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In this paper, we prove existence results of a one-dimensional periodic solution to
equations with the fractional Laplacian of order s ∈ (1/2, 1), singular nonlinearity
and gradient term under various situations, including nonlocal contra-part of
classical Lienard vector equations, as well other nonlocal versions of classical results
know only in the context of second-order ODE. Our proofs are based on degree
theory and Perron’s method, so before that we need to establish a variety of priori
estimates under different assumptions on the nonlinearities appearing in the
equations. Besides, we obtain also multiplicity results in a regime where a priori
bounds are lost and bifurcation from infinity occurs.
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1. Introduction

Second-order ordinary differential equations (ODE) and systems are since Newton’s
second law of motion, one of the most study equations in mathematics and physics
under many different situations. They also play a crucial role in the study of linear
and nonlinear PDEs. In this work, we want to extend some results for second-order
ODE found in the work of Mawhin, see [23] to equations with the one-dimensional
fractional laplacian instead of laplacian. In particular, we will prove the existence
of periodic solutions to some basic classical models like Lienard [20], Forbat and
Huaux [15], Lazer–Solimini [18] for equations involving the fractional laplacian, see
also other references in [23].

Nonlocal operator with singular kernels, in particular, the fractional Laplacian
has received much attention in recent years; this motived by many apply models
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in biology, physics, chemistry, finance, marine foreign, etc., where the underlining
phenomena are governed by anomalous diffusion, connected with Levy flights where
the fractional Laplacian appears naturally. As an example of applied phenomena
where this type of operator appears we mention [8, 12, 16, 19, 28] and a more
mathematical review on the topic can be found in [7], see also the big list of reference
in all these works. Notice that periodic patterns are naturally expected in many of
these applied phenomena.

The fractional Laplacian operator can be defined for s ∈ (0, 1) via its multiplier
|ξ|2s in Fourier space, notice s = 1 corresponds to the Laplacian. It can also be
defined by the formula

(−Δ)su(x) = CN,sP.V.

∫
RN

u(x) − u(z)
|x − z|N+2s

dz, (1.1)

here CN,s > 0 is a well-known normalizing constant and P.V stands for the principal
value, see for example [7].

From the mathematical point of view, the equations involving the fractional
Laplacian that we will study here required some new different technics since many
tools from ODE such as energy method, integral factors and other key elements do
not remain valid in the nonlocal case, and therefore we need different methods and
arguments for the nonlocal case.

Before describing our main results, notice that the type of equations studied in
[23] are of the form

u′′(t) + f(u(t))u′(t) + g(u(t)) = e(t) t ∈ R, (1.2)

and

u′′(t) + cu′(t) − g(u(t)) = e(t) t ∈ R. (1.3)

Mawhin was mainly interested in singular nonlinearities, that is, he supposes that
g becomes unbounded near the origin; the + sign indicates that the particles have
opposite charges, while the − sign indicates that the particles have the same charge.
So, it is said that the equation with the + sign (resp. −) has an attractive singularity
(repulsive resp.). We simply talk about the attractive and repulsive case.

Thus, we studied equation of the form

(�)su(t) + f(u(t))u′(t) + g(u(t)) = e(t) t ∈ R, (1.4)

and

(�)su(t) + cu′(t) − g(u(t)) = e(t) t ∈ R, (1.5)

where (�)su(t) := −(−�)su(t) and s ∈ (1/2, 1) from now on.
The main aim of the present paper, is to establish existence of periodic solutions

to equations (1.4) and (1.5).
In the study of (1.4) we suppose that f : (0,+∞) → R, g : (0,+∞) → R are

Cα((0,+∞)) and e ∈ Cα(R) with α ∈ (0, 1). Without loss of generality, we assume
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that we are searching for 2π-periodic solutions to simplify the discussion, therefore,
we will assume that e is also 2π-periodic. Moreover, we will use denotation

ē :=
1
2π

∫ 2π

0

e(t) dt,

its mean value.
Observe that the term with u′ is sometimes called drift term and corresponds to

some ‘transport’ or ‘friction’ in some of the models.
Before giving our results, let us mention that periodic solutions are studied in

[10, 14] without drift term and regular nonlinearity, see also [11, 26, 34].
Other types of periodic problems related to the spectral fractional Laplacian can

be found in [2–6].
Now, we will give our first existence result in the case of attractive singularity.

Theorem 1.1. Assume that the function g : (0,+∞) → R is such that the following
conditions hold:

(i) g(t) → +∞ as t → 0+.

(ii) lim sup
t→+∞

g(t) < ē.

Then equation (1.4) has at least one 2π-periodic positive classical solution.

This theorem will be proved by using Perron’s method. One of the main difficulty
here is to find a periodic super-solution, this is obtained by solving a semi-linear
problem of Lienard type. In fact, we have the following results for nonlocal Lienard-
type equations.

Proposition 1.2. Let f ∈ Cα(0,+∞) and w ∈ Cα
2π(R), then

(�)su(t) + f(u(t))u′(t) = w(t), (1.6)

has at least one 2π-periodic classical solution u if, only if w̄ = 0. Moreover,

‖u‖C2s+α(R) � M‖w‖Cα(R),

for some positive constant M .

To prove the necessary condition, we will use a basic property of fractional
Laplacian for periodic functions, see lemma 2.2. To prove the existence we will
use the Schauder-type estimates which are obtained by Hs estimate that gives
by the assumption s ∈ (1/2, 1) a Cα estimate then with the help of interpolation
inequality in Hölder space we are able to manage the drift term, so we get our
Schauder-type estimates.
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This type of results can be generalized to the nonlocal Lienard vector equation
inspired by [25]. More precisely, we will study vector equations of the form:

L(u(t)) +
d
dt

(∇H(u(t))) + Au(t) = e(t), (1.7)

where

L(u(t)) =

⎛
⎜⎝

(�)s1u1(t)
...

(�)snun(t)

⎞
⎟⎠ si ∈

(
1
2
, 1
)

i = 1, · · · , n,

with H : R
n → R is C2,α(Rn), A is a n × n- matrix and e ∈ Cα(R, Rn) and e is also

2π-periodic.
Looking for existence results, we give a sufficient condition for (1.7) to have a

2π-periodic solution.

Theorem 1.3. If ē ∈ ImA and

M = sup
|y|=1

〈Ay, y〉 < 1,

then (1.7) has at least one 2π-periodic classical solution.

Now we describe our second main results concerning equation (1.5) that is in the
case of repulsive singular nonlinearity.

For that, we suppose that c > 0, e ∈ Cα(R), e is 2π-periodic with ē > 0 and
g ∈ Cα(0,+∞) is a given function satisfying the following conditions:

(G1) lim sup
t→+∞

[g(t) + ē] < 0,

(G2) lim
t→0+

g(t) = +∞ and g is monotone near zero,

(G3) There exists ε > 0 such that g(τ)2s−2−ε
∫ 1

τ
g(t) dt → +∞ as τ → 0+,

(G4) g(t) � −at − b for some a > 0 and b � 0 and all t > 0.

Now we are in a position to give our second main theorem.

Theorem 1.4. Assume that the conditions (G1), (G2), (G3) and (G4) are fulfilled,
then equation (1.5) has at least one 2π-periodic positive classical solution.

Here, it is important to mention the main difficulties with respect to the local
case (s = 1) where a priori uniform bounds hold for u, u′. But in the nonlocal case
we just found a L2 bound for u′.

Besides that, the main idea to get the a priori bound is to prove a new general
energy type identity for periodic solution (see lemma 4.1) that gives the formula
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for ∫ b

a

(Δs)u(t)u′(t) dt = I(u, a, b), for all a, b ∈ R,

inspired in [13] that give related formula in the half-line. Here I(u, a, b) is the
right side given in lemma 4.1. This identity together with a local regularity theory
(Harnack inequality, and Schauder-type estimates) at the maximum point of a
solution will help us to estimate I(u, a, b), then using (G3) we are able to find the
a priori lower bound for our periodic solutions, for more details see § 4. The rest of
the proof is based on degree type arguments.

As a by product of theorem 1.4 and bifurcation from infinity, this again inspired
from the works [23, 24], we find multiplicity results in a regime where a priori
bounds are lost, see theorem 5.1, below.

Let us finish this introduction by mentioning that some reference of previous
results for fractional equation with singular nonlinearities in a different situation
from the studied here can be found in [21, 29, 34].

The paper is organized as follows. Section 2 is devoted to proving proposition 1.2
which is the semi-linear case of (1.4) and its generalization theorem 1.3. Sections 3
and 4 are devoted to establishing some results for the existence of at least one
2π- periodic positive solution for (1.4) and (1.5) respectively. Finally, the solution
multiplicity results will be presented in § 5.

2. The semi-linear periodic problems

In this section, first we will prove some preliminary results that will facilitate the
proof of theorem 1.3 and proposition 1.2. Notice that by proposition 1.2 of [14] the
fractional Laplacian of a smooth, 2π-periodic function reduces to

(�)su(t) = −Lu(t) t ∈ (0, 2π), (2.1)

where

Lu(t) =
∫ 2π

0

(u(t) − u(y))K(t − y) dy, t ∈ (0, 2π), (2.2)

and

K(z) =
∞∑

n=−∞

1
|z − 2πn|1+2s

, 0 < |z| < 2π.

We consider the space X defined in [14] as the closure of the set of 2π-periodic
functions u ∈ C1(R) with the norm

‖u‖X :=

⎛
⎝1

2

2π∫
0

2π∫
0

(u(t) − u(y))2K(t − y) dy dt +
∫ 2π

0

u2(t) dt

⎞
⎠

1
2

,

where X is a Hilbert space when provided with the inner product

<u, v >:=
1
2

∫ 2π

0

∫ 2π

0

(u(t) − u(y))(v(t) − v(y))K(t − y) dy dt +
∫ 2π

0

u(t)v(t) dt.
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The space X possesses good embedding properties which follow directly from the
trivial relation ‖u‖Hs(0,2π) � ‖u‖X for u ∈ X.

Consider now the family of equations

(�)sv(t) + λf(v(t))v′(t) = λw(t) λ ∈ (0, 1). (2.3)

We want to establish Schauder-type estimates for equation (2.3), but for this we
need first a Cα estimate that will follow from a Hs bound and the embedding in
Cα by the fact that s > 1/2. For that, let us write

v = v̄ + u w = w̄ + e,

which implies that ū = 0 and ē = 0. hence substituting this into (2.3) we get

(�)su(t) + λf(C + u(t))u′(t) = λe(t), (2.4)

where C = v̄. With that change we have the following lemma.

Lemma 2.1. Let u ∈ C2s+α, for some α ∈ (0, 1), be a classical solution of (2.4) with
ē = 0 and ū = 0 then there exists K > 0 such that

‖u‖Cα[0,2π] � K‖e‖L2([0,2π]), (2.5)

for some K > 0.

Proof. Let u is a 2π-periodic solution of (2.4). Multiplying by u and integrating the
equation (2.4) we find

2π∫
0

(−�)suu − λ

2π∫
0

f(C + u)u′u = −λ

2π∫
0

eu. (2.6)

Using (2.1), together with the 2π-periodicity of u we find

[u]2Hs(0,2π) � [u]2X =
∫ 2π

0

uLu =
∫ 2π

0

(−�)suu

Let H ∈ C2(R) such that

H ′(x) =
∫ x

0

f(t) dt.

Then ∫ 2π

0

f(C + u(x))u′(t)u(t) dx =
∫ 2π

0

d
dt

(H ′(C + u(t)))u(t) dt

=
∫ 2π

0

d
dt

(H ′(C + u(t))u(t)) dt

−
∫ 2π

0

H ′(C + u(t))u′(t) dt

= −
∫ 2π

0

d
dt

H(C + u(t)) dt = 0.
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Hence substituting in (2.6) and using Cauchy inequality we have

[u]2Hs(0,2π) � λ

∫ 2π

0

|e(t)u(t)|dt

� λ‖e‖L2‖u‖L2 . (2.7)

On the other hand, we claim that we have the following Poincaré-type inequality.
There exist K > 0 such that∫ 2π

0

|u(t)|2 dt � K[u]2Hs(0,2π). (2.8)

Indeed, as ū = 0 and using Cauchy inequality we get

2π|u(t)| =
∣∣∣∣
∫ 2π

0

(u(t) − u(y)) dy

∣∣∣∣
�
∫ 2π

0

|u(t) − u(y)|dy

�
(∫ 2π

0

|u(t) − u(y)|2 dy

)1
2
(∫ 2π

0

dy

)1
2

|u(t)|2 � 1
2π

∫ 2π

0

|u(t) − u(y)|2 dy

=
1
2π

∫ 2π

0

|u(t) − u(y)|2
|t − y|1+2s

|t − y|1+2s dy,

as |t − y| < 2π gives∫ 2π

0

|u(t)|2 dt � (2π)1+2s

2π

∫ 2π

0

∫ 2π

0

|u(t) − u(y)|2
|t − y|1+2s

dy dt

� (2π)2s[u]2Hs(0,2π),

where K = (2π)2s. Hence (2.7) and (2.8) give

‖u‖Hs(0,2π) � λK‖e‖L2([0,2π]) � K‖e‖L2([0,2π]),

and as Hs(0, 2π) ↪→ Cα[0, 2π] for s > 1
2 we get

‖u‖Cα[0,2π] � K‖e‖L2([0,2π]). (2.9)

�

The following result is a basic property of our interest, where we will need the
constant C(1, s) which is precisely given by

C(1, s) =
(∫

R

1 − cos(ξ1)
|ξ|1+2s

dξ

)−1

.

The proof can also be found in [26].
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Lemma 2.2. Let u a 2π-periodic function, then∫ 2π

0

(−�)su(x) dx = 0.

Proof. Indeed, as u is a periodic function, we can write its Fourier series:

u(x) = a0 +
+∞∑
n=1

an cos(nx) + bn sin(nx).

Then,

(−�)su(x)

= C1,s

(
+∞∑
n=1

an

∫
R

cos(nx) − cos(ny)

|x − y|1+2s
dy + bn

∫
R

sin(nx) − sin(ny)

|x − y|1+2s
dy

)

= C1,s

(
+∞∑
n=1

an

∫
R

cos(nx) − cos(nx − nz)

|z|1+2s
dz + bn

∫
R

sin(nx) − sin(nx − nz)

|z|1+2s
dz

)
,

(2.10)

so∫
R

cos(nx) − cos(nx − nz)
|z|1+2s

dz =
∫

R

cos(nx) − cos(nx) cos(nz) − sin(nx) sin(nz)
|z|1+2s

dz

=
∫

R

1 − cos(nz)
|z|1+2s

dz cos(nx) −
∫

R

sin(nz)
|z|1+2s

dz sin(nx),

where the second integral of the above is zero because we are integrating an odd
function in a symmetric (with respect to zero) domain. Similarly to the previous
computation, we have∫

R

sin(nx) − sin(nx − nz)
|z|1+2s

dz =
∫

R

sin(nx) − sin(nx) cos(nz) + cos(nx) sin(nz)
|z|1+2s

dz

=
∫

R

1 − cos(nz)
|z|1+2s

dz sin(nx) −
∫

R

sin(nz)
|z|1+2s

dz cos(nx).

Hence substituting this in (2.10) gives

(−�)su(x) = C1,s

(
+∞∑
n=1

an

∫
R

1 − cos(nz)

|z|1+2s
dz cos(nx) + bn

∫
R

1 − cos(nz)

|z|1+2s
dz sin(nx)

)

=

(∫
R

1 − cos(ξ1)

|ξ|n+2s
dξ

)−1
(

+∞∑
n=1

an

∫
R

1 − cos(nz)

|z|1+2s
dz cos(nx)

+bn

∫
R

1 − cos(nz)

|z|1+2s
dz sin(nx)

)

=

+∞∑
n=1

ann2s cos(nx) + bnn2s sin(nx).
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Hence,∫ 2π

0

(−�)su(x) dx =
+∞∑
n=1

ann2s

∫ 2π

0

cos(nx) dx + bnn2s

∫ 2π

0

sin(nx) dx = 0.

�

Proof of proposition 1.2. Assume that u is a 2π-periodic solution of (2.4), then
integrating (2.4) from 0 to 2π∫ 2π

0

(�)su + λ

∫ 2π

0

f(C + u)u′ = λ

∫ 2π

0

e,

hence, using the 2π- periodicity of u and the notation of lemma 2.1 we have∫ 2π

0

f(C + u(t))u′(t) dt =
∫ 2π

0

d
dt

H ′(C + u(t)) dt = 0,

which, together with lemma 2.2 implies ē = 0.
For the existence, we will look at a priori estimates for u ∈ C1,α, with α ∈ (0, 1).

We first notice that f(C + u) ∈ Cα(R), indeed as u′ is bounded we get u is Lipschitz
so

|f(C + u(t)) − f(C + u(y)| � [f ]α|u(t) − u(y)|α
� [f ]α|t − y|α‖u′‖C(R). (2.11)

Now, f(C + u)u′ ∈ Cα(R), because f and u′ are bounded, using (2.11) we get

|f(C + u(t))u′(t) − f(C + u(y))u′(y)| � |f(C + u(t)) − f(C + u(y)||u′(t)|
+ |f(C + u(y))||u′(t) − u′(y)|

� [f ]α|t − y|α‖u′‖2
C(R) + ‖f‖C(R)|t − y|α[u′]α.

(2.12)

Hence (2.12) gives

‖f(C + u)u′‖Cα(R) � ‖f‖Cα(R)‖u‖C1,α(R)

+ ‖f‖Cα(R)‖u‖2
C1,α(R) + ‖f‖Cα(R)‖u‖C1,α(R)

� C‖u‖2
C1,α(R) + C‖u‖C1,α(R), (2.13)

where C = C(‖f‖Cα(R), α). As s ∈ ( 1
2 , 1
)

by ([30], proposition 2.9), we obtain that

‖u‖C1,α(R) � C(‖u‖C(R) + ‖(�)su‖C(R))

� C(‖u‖C(R) + ‖λf(C + u)u′‖C(R) + ‖λe‖C(R))

� C(‖u‖C(R) + λ‖f‖C(R)‖u‖C1(R) + λ‖e‖C(R))

� C(‖u‖C(R) + ‖u‖C1(R) + λ‖e‖C(R)), (2.14)

where C = C(‖f‖C(R), α, s), and using the Interpolation inequalities ([17],
theorems 3.2.1) we obtain that, for any ε > 0, there is a positive constant
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C = C(α, ‖f‖Cα(R), ε, s), such that

‖u‖C1(R) � ε‖u‖C1,α(R) + C‖u‖C(R). (2.15)

Hence, substituting (2.15) in (2.14) and choosing ε = 1
2

‖u‖C1,α(R) � C‖u‖C(R) + λC‖e‖C(R). (2.16)

Now, as u is 2π-periodic we have

‖u‖C(R) = ‖u‖C[0,2π],

so that (2.9) implies

‖u‖C(R) � λK‖e‖L2[0,2π],

substituting this into (2.16) we get

‖u‖C1,α(R) � λC(‖e‖Cα(R) + ‖e‖L2[0,2π]).

� λC‖e‖Cα(R). (2.17)

Then, as s > 1
2 by ([30], proposition 2.8), we obtain that

‖u‖C2s+α(R) � C(‖(�)su‖Cα(R) + ‖u‖C(R)), (2.18)

where C = C(α, s) is a positive constant. As e ∈ Cα(R) together with (2.13) and
(2.17) given

‖u‖C2s+α(R) � C(‖λf(C + u)u′‖Cα(R) + ‖λe‖Cα(R) + ‖u‖C(R))

� C(λ‖e‖2
C(R) + λ‖e‖Cα(R) + ‖u‖C(R))

� C(‖e‖2
Cα(R) + ‖e‖Cα(R)) = R, (2.19)

in this case C = C(α, ‖f‖Cα(R), s).
Now we complete the proof, if z ∈ Cα

2π(R), the equation

(�)su(t) + u(t) = z(t)

has a unique bounded classical solution 2π-periodic solution u ∈ C2s+α(R) (see
lemma 3.1, [14]). So we can define the map K : Cα

2π(R) → C2s+α
2π (R) by K(z) = u

where u is the solution of

(�)su(t) + u(t) = z(t),

so that K : Cα
2π(R) → C1,α

2π (R) is compact because the injection of C2s+α

into C1,α is compact since we have s > 1/2. As a consequence, we defined
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T : C1,α
2π (R) → C1,α

2π (R) by T (z) = u where u is solution of

(�)su(t) + u(t) = e(t) + z(t) − f(C + z(t))z′(t),

so T is compact and using the Schaeffer theorem, T has at least one fixed point u
in B[0, R] ⊂ C1,α

2π (R) so

u = T (u)

which implies that

(�)su(t) = e(t) − f(C + u(t))u′(t).

Consequently, v = v̄ + u is a 2π-periodic solution of (1.6). �

Now we extend the previous results for systems of equations of the form

L(u(t)) + λ
d
dt

(∇H(u(t))) + λAu(t) = λe(t). (2.20)

For simplicity to find a priori bounds of the system (2.20) only in the case λ = 1.

Proof of theorem 1.3. First, we reduce the case a solutions with zero mean value,
let us write

u(t) = ū + v(t), e(t) = ē + w(t)

which implies that v̄ = 0 and ē = 0, then substituting this into (1.7) becomes

L(v(t)) +
d
dt

(∇H(ū + v(t))) + Aū + Av(t) = ē + w(t), (2.21)

we get the equivalent system

Aū = ē, (2.22)

L(v(t)) +
d
dt

(∇H(ū + v(t))) + Av(t) = w(t). (2.23)

As ē ∈ ImA, at least one ū exists solving (2.22), so for each ū, we just have to find
a 2π-periodic solution of (2.23) v ∈ C1,α(R, Rn).

On the other hand, note that

d
dt

(∇H(ū + v(t))) = F (ū + v(t))v′(t),

where F is the Hessian matrix of H, so substituting in (2.23) get

L(v(t)) + F (ū + v(t))v′(t) + Av(t) = w(t). (2.24)

Now, we shall find a priori estimates, first will look estimates for Hs((0, 2π), Rn)
where s = min

1�i�n
si. We will use the usual norm, but it is important to mention that
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for s � si we have

‖v‖2
Hs =

n∑
1

‖vi‖2
Hs (2.25)

�
n∑
1

‖vi‖2
Hsi . (2.26)

Now, assume v is a 2π-periodic solution of (2.24), multiplying for v and integrating
the equation

∫ 2π

0
< −L(v(t)), v(t) > dt −

∫ 2π

0
< F (ū + v(t))v′(t), v(t) > dt −

2π∫
0

< Av(t), v(t) > dt

= −
∫ 2π

0
< w(t), v(t) > dt,

(2.27)

so that (2.26) together the 2π-periodicity of v gives∫ 2π

0

< −L(v(t)), v(t) > =
∫ 2π

0

n∑
1

(−�)sivi(t)vi(t),

so

[v]2Hs((0,2π),Rn) �
n∑
1

[vi]2Hsi ((0,2π) (2.28)

�
n∑
1

∫ 2π

0

(−�)sivi(t)vi(t) (2.29)

=
∫ 2π

0

< −L(v(t)), v(t) > . (2.30)

∫ 2π

0

< F (ū + v(t))v′(t), v(t) > =
∫ 2π

0

<
d
dt

(∇H(v(t))), v(t) > dt

=
∫ 2π

0

d
dt

< ∇H(v(t)), v(t) > dt

−
∫ 2π

0

< ∇H(v(t)), v′(t) > dt

=
∫ 2π

0

d
dt

H(v(t)) dt = 0.

Hence substituting in (2.27) gives

[v]2Hs((0,2π),Rn) −
∫ 2π

0

< Av(t), v(t) > dt � −
∫ 2π

0

< w(t), v(t) > dt. (2.31)
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By assumption we have

∫ 2π

0

< Av(t), v(t) > dt � M‖v‖2
L2 ,

so that (2.31) using Hölder inequality implies

[v]2Hs((0,2π),Rn) � M‖v‖2
L2 + ‖w‖L2‖v‖L2 . (2.32)

Therefore, the Poincaré-type inequality gives

[v]Hs((0,2π),Rn) � (1 − M)−1‖w‖L2 ,

and hence

‖v‖Hs((0,2π),Rn) � K‖w‖L2 . (2.33)

Then, we shall find a priori estimates in Hölder spaces; as s > 1
2 by ([30],

proposition 2.8) gives

‖vi‖C2s+α(R) � C(‖(�)svi‖Cα(R) + ‖vi‖C(R)), (2.34)

hence we get

‖(�)sivi‖Cα(R) � C

n∑
i=1

‖vi‖2
C1,α(R) + C

n∑
i=1

‖vi‖Cα(R) + C‖w‖Cα(R)

� C(
n∑

i=1

‖vi‖2
C1,α(R) +

n∑
i=1

‖vi‖C1,α(R) + ‖w‖Cα(R)), (2.35)

where C = C(n, s, α, ‖f‖Cα(R), ‖A‖), by ([30], proposition 2.9) we obtain

‖vi‖C1,α(R) � C(
n∑

i=1

‖vi‖C(R) + ‖(�)svi‖C(R)) (2.36)

� C(
n∑

i=1

‖vi‖C(R) +
n∑

i=1

‖vi‖C1(R) + ‖w‖C(R)), (2.37)

and using the Interpolation inequalities ([17], theorems 3.2.1) together with
the fact that 2s > 1, we obtain that, for any ε > 0, there is a positive constant
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C = C(n, α, ‖f‖Cβ(R), ‖A‖, ε, s), such that

‖vi‖C1(R) � ε
n∑

i=1

‖vi‖C1,α(R) + C
n∑

i=1

‖vi‖C(R).

Hence,
n∑

i=1

‖vi‖C1(R) � ε

n∑
i=1

n∑
i=1

‖vi‖C1,α(R) + C

n∑
i=1

n∑
i=1

‖vi‖C(R). (2.38)

Thus,
n∑

i=1

‖vi‖C1,α(R) � C

n∑
i=1

n∑
i=1

‖vi‖C(R) + 2nεC

n∑
i=1

‖vi‖C1,α(R) + C‖w‖C(R).

Now, as v is 2π-periodic we have

‖vi‖C(R) = ‖vi‖C[0,2π],

so that (2.9) implies

‖vi‖C(R) � K‖w‖L2(R).

Hence choosing ε =
1

4nC
, we get

n∑
i=1

‖vi‖C1,α(R) � C‖w‖L2(R) + C‖w‖C(R) (2.39)

� C‖w‖C(R). (2.40)

Now,

n∑
i=1

‖vi‖2
C1,α(R) �

(
n∑

i=1

‖vi‖C1,α(R)

)2

� ‖w‖2
C(R). (2.41)

Hence substituting (2.40) and (2.41) into (2.35) gives

‖(�)sivi‖Cα(R) � C‖w‖2
C(R) + C‖w‖C(R). (2.42)

Substituting (2.42) in (2.34) we get

‖vi‖C2s+α(R) � C‖w‖2
C(R) + C‖w‖C(R) + ‖vi‖C(R)

� C‖w‖2
C(R) + C‖w‖C(R),

so
n∑

i=1

‖vi‖C2s+α(R) � C‖w‖2
Cα(R) + C‖w‖C(R) = R,

where C = C(n, s, α, ‖f‖Cα(R), ‖A‖). Now, if yi ∈ C1,α
2π (R) the equation

(�)sivi(t) + vi(t) = yi(t) + vi(t)
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has a unique bounded classical solution 2π -periodic solution vi ∈ C2s+α
2π (R), then

v(t) = (v1(t), · · · , vn(t)) exists such that it is a solution of

L(v(t)) + v(t) = y(t) + v(t),

where y(t) = (y1(t), · · · , yn(t)).
Finally, we define the operator T : C1,α

2π (R, Rn) → C1,α
2π (R, Rn) by T (y) = v where

v is the solution

L(v(t)) + v(t) = w(t) + y(t) − F (ū + y(t))y′(t) − Ay(t),

this operator is compact, because the injection of C2s+α
2π (R, Rn) into C1,α

2π (R, Rn)
is compact, so using the Schaeffer theorem, T has at least one fixed point v in
B(0, R) ⊂ C1,α

2π (R, Rn), this is

T (v) = v

which implies that

L(v(t)) = w(t) − F (ū + v(t))v′(t) − Av(t),

i.e. v is a 2π-periodic solution of (2.24). Consequently, u = ū + v is a 2π-periodic
solution of (1.7). �

3. Case of attractive singularity

The standard method of sub and super solutions provides the following existence
theorem for the 2π-periodic solutions of equation (1.4), the more difficult part is to
construct super-solution and is the place where we use proposition 1.2.

Lemma 3.1. Assume that there exist 2π- periodic C2s+α- functions η and β for
some α ∈ (0, 1) and s ∈ (1/2, 1) such that η � β and

(�)sη + f(η)η′ + g(η) � e

(�)sβ + f(β)β′ + g(β) � e,

in R. Then equation (1.4) has at least one 2π-periodic classical solution u ∈
C2s+α

2π (R) satisfying η(x) � u(x) � β(x) for all x ∈ R.

Proof. Let u ∈ C1,α
2π (R), we define for each x ∈ R

H(u(x), u′(x)) =

⎧⎪⎨
⎪⎩
−β(x) + e(x) − f(β(x))β′(x) − g(β(x)), if u(x) > β(x),
−u(x) + e(x) − f(u(x))u′(x) − g(u(x)), if η(x) � u(x) � β(x),
−η(x) + e(x) − f(η(x))η′(x) − g(η(x)), if u(x) < η(x),

then H ∈ Cα
2π(R).
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Thus we can define

N : C1,α
2π (R) → Cα

2π(R)

u �−→ H(u, u′)

and

K : Cα
2π(R) → C1,α

2π (R)

z �−→ v

where v is the unique solution of

(�)sv(x) − v(x) = z(x).

Then, we have K ◦ N : C1,α
2π (R) → C1,α

2π (R) is continuous and compact, as proved in
proposition (1.2). Notice that N(C1,α

2π (R)) is bounded. Hence, by Schauder’s fixed
point theorem, K ◦ N has a fixed point u, i.e., u is a solution of

(�)su(x) − u(x) = H(u, u′) in R.

Now we prove that η(x) � u(x) � β(x) for all x ∈ R, we first show that u(x) �
β(x). The other inequality is similar. We assume by contradiction that max(u(x) −
β(x)) = u(t̄) − β(t̄) > 0, here t̄ is the point where the maximum is attained. So we
have (�)su(t̄) − (�)sβ(t̄) � 0 and also

(�)su(t̄) − (�)sβ(t̄) � u(t̄) + H(u(t̄)) + f(β(t̄))β′(t̄) + g(β(t̄)) − e(t̄)

� u(t̄) − β(t̄) + e(t̄) − f(β(t̄))β′(t̄) − g(β(t̄))

+ f(β(t̄))β′(t̄) + g(β(t̄)) − e(t̄)

= u(t̄) − β(t̄) > 0,

this gives a contradict. Therefore, u(x) � β(x). �

Now we are in position to prove theorem 1.1, which is direct now.

Proof of theorem 1.1. By assumption 1, there exists a constant η > 0 such that

g(η) � e(x) in [0, 2π],

and thus η is a sub solution for (1.4) with 2π-periodic. We now write e(x) = ē + ẽ,
then by assumption 2, there exists R > 0 such that g(x) � ē for x � R and by
proposition 1.2, the equation

(�)sv(x) + f(C + v(x))v′(x) = ẽ(x)

has one 2π-periodic solution v, so we take C sufficiently large such that C + v(x) �
max(η,R) for all x ∈ [0, 2π]. Hence we take β(x) = C + v(x), gives

(�)sβ(x) + f(β)β′ + g(β) = (�)sv(x) + f(C + v(x))v′(x) + g(C + v(x))

� ẽ(x) + ē = e(x),

so that β(x) � η is a super-solution for (1.4) with 2π-periodic. Then using lemma
3.1 there exists a 2π-periodic solution u of (1.4) with η � u(x) � β(x). �
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Corollary 3.2. Assume that the function g : (0,+∞) → (0,+∞) is such that the
following conditions hold.

(i) g(x) → +∞ as x → 0+,

(ii) lim sup
x→+∞

g(x) = 0.

Then, if ē > 0 the equation (1.4) has a positive 2π- periodic solution.

Proof. Follows directly from theorem 1.1. �

Example 3.3. The Forbat-type equation fractional Laplacian that is

(�)sv(x) + f(v(x))v′(x) +
v(x)

v(x) − C
= e(x), (3.1)

where f ∈ Cα(R) and e ∈ Cα(R) and e − 1 > 0. By the change of variable u =
v − C we have

(�)su(x) + f(C + u(x))u′(x) +
C

u(x)
= e(x) − 1, (3.2)

so let us now take

g(x) =
C

x
,

the corollary 3.2 implies that equation (3.2) has at least one 2π-periodic positive
solution, i.e. the equation (3.1) has at least one 2π-periodic solution v such that
v(x) > C for all x ∈ [0, 2π].

4. Case of repulsive singularity

In this section, we will prove the existence of a positive 2π-periodic solution to
(1.5). For that, let us consider the family of equations:

(−�)su(t) + cu′(t) − λg(u) = λe(t), λ ∈ (0, 1). (4.1)

First, we want to find a priori bounds. For that the following lemma is very
important and corresponds to a new energy type identity for the periodic solutions,
whose proof is based on ideas of lemma 3.2 in [13].

Lemma 4.1. Let u ∈ C1
2π(R), then∫ b

a

u′(x)(−Δ)su(x) dx =
c(1, s)

2

(∫ +∞

−∞

(u(b)−u(y))2

|b − y|1+2s
dy−

∫ +∞

−∞

(u(a)−u(y))2

|a − y|1+2s
dy

−(1 + 2s)
∫ b

a

∫ +∞

b

(u(x) − u(y))2

|x − y|2+2s
dy dx

+(1 + 2s)
∫ b

a

∫ a

−∞

(u(x) − u(y))2

|x − y|2+2s
dy dx

)
, (4.2)

for every 0 < a < b.
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Proof. Fix 0 < a < b and choose δ and M with the restrictions 0 < δ < a and M >
b + δ. We consider the integral

Iδ,M =
∫ b

a

u′(x)
∫ M

−M
|y−x|�δ

u(x) − u(y)
|x − y|1+2s

dy dx =
∫∫

Aδ,M

u′(x)
u(x) − u(y)
|x − y|1+2s

dy dx,

(4.3)
where Aδ,M = ([a, b] × [−M,M ]) ∩ {(x, y) ∈ R

2 : |y − x| � δ}.
It is not hard to see that

Iδ,M =
1
2

∫∫
Aδ,M

(
(u(x) − u(y))2

|x − y|1+2s

)
x

dy dx

+
1 + 2s

2

∫∫
Aδ,M

(x − y)(u(x) − u(y))2

|x − y|3+2s
dy dx.

We now split Aδ,M = A1 ∪ A2 ∪ A3 ∪ A4, where

A1 = {(x, y) ∈ Aδ,M : y � b}
A2 = {(x, y) ∈ Aδ,M : x + δ � y � b}
A3 = {(x, y) ∈ Aδ,M : a � y � x − δ}

A4 = {(x, y) ∈ Aδ,M : y � a}.
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Since the region A2 is the reflection of A3, with respect to the line y = x and the
integrand in the last integral above is antisymmetric, we get

Iδ,M =
1
2

∫∫
Aδ,M

(
(u(x) − u(y))2

|x − y|1+2s

)
x

dy dx

− 1 + 2s

2

⎛
⎝∫∫

A1

(u(x) − u(y))2

(x − y)2+2s
dy dx −

∫∫
A4

(u(x) − u(y))2

(x − y)2+2s
dy dx

⎞
⎠

=
1
2

∮
∂Aδ,M

(u(x) − u(y))2

|x − y|1+2s
dy

− 1 + 2s

2

⎛
⎝∫∫

A1

(u(x) − u(y))2

(x − y)2+2s
dy dx −

∫∫
A4

(u(x) − u(y))2

(x − y)2+2s
dy dx

⎞
⎠ .

Now, using Green’s formula, where the line integral is to be taken in the positive
sense. Parameterizing the line integral we have

Iδ,M = −1
2

M∫
−M

|y−a|�δ

(u(a) − u(y))2

|a − y|1+2s
dy +

1
2

M∫
−M

|y−b|�δ

(u(b) − u(y))2

|b − y|1+2s
dy

+
1
2

b−δ∫
a

(u(x) − u(x + δ))2

δ1+2s
dx − 1

2

∫ b

a

(u(x) − u(x − δ))2

δ1+2s
dx

− 1 + 2s

2

∫∫
A1

(u(x) − u(y))2

(x − y)2+2s
dy dx +

1 + 2s

2

∫∫
A4

(u(x) − u(y))2

(x − y)2+2s
dy dx

= −1
2

M∫
−M

|y−a|�δ

(u(a) − u(y))2

|a − y|1+2s
dy +

1
2

M∫
−M

|y−b|�δ

(u(b) − u(y))2

|b − y|1+2s
dy

− 1
2

a∫
a−δ

(u(x + δ) − u(x))2

δ1+2s
dx − 1 + 2s

2

∫∫
A1

(u(x) − u(y))2

(x − y)2+2s
dy dx

+
1 + 2s

2

∫∫
A4

(u(x) − u(y))2

(x − y)2+2s
dy dx. (4.4)
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Now we can pass to the limit in Iδ,M as M → +∞ using dominated convergence
and get

∫ b

a

u′(x)
∫
|y−x|�δ

u(x) − u(y)
|x − y|1+2s

dy dx =
1
2

∫
|y−b|�δ

(u(b) − u(y))2

|b − y|1+2s
dy

− 1
2

∫
|y−a|�δ

(u(a) − u(y))2

|a − y|1+2s
dy

− 1
2

∫ a

a−δ

(u(x + δ) − u(x))2

δ1+2s
dx

− 1 + 2s
2

∫∫
A1

δ

(u(x) − u(y))2

(x − y)2+2s
dy dx,

+
1 + 2s

2

∫∫
A2

δ

(u(x) − u(y))2

(x − y)2+2s
dy dx, (4.5)

where A1
δ = ([a, b] × (b,+∞) ∩ {(x, y) ∈ R

2 : y � x + δ} and A2
δ = ([a, b] × (−∞, a) ∩

{(x, y) ∈ R
2 : y � x − δ}.

Finally, will want to pass to the limit as δ → 0 in (4.5). Observe that, since
u ∈ C1

2π(R), we have that u′ is bounded so u is Lipschitz, hence for y close to b
gives

(u(b) − u(y))2

|b − y|1+2s
� C|b − y|1−2s ∈ L1

loc(R),

and we also have for y close to a

(u(a) − u(y))2

|a − y|1+2s
� C|a − y|1−2s ∈ L1

loc(R).

So the passing to the limit is justified in the first and second integral in the right-
hand side of (4.5) by dominated convergence. As for the third integral, for being u
Lipschitz gives

(u(x + δ) − u(x))2

δ1+2s
� Cδ1−2s

so that, ∫ t

t−δ

(u(x + δ) − u(x))2

δ1+2s
dx � Cδ2−2s → 0

as δ → 0+. As for the double integral, we also have that

(u(x) − u(y))2

|x − y|2+2s
� C|x − y|−2s ∈ L1

loc(R
2),

for x and y close. Therefore, we can pass to the limit in the right-hand side of (4.5).
Now, on the left-hand side of (4.5) using the regularity of u and dominated

convergence, it follows that we can pass the limit and get our identity. �
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To prove that u has an upper bound, we will need the following lemma, which
we will prove using Fourier series.

Lemma 4.2. Let u a 2π-periodic function, then∫ 2π

0

(�)su(t)u′(t) dt = 0.

Proof. Now we write

u(t) = a0 +
+∞∑
n=1

an cos(nt) + bn sin(nt),

so,

u′(t) =
+∞∑
k=1

bkk cos(kt) − akk sin(kt),

and

(�)su(t) =
+∞∑
n=1

ann2s cos(nt) + bnn2s sin(nt),

by orthogonality we have

< sin(nt), sin(kt) > =0, n �= k

< cos(nt), cos(kt) > =0, n �= k

< cos(nt), sin(kt) > =0.

Hence,

2π∫
0

(�)su(t)u′(t) dt

=
+∞∑
n=1

∫ 2π

0

(ann2s cos(nt) + bnn2s sin(nt))(bnn cos(nt) − ann sin(nt))

=
+∞∑
n=1

(∫ 2π

0

anbnn2s+1 cos2(nt) +
∫ 2π

0

(b2
n − a2

n)n2s+1 cos(nt) sin(nt)

−
2π∫
0

anbnn2s+1 sin2(nt)

⎞
⎠

=
+∞∑
n=1

∫ 2π

0

anbnn2s+1(cos2(nt) − sin2(nt))

=
+∞∑
n=1

∫ 2π

0

anbnn2s+1 cos(2nt) = 0. (4.6)

https://doi.org/10.1017/prm.2021.82 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.82


250 L. Carrero and A. Quaas

�

As mentioned in the introduction, the fact that we can’t establish that u′ is
uniformly bounded, we need to use local regularity theory, the following lemma is
proved in [32] (see theorem 3.1).

Lemma 4.3. Let s > 1
2 , for γ ∈ (0, 1) we have (�)1−s : C2,γ(R) → C2s+γ(R) is

continuous, i.e.

‖(�)1−sw‖C2s+γ(R) � C‖w‖C2,γ(R).

The following is local regularity result, we use ideas of [27], see also [30], we
give it here for completeness. Moreover, the basic ideas are the key elements in
propositions 2.8 and 2.9 of [30] that are also used in this paper.

Lemma 4.4. Let u ∈ L∞(R) be a solution of

(�)su = f in (x0 − δ, x0 + δ),

with δ > 0. Then there exist γ > 0 and C∗ such that u ∈ C2s+γ
loc (R). Moreover,

‖u‖C2s+γ [x0− δ
2 ,x0+

δ
2 ] � C∗(‖f‖Cγ(x0−δ,x0+δ) + ‖u‖L∞(R)).

Proof. Let w be a solution of

w′′ = ηf in R,

where η ∈ C∞(R) such that η ≡ 0 outside (x0 − δ, x0 + δ) and η ≡ 1 in [x0 −
3δ
4 , x0 + 3δ

4 ]. So we get

‖w‖C2,α(R) � C‖ηf‖Cα(R)

� C‖f‖Cα(x0−δ,x0+δ). (4.7)

Then, since (�)s((�)1−sw) = w′′ we have

(�)s(u − (�)1−sw) = 0 in [x0 − 3δ/4, x0 + 3δ/4],

we can use theorem 1.1 of [31], to obtain that there exists γ such that

‖u − (�)1−sw‖C2s+γ [x0− 3δ
4 ,x0+

3δ
4 ] � C‖u − (�)1−sw‖L∞(R)

� C(‖u‖L∞(R) + ‖(�)1−sw‖L∞(R)).

Hence, using lemma 4.3 and (4.7) we get

‖u‖C2s+γ [x0− 3δ
4 ,x0+

3δ
4 ] � C(‖(�)1−sw‖C2s+γ(R) + ‖u‖L∞(R))

� C(‖f‖Cγ(x0−δ,x0+δ) + ‖u‖L∞(R)).

�

Now use again interpolation inequality to get a local regularity result with drift
term.
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Theorem 4.5. Let u be a solution of

(�)su + cu′ = f in (x0 − δ, x0 + δ),

with δ > 0. Then there exists γ > 0 and C̄ > 0 such that

‖u‖C2s+γ [x0− δ
2 ,x0+

δ
2 ] � C̄(‖f‖Cγ(x0−δ,x0+δ) + ‖u‖L∞(R)).

Proof. Now, by the lemma 4.4,

‖u‖C2s+γ [x0− δ
2 ,x0+

δ
2 ] � C∗(‖f‖Cγ(x0−δ,x0+δ) + ‖u‖C1,γ(x0−δ,x0+δ) + ‖u‖L∞(R)).

(4.8)
Using now the Interpolation inequalities ([17], theorems 3.2.1) together with

the fact that 2s > 1, we obtain that, for any ε > 0, there is a positive constant
C = C(γ, ε, s), such that

‖u‖C1,γ(x0−δ,x0+δ) � ε‖u‖C2s+γ(x0−δ,x0+δ) + C‖u‖C(x0−δ,x0+δ). (4.9)

Hence, choosing ε = 1
2C∗ we get out results from (4.9) and (4.8). �

Lemma 4.6. [Interior Harnack inequality] Let v be a classical solution of

(�)sv + δ2s−1cv′ = f in (−1, 1),

and v � 0 in R with f ∈ L∞(−1, 1) ∩ C(−1, 1) and δ ∈ (0, 1). Then there exists
C0 > 0 independent of v and δ such that

sup
(− 1

2 , 1
2 )

v � C0( inf
(−1,1)

v + ‖f‖L∞(−1,1)).

For the proof we quote [33] where a much more general equations are considered,
including zero order term and drift term. A parabolic version of Harnack inequality
with a drift term can be found in [9].

Lemma 4.7. Assume that (G1) and (G2) hold then there exist constants R1 >R0 >0
such that for each possible 2π-periodic solution u of (4.1) there exist t0, t1 ∈ [0, 2π]
such that u(t0) > R0 and u(t1) < R1.

Proof. We shall assume that u is a solution of (4.1) for some fixed λ ∈ (0, 1) then

2π∫
0

(�)su(t) dt + c

2π∫
0

u′(t) dt − λ

2π∫
0

g(u(t)) dt = λ

2π∫
0

e(t) dt.

But, for lemma 2.2 and using the 2π-periodicity of u′ gives

1
2π

2π∫
0

g(u(t)) dt + ē = 0. (4.10)
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We now notice that with assumption (G2), we get that there exists R0 > 0 such
that

g(x) > 0 and g(x) + ē > 0,

whenever 0 < x � R0. Therefore, if 0 < u(t) � R0 for all t ∈ [0, 2π], we obtain
g(u(t)) + ē > for those t and hence

1
2π

2π∫
0

g(u(t)) dt + ē > 0

a contradiction to (4.10), thus there exists t0 such that u(t0) > R0. On the other
hand, assumption (G1) implies the existence of some R1 > R0 such that

g(u) + ē < 0,

whenever u � R1. Then, if u(t) � R1 for all t ∈ [0, 2π], gives g(u(t)) + ē < 0 for
those t and

1
2π

2π∫
0

g(u(t)) dt + ē < 0

a contradiction to (4.10), thus there exists t1 such that u(t1) < R1. �

Lemma 4.8. Let u a solution positive 2π-periodic of (4.1) and assume (G1) then
there exists constant R such that

0 < u(t) < R.

Moreover we have that there exists C > 0 such that

‖u′‖L2(0,2π) � C‖e‖L2(0,2π). (4.11)

Proof. By lemma 4.7

u(t) � u(t1) +

2π∫
0

|u′(t)|dt

� R1 +
√

2π‖u′‖L2(0,2π). (4.12)

Now, multiplying (4.1) for u′ and integrating the equation∫ 2π

0

(�)su(t)u′(t) dt + c

∫ 2π

0

|u′(t)|2 dt = λ

∫ 2π

0

g(u(t))u′(t) + λ

∫ 2π

0

e(t)u′(t) dt,

(4.13)
since

λ

∫ 2π

0

g(u(t))u′(t) dt = λ

∫ u(2π)

u(0)

g(w) dw = 0,
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together with lemma 4.2 and using Hölder inequality gives

c‖u′‖2
L2(0,2π) = λ

∫ 2π

0

e(t)u′(t)

� C‖e‖L2(0,2π)‖u′‖L2(0,2π),

so that,

‖u′‖L2(0,2π) � C‖e‖L2(0,2π)

which, together with (4.12) implies

u(t) � R0 + C‖e‖L2(0,2π) = R,

therefore the result follows. �

Lemma 4.9. Assume that (G4) holds then for each u a solution of (1.5) there exists
C > 0 (independent of u) such that

‖u‖Cs+ε/2[0,2π]

� C

((∫ 4π

−2π

|g(u(x))|1/(s−ε/2) dx

)s−ε/2

+ ‖u′‖L2[−2π,4π] + ‖e‖L2[−2π,4π]

)
.

(4.14)

Proof. First we find a L1 bound for g. Notice that (G4) implies that

|g(u(t))| � g(u(t)) + 2au(t) + 2b, (4.15)

integrating over [0, 2π]∫ 2π

0

|g(u(t))|dt �
∫ 2π

0

g(u(t)) dt + 2a

∫ 2π

0

u(t) dt + 4bπ,

by lemma 4.8 and (4.10) we have∫ 2π

0

|g(u(t))|dt � 4π(aR + b). (4.16)

Secondly, we now consider the following problem

(Δ)sv(t) = g(v(t)) + h(t) in R, (4.17)

where h ∈ L2. Let w ∈ C2(R) such that

w′(t) =
∫ t

−2π

g(v(x)) + h(x) dx, t ∈ [−2π, 4π]. (4.18)

Then, w is a solution of

w′′(t) = g(v(t)) + h(t),
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and since (�)s((�)1−sw) = w′′ we have

(�)s(v − (�)1−sw) = 0 in [0, 2π].

Using [1, theorem 2.7] we have

‖v − (�)1−sw‖Cs+ε/2(0,2π) � C‖v − (�)1−sw‖L∞(0,2π)

� C(‖v‖L∞(R) + ‖(�)1−sw‖L∞(0,2π)),

and as we know that for μ = 1 − s + ε/2 (see [32, theorem 3.1])

‖(�)1−sw‖Cs+ε/2[0,2π] � C‖w‖C1,μ(−2π,4π), (4.19)

we obtain

‖v‖Cs+ε/2[0,2π] � C(‖(�)1−sw‖Cs+ε/2[0,2π] + ‖v‖L∞(R))

� C(‖w‖C1,μ(−2π,4π) + ‖v‖L∞(R)). (4.20)

Now, we want to bound ‖w‖C1,μ(−2π,4π), it follows from (4.18) and (4.16) we need
to estimate [w′]Cμ . Let x, y ∈ (−2π, 4π) and using Hölder inequality we get

|w′(x) − w′(y)|

=

∣∣∣∣
∫ y

x
g(v(x)) + h(x) dx

∣∣∣∣
�
((∫ y

x
|g(v(x))|1/(s−ε/2) dx

)s−ε/2

+

(∫ y

x
|h(x)|1/(s−ε/2) dx

)s−ε/2
)

|x − y|1−s+ε/2

�
((∫ 4π

−2π
|g(v(x))|1/(s−ε/2) dx

)s−ε/2

+

(∫ 4π

−2π
|h(x)|1/(s−ε/2) dx

)s−ε/2
)

|x − y|1−s+ε/2,

(4.21)

so that (4.20) implies,

‖v‖Cs+ε/2[0,2π] � C

((∫ 4π

−2π

|g(v(x))|1/(s−ε/2) dx

)s−ε/2

+ ‖h‖L2[−2π,4π]

)
. (4.22)

Finally, let u a solution of (1.5) by the above with h(t) = cu′(t) + e(t) we have

‖u‖Cs+ε/2[0,2π]

� C

((∫ 4π

−2π

|g(u(x))|1/(s−ε/2) dx

)s−ε/2

+ ‖u′‖L2[−2π,4π] + ‖e‖L2[−2π,4π]

)
.

�

Lemma 4.10. Assume (G1),(G2),(G3) and (G4) then there exists r ∈ (0, R0) such
that each 2π-periodic solution of (4.1) satisfies u(t) > r for all t ∈ [0, 2π].

Proof. Let tn3 , tn4 be the minimum point and the maximum point of un in [0, 2π],
notice that by lemma 4.7 we have un(tn4 ) > R0.
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Now we assume by contradiction that un(tn3 ) → 0 as n → ∞. First we suppose
that tn4 < tn3 ,

and multiplying (4.1) by u′
n, then

∫ tn
3

tn
4

(�)sun(t)u′
n(t) dt + c

∫ tn
3

tn
4

|u′
n(t)|2 dt

− λ

∫ tn
3

tn
4

g(un(t))u′
n(t) = λ

∫ tn
3

tn
4

e(t)u′
n(t) dt,

so that,

λ

∫ un(tn
4 )

un(tn
3 )

g(w) dw =
∫ tn

3

tn
4

(−�)sun(t)u′
n(t) dt

− c

∫ tn
3

tn
4

|u′
n(t)|2 dt + λ

∫ tn
3

tn
4

e(t)u′
n(t) dt. (4.23)

We need to bound the first term in the right-hand side, since by (4.11) the order
terms in the right hand are bounded, to get a contradiction with (G3) by the fact
that un(tn4 ) > R0 and un(tn3 ) → 0.

Let us now define

δn = sup{δ > 0 |un(t) >
R0

4C0
for t ∈ (tn4 − δ, tn4 + δ)}.

Notice that for n large un(tn3 ) < R0
4C0

therefore δn is finite and

inf
(tn

4 −δn,tn
4 +δn)

un =
R0

4C0
.

Now we claim that there exists δ0 > 0 such that δn > δ0. Suppose the contrary, so
there exists a sub-sequence (still denote by n) such that δn → 0. Define vn(t) =
un(δnt + tn4 ), we have that

(�)svn(t) + δ2s−1
n cv′

n(t) = δ2s
n h in (−1, 1),

where h := g(un(δnt + tn4 )) + e(δnt + tn4 ) ∈ L∞(−1, 1) by the definition of δn. By
lemma 4.6,

sup
(− 1

2 , 1
2 )

vn � C0( inf
(−1,1)

vn + δ2s
n ‖h‖L∞(−1,1)),

as inf
(−1,1)

vn =
R0

4C0
, we have

R0 < sup
(− 1

2 , 1
2 )

vn � C0

(
R0

4C0
+ δ2s

n ‖h‖L∞(−1,1)

)
.

Taking δn small, we obtain a contradiction and the claim follows.
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Now we can use theorem 4.5, and with δ = δ0 > 0 independent of un there exists
C̄ > 0 (independent of n) such that

‖un‖C2s+β[tn
4 − δ

2 ,tn
4 + δ

2 ] � C̄,

with δ > 0, this implies that

|u′
n(x)| � C̄ in [tn4 − δ/2, tn4 + δ/2]. (4.24)

Now we simplify the notation and drop the n index to estimate
tn
3∫

tn
4

u′
n(x)(−Δ)sun(x) dx.

By lemma 4.1 we have
t3∫

t4

u′(x)(−Δ)su(x) dx � c(1, s)
2

(∫ +∞

−∞

(u(t3) − u(y))2

|t3 − y|1+2s
dy

+(1 + 2s)
∫ t3

t4

∫ t4

−∞

(u(x) − u(y))2

|x − y|2+2s
dy dx

)
. (4.25)

Let ρ > 0 we have∫ +∞

−∞

(u(t3) − u(y))2

|t3 − y|1+2s
dy =

∫
|t3−y|<ρ

(u(t3) − u(y))2

|t3 − y|1+2s
dy

+
∫
|t3−y|�ρ

(u(t3) − u(y))2

|t3 − y|1+2s
dy,

by lemma 4.9 together with (G2),(G4) and (4.15) we obtain∫
|t3−y|<ρ

(u(t3) − u(y))2

|t3 − y|1+2s
dy

� C

((∫ 4π

−2π

|g(u(x))|1/(s−ε/2) dx

)2s−ε

+ C∗
)∫

|t3−y|<ρ

|t3 − y|2s+ε

|t3 − y|1+2s
dy

� C

((∫ 4π

−2π

|g(u(x))|1+(1/(s−ε2)−1) dx

)2s−ε

+ C∗
)∫

|t3−y|<ρ

|t3 − y|ε−1 dy

� Cg(u(t3))(1/(s−ε/2)−1)(2s−ε)

((∫ 4π

−2π

g(u(x)) dx

)2s−ε

+ +C∗
)

� C(g(u(t3))(1/(s−ε/2)−1)(2s−ε) + C∗) = C(g(u(t3))2−2s+ε + C∗), (4.26)

where C∗ = 4aπR + 4bπ + ‖u′‖L2[−2π,4π] + ‖e‖L2[−2π,4π], and by (4.11) we have
C∗ < +∞. Now, the second integral we know is bounded∫

|t3−y|�ρ

(u(y) − u(t3))2

|t3 − y|1+2s
dy � 4R2

∫
|t3−y|�ρ

dy

|t3 − y|1+2s

� C. (4.27)
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Now from (4.24) we have

u(x) − u(y) =
∫ x

y

u′(ξ) dξ � C̄(x − y),

so that∫ t3

t4

∫ t4

t4− δ
2

(u(x) − u(y))2

|x − y|2+2s
dy dx

� C̄2

∫ t3

t4

∫ t4

t4− δ
2

(x − y)2

|x − y|2+2s
dy dx

=
C̄2

2s − 1

∫ t3

t4

−(x − t4)−2s+1 +
(

x − t4 +
δ

2

)−2s+1

dx

=
C̄2

(2s − 1)(2 − 2s)

(
−(t3 − t4)−2s+2 +

(
t3 − t4 +

δ

2

)−2s+2

− δ

2

−2s+2
)

� C̄2

(2s − 1)(2 − 2s)

(
t3 − t4 +

δ

2

)−2s+2

. (4.28)

To analyse the same integral when y < t4 − δ and t4 < x < t3 we have

∫ t3

t4

∫ t4− δ
2

−∞

(u(x) − u(y))2

|x − y|2+2s
dy dx � 4‖u‖2

L∞

∫ t3

t4

∫ t4− δ
2

−∞

dy

|x − y|2+2s
dx

� 4R2

1 + 2s

∫ t3

t4

−
(

x − t4 +
δ

2

)−1−2s

dx

=
4R2

(1 + 2s)(2s)

((
t3 − t4 +

δ

2

)−2s

− δ

2

−2s
)

� 4R2

(1 + 2s)(2s)

(
t3 − t4 +

δ

2

)−2s

. (4.29)

Hence, (4.25), (4.26), (4.27), (4.28) and (4.29) give that there exists M0 > 0
independent of n such that

g(un(tn3 ))2s−2−ε

∫ tn
3

tn
4

u′
n(x)(−Δ)sun(x) dx � M0.

Thus, as mentioned above, this inequality implies a contradiction and the result
follows. �

We now prove the following existence result for the 2π-periodic solution of
equation (1.5), we shall use the ideas of Continuation Theorem of [22, 23].
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Proof of theorem 1.4. By the definition of R0 and R1 in lemma 4.7 we have

g(a) > 0 and g(a) + ē > 0 if 0 < a � r < R0 (4.30)

and

g(a) + ē < 0 if a � R > R1. (4.31)

Using proposition 1.2 we can define a map K : Cα
2π(R) → Cα

2π(R) by K(z) = u
where u is a solution of

(�)su(t) + cu′(t) = z(t),

where K is compact.
Now, let us define the map N : Cα

2π(R) → Cα
2π(R) by

Nu = g(u(·)) + e(·). (4.32)

Define the continuous projectors Q : Cα
2π(R) → Cα

2π(R) by the constant function

Qy =
1
2π

∫ 2π

0

y(t) dt.

Let Ω = {u ∈ C2s+α
2π (R) : r < u(t) < R, t ∈ [0, 2π]} define one parameter family

of problems

u = K((1 − λ)QNu + λNu) λ ∈ [0, 1].

Explicitly,

(�)su(t) + cu′(t) = (1 − λ)QNu + λNu. (4.33)

For λ ∈ [0, 1], observe that we have by lemma 2.2

1
2π

∫ 2π

0

g(u(t)) + e(t) dt = 0.

Therefore for all λ ∈ (0, 1], problem (4.1) and problem (4.33) are equivalent. Hence,
lemmas 4.8 and 4.10 imply (4.33) does not have a solution of ∂Ω × (0, 1]. For
example, λ = 0 (4.33) is equivalent to the problem

(�)su(t) + cu′(t) =
1
2π

∫ 2π

0

g(u(t)) + e(t) dt, (4.34)

then, applying Q to both members of this equation and by lemma 2.2, we obtain

QNu = 0, (�)su(t) + cu′(t) = 0.

Multiplying by u′ the second of those equations, using lemma 4.2 and integrating
we have ∫ 2π

0

(�)su(t)u′(t) dt + c

∫ 2π

0

(u′(t))2 dt = 0,
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so that

‖u′‖L2(0,2π) = 0,

this implies u′ = 0 hence u is constant, and we know that the constant solutions
of QNa = 0 satisfy the inequality r < a < R. Thus we have proof that (4.33) has
no solution on ∂Ω × [0, 1]. Therefore, deg(I − K((1 − λ)QN + λN),Ω, 0) is well
defined for all λ ∈ [0, 1] and by homotopy invariant of the degree we have

deg(I − KN, Ω, 0) = deg(I − KQN,Ω, 0) = deg(I − KQN,Ω ∩ E, 0),

where E ⊂ C2s+α
2π (R) : is the one-dimensional space of constant maps.

From here, we use (4.30) and (4.31) and basic degree properties to get deg(I −
KQN,Ω ∩ E, 0) �= 0. Thus, we can conclude equation (1.5) has at least one 2π-
periodic classical solution. �

5. Bifurcation from infinity and multiplicity of the solutions

In this section, we discuss a multiplicity result. We find the existence of a continuum
of positive solutions, bifurcating from infinity this together with our previous results
will give a multiplicity of solutions. This result is based on ideas from [23, 24]. Here
we will use the notation of the previous section.

The eigenvalue problem

u = μKu

has associated eigenvalue μ = 0 and the constant eigenfunction u ≡ 1. Conversely,
periodic eigenfunctions associated with μ = 0 are necessarily constant (see proof
the theorem 1.4), therefore μ = 0 is a simple eigenvalue.

We want to find positive 2π-periodic solutions of the equation

(�)su(x) + cu′(x) + μu = G(u) + e(t). (5.1)

We will assume that continuous functions G : (0,+∞) → [0,∞) and e ∈ Cα
2π(R)

satisfy the following conditions

(H1) limt→0+ G(t) = +∞,

(H2) limt→+∞ G(t) = 0,

(H3) ē > 0,

(H4)
∫ 1

0
G(t) dt = +∞.

We have the following result.

Theorem 5.1. Assume that conditions (H1), (H2), (H3) and (H4) are satisfied.
Then there exists η > 0 such that the following holds:

• Equation (5.1) hast at least one positive solution u for 0 � μ.

• Equation (5.1) hast at least two positive 2π-periodic solutions u for −η � μ < 0.
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Proof. We now take g(u) = G(u) − μu, so (5.1) is of the form (1.5), and satisfying
the following conditions:

(H1’) limt→0+ g(t) = +∞
(H2’) lim supt→+∞[g(t) + ē] < 0 for μ � 0

(H3’)
∫ 1

0
g(t) dt = +∞.

Therefore the results of theorem 1.4 are valid for equation (5.1) when μ � 0.
Then, by the continuity of degree defined in theorem 1.4 there exists η > 0 such
that for −η � μ < 0 that degree is not trivial. So, there exists u a solution for (5.1)
with −η � μ < 0. Now, by (H2) N(u) = o(‖u‖) at u = +∞ then, the fundamental
theorem on bifurcation from infinity from a simple eigenvalue implies the existence
of a continuum C∞ of positive solution (μ, u) bifurcating from infinity at μ = 0,
since the solutions for μ � 0 are bounded, the bifurcation is for the left side. �
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Brownian movement patterns of marine predators. Nature 465 (2010), 1066–1069.
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