1 year before human infection occur-

rence. This finding is difficult to relate to tree seeding,

during this period seeds fall from the trees. Higher

temperatures from summer to autumn, however, have

been related to increased bank vole reproduction. The

underlying hypothesis here would be the importance

of green biomass and body condition. During the

normal reproductive season, herbaceous plants con-

stitute a high percentage of the bank vole diet.

Normally green foliage decreases at the beginning of

autumn, higher temperatures, however, can postpone

this effect [17]. Furthermore, higher temperatures

mean a lower use of resources to maintain the high

metabolic rate of bank voles. The positive effect of

average summer temperature in the 2 years preceding

NE occurrence is directly related to the period of

flower bud initiation in oak and beech. This is the one

factor on which most studies agree that it is essential

for good mast crops [26]. Therefore, higher tempera-

tures during summer constitute an indirect link to

higher PUUV infection risk and higher numbers of

NE cases. Shorter mast year intervals and increasing

mast crops have been observed in recent years [26].

The changing epidemiological cycles can thus be

linked to these shorter intervals between masting and

shorter intervals between more than average warm

summers.

Finally, the warm summer temperatures could not

only explain NE occurrence on a temporal scale, but

also on a spatial scale. During 2003 an extreme cli-

matic anomaly was registered in Europe. There was a

summer heatwave with average summer temperatures

exceeding the 1961–1990 mean by up to 5 S.D. and the

summer might have been the warmest since 1540 [36].

This anomaly was most pronounced in West–Central

Europe and affected local deciduous forests in

Germany and part of France and Belgium [37]. Based
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on the findings in our study and observations, we

therefore conclude that the extreme PUUV infection

outbreak in 2005, which was most reported in those

countries where the focus of the climate anomaly was

found [5, 38], is a result of this heatwave occurring 2

years earlier in summer 2003. Based on the average

temperature data of summer 2006 (18.97 xC) and au-

tumn 2007 (13.90 xC), we again predict a very high

number of NE cases in 2008; this seems to hold as

during the first 5 weeks of 2008 already 30 NE cases

have been reported in Belgium (IPH).

High seed production by beech and native oak and

elevated average summer temperatures followed by

warmer autumn conditions in the next year should be

considered as early warning indicators for NE out-

breaks in Western Europe. The relationship with

higher temperatures is especially valuable. Since fu-

ture climate change scenarios predict higher tem-

peratures in Europe, we suggest regarding PUUV as

an increasing health threat.
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