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Biomedical science is at an inflection point where classical thinking about how to conduct 

translational research is undergoing a transformation. Enabled by now available data sources 

combined with exponential advances in AI, Statistics and Computer Science we can achieve 

advances that require levels of complexity that we could not have previously thought possible.  
1
 

To evaluate modern biomedical questions of significance requires data scientists to serve as 

partners in data driven science, as well as continuing their leadership in data science, biomedical 

informatics, and biostatistics research.
2
 The future is hobbled by an insufficient data science 

workforce cross-trained in the biomedical sciences. As resources shift to centralized and 

connected repositories of increasingly complex data, the data science and AI community urges 

immediate action to ensure we draw unbiased conclusions from the vast information available to 

modern researchers.
3
 Specifically,  

 In order for science to be data driven, qualified data scientists should be integrally engaged 

from the project onset to limit fatal flaws in methodology, analysis and model development.   

 Major data science initiatives should be coordinated to prevent redundancy and 

inefficiencies.  This includes the consistent use of common accepted standards for codifying 

health data.  

 It is critical to rapidly grow a qualified workforce of data scientists who can be counted on to 

exhibit a common core set of competencies, as well as to provide quantitative science 

training in the biomedical science curricula. 

 Artificial Intelligence (AI) in biomedicine is a rapidly evolving field with significant promise 

and also significant risk. Attention to the elimination of bias, Ethical Legal and Social Issues 

(ELSI), the selection of data and populations on which to train models, and other issues must 

continue to be addressed.  

 As we learn how to safely and effectively train and use AI in healthcare and research 

applications, it is essential that we establish frameworks for evaluating when and if data 

science methods and AI are fit for purpose. 

 Emphasizing the FAIR principles (Findable, Accessible, Interoperable and Reusable, along 

with data cleaning, storage, indexing and data exchange and accessibility of data fit for 

purpose should be emphasized.  Publishing high quality data resources should be rewarded 

similarly to publications in peer reviewed journals. 
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 Congress should increase the NIH budget  specifically earmarked for data science research 

and education, informatics and biostatistics to address this immediate and critical need.  We 

suggest that good homes for the funding include NCATS, NLM and then other interested 

ICs. 

 

1) Set expectations for the early inclusion of data scientists in all clinical biomedical 

research. 

Data-scientists provide novel and independent contributions requiring a deep knowledge base 

and creativity. While team science is lauded, until data-scientists are recognized for their 

pivotal contributions as collaborating scientists on the team, there will continue to be a 

barrier for data-scientists to focus on addressing biomedical questions. Funding agencies can 

continue to help address this barrier by ensuring that data-centered science includes data 

scientists in named, recognized leadership roles, such as multi-PI roles, as is being 

increasingly observed. 

2) Coordinate major data science and AI initiatives among federal agencies 

There are increasing demands on the biomedical research community to meet the data 

science needs of multiple federal agencies. When multiple common data models are imposed, 

it creates competing workstreams for an already overburdened and under-supported health 

information technology ecosystem and for the data science workforce. Lack of consistency 

creates inefficiencies and sharing of non-interoperable data can lead to errors in reporting. 

Mapping between data standards, data repositories and common data models creates 

efficiency, but at the cost of information and quality. Deciding on a common set of 

interoperability standards would be the true path to semantic interoperability for our research 

and clinical care enterprise.  Semantic Interoperability requires formalisms well beyond 

selecting a common data model.   

3) Grow the data science and AI workforce and establish core competencies and 

subspecialties for data scientists in fields of biomedical research. 

https://doi.org/10.1017/cts.2025.28 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2025.28


There is a national shortage of data scientists to meet the needs of the future as envisioned. 

This deficit can be addressed both by creating new training programs and expanding existing 

programs. As established and emerging data sciences including artificial intelligence and 

machine learning evolve, recognition of subspecialty skills when forming scientific teams is 

critical - biostatisticians, informaticians, and data engineers are not interchangeable. The 

paradigm for training may also need to evolve: as programs sprint to keep pace with rapidly 

changing technology it is critical to ensure that the core competencies needed for extracting 

knowledge from data are addressed alongside the range of technical proficiencies that can be 

achieved. Doctoral, post-doctoral, and continuing data science training and education 

programs should consider the sheer breadth of the activities that constitute data science and 

ensure a common understanding of the general and specialty-specific knowledge base and 

competencies needed to train a functional data scientist workforce
4
.  We would seek to create 

a generation of life-long learners. 

Addressing these challenges will require a major coordinated response from academia, 

industry and government agencies. The many existing efforts can be optimized for impact 

with a clearer recognition and understanding of both core competencies and subspecialty 

skills, by applying standards for technology stacks and data stores, and by providing a reward 

and value system for data scientists contributing to biomedical research. Without a 

coordinated focus on these issues, we expect the gaps in expertise across the research 

enterprise to widen. However, greater attention to the biomedical data science workforce has 

the potential to catalyze efficiencies and shorten timelines to having robust answers to 

biomedical questions bringing new treatments to patients more rapidly.  Strong data science 

is expected to result in not only high-quality reproducible research, but also a transformation 

of how clinical and translational research is performed. Specifically, we can use existing data 

to help us understand what studies are more likely to show positive results. We can judge 

likely toxicities ahead of expensive phase III clinical trials, and in so doing limit the number 

of negative trials. We can improve recruitment to and execution of clinical trials using real 

world evidence.   We can more effectively do post-market surveillance
5
 to find rare but 

serious side effects and deliver the right treatments to the right patients at the right time. 
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