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A NOTE ON UNITARY CROSS SECTIONS FOR 
OPERATORS 

LAWRENCE A. FIALKOW 

1. I n t r o d u c t i o n . This note addresses the question of characterizing the 
elements of a C*-algebra which have local uni tary cross sections in the sense 
described below. Let se denote a C*-algebra with identi ty and let °U ($/) denote 
the uni tary group in s/. For an element X in s$, let °tt (X) denote the uni tary 
orbit of X and let TTX denote the norm continuous mapping of &(&/) onto 
<%(X) defined by irx(U) = U*XU (U in °ti(sé)). A local cross section for irx 

is a pair (<px, 38) such t ha t 38 is a relatively open subset of % (X) t ha t con­
tains X and (px : ^ —*%(£/) is a norm continuous function such tha t 
(^X(X) = 1 and TTX(<PX(Y)) = Y for e a c h ' F in 38. If TTX has a local cross 
section, we say tha t X has a (/oca/ unitary) cross section, and in this case X 
clearly satisfies the following sequential unitary lifting property. 

(P) If {Un} C ^(*flO and lim \\Un*XUn - X\\ = 0, then there exists a 
sequence {TFnj C °it(stf) such tha t lim || WM - 1|| = 0 and such tha t Wn*XWn 

= Un*X Un for each n. 

In [7] we began to s tudy the problem of characterizing the Hilbert space 
operators which have cross sections or which satisfy (P) . In the present note 
we establish the following structure theorem for operators satisfying the se­
quential uni tary lifting property: each such operator is unitarily equivalent to 
an operator of the form A © B © • • • © B © • • -, where A and B are operators 
on finite dimensional Hilbert spaces (Theorem 2.2). This result, whose proof 
employs one of the deep results on C*-algebras due to D. Voiculescu [12], 
enables us to extend the results of [7] in several directions. 

L e t J ^ denote a separable infinite dimensional complex Hilbert space and 
lets/ = S£\ffl) denote the C*-algebra of all bounded linear operators o n J f . 
Each operator on a finite dimensional Hilbert space satisfies (P) [7, Corollary 
2.4], and in Section 3 we prove tha t a compact operator mJ£ (3fif) satisfies (P) 
if and only if it is of finite rank. I t was proved in [7, Section 3] t ha t a normal 
operator or isometry has a cross section if and only if its spectrum is finite. 
In Section 4 we extend this characterization to the class of hyponormal 
operators and we give an analogous result for hyponormal elements of the 
Calkin algebra. Section 5 contains a procedure for constructing non-normal 
operators with cross sections. 
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1216 LAWRENCE A. FIALKOW 

Theorem 2.2 also yields answers to several questions raised in [7]. Thus , we 
show t h a t each operator satisfying (P) is algebraic and has a closed uni ta ry 
orbit. On the other hand, not every algebraic operator satisfies (P) and, more­
over, the class of operators satisfying (P) is not closed under similarity. 

While our emphasis is on the c a s e J ^ = jSf ( ^ 0 , we prove several results for 
general C*-algebras and we point out the extent to which the results in the 
I l i lbert space case extend to the more general sett ing. In this connection, the 
following results summarize some useful facts about the general problem. For 
X in se, let (XY denote the commutan t of X and let Y (X) = <?/ (&/) P (X)' ; 
thus ^ P (X) is a closed subgroup of °tt{sé). Let px denote the canonical pro­
jection of °tt (s$) onto the right coset quot ient space °tt {se)/"V (X). If we endow 
$/ (£f)/y^ (X) with the quot ient topology, then px is open and continuous. Let 
qx: <%(s/)/V{X) ->°ti(X) be defined by qx(px(U)) = irx(U); qx is a well-
defined continuous bijection, and we have the following commuta t ive diagram: 

(^(X)< ^ ( J / ) / ^ ( X ) . 
Px 

The proof of the following result is routine diagram chasing and will be 
omit ted ; in view of our previous results, this result shows t ha t qx need not be 
a homeomorphism. 

L E M M A 1.1. The following are equivalent: 
i) X satisfies the sequential unitary lifting property; 

ii) TTX is an open mapping; 
iii) qxisa homeomorphism. 

COROLLARY 1.2. If X has a local cross section, then px has a local cross section. 

We will show in Section 2 tha t the converse of the preceding corollary is 
false. Nonetheless, the existence of a local cross section for px can be utilized 
in some cases, as the following results show. 

COROLLARY 1.3. If X satisfies the sequential unitary lifting property, then X 
has a cross section if and only if px has a local cross section. 

COROLLARY 1.4. IfJtf? is a finite dimensional Ililbert space and T is in<f£ (ffi), 
then T has a local cross section. 

Proof. [7, Corollary 24] implies t ha t T satisfies (P) . SinceJ^7 is finite dimen­
sional, &(3ti?) is a compact Lie group, so px has a local cross section (see [3, 
pg. 23-24]) , and the result now follows from Corollary 1.3. 

We conclude this section with some notat ion and terminology. For X in s/, 
C*(X) denotes the C*-subalgebra of s/ generated by X and 1; <r(X) denotes 
the spectrum of X. Let S^(X) denote the set of all sequences {Un} C °tt(stf) 

https://doi.org/10.4153/CJM-1978-101-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-101-8


UNITARY CROSS SECTIONS 1217 

such tha t lim Un*XU„. = X. A sequence { Wn] C °U {se) is said to re-implement 
Î Un) for X if lim \\Wn - 1|| = 0 and I T / X I F , = i7„*XZ7w for each n. We 
include for completeness two additional criteria tha t are each equivalent to 
property (P ) : 

P I ) Given { U„\ in Sf (X), there exists a subsequence { U„k} t ha t can be re-
implemented. 

P2) Given e > 0, there exists Ô > 0, such tha t if U is in °tt{ç#) and 
\\U*XV - X\\ < Ô, then there exists W in <%($£) such tha t \\W - 1|| < e 
and W*XW = Z7*Z[/. 

The proofs of these equivalences are the same as in the Hilbert space case 
[7, Lemma 2.3]. For e > 0, we denote by 38 {X, e) the set [Y £ <% (X) : 
| \X — Y\ | < e}. In the sequel we will use the fact tha t an orthogonal projection 
P always has a cross section of the form (p, 38 (P, 1)) (see [7, Theorem 3.2] 
and its proof). 

All Hilbert spaces t ha t we consider are complex and separable, unless other­
wise noted, and ffl denotes an infinite dimensional separable Hilbert space. 
For a closed s u b s p a c e ^ # of a Hilbert space, PM denotes the projection onto 
*Jé. If J ^ ( ^ ) denotes the ideal of all compact operators iiioSf ( ^ ) , then the 
Calkin algebra is the quotient ^ = i f ( ^ ) / j f (<#), and we let T r . - ^ p T ) -»Çf 
denote the canonical projection. For T in ^ f Çtff), we set T = ir(T), ae(T) = 
<J{T) (the essential spectrum of 7"), and we let Re (T) denote the set of all 
reducing essential eigenvalues of T [10]. For an operator .S on a Banach space, 
the range and null space will be denoted, respectively, by 3?(S) and ker (S). 

The author is grateful to the referee for helpful comments and suggestions. 
The author also appreciatively acknowledges the contributions of R. J. Zimmer, 
who indicated the connections to Lie groups and who furnished the proof of 
Corollary 1.4 and the example following Corollary 2.3. 

2. S t r u c t u r e of operators sat i s fy ing property (P). In this section we 
show tha t each operator satisfying the sequential uni tary lifting property 
admits a direct sum decomposition of the form A © (B ® 1^), where A and B 
are operators on finite dimensional Hilbert spaces. We begin with a result for 
the case of a general C*-algebra s/. We show tha t if an element ms/ satisfies 
(P) , then its uni tary orbit is norm closed; this result answers [7, Question 2] 
affirmatively. 

PROPOSITION 2.1. If X is ins$ and X satisfies the sequential unitary lifting 
property, then °tt (X) is norm closed in se. 

Proof. Since X satisfies (P) , property P2) implies t ha t for en = 1/2" there 
exists ôn > 0 such t ha t if U is in °ti{sé) and || U*XU - X\\ < drn then there 
exists IT in °U(sé) such tha t \\W - 1|| < 1/2* and W*XW = U*XU. Let Y 
be in % (X)~ and suppose tha t {Uk} is a sequence in %{s/) such tha t lim 
U7*XUk = Y. For n > 0, there exists kn > 0 such tha t if k ^ kn, then 
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\\Uk*XUk — Y\\ < ( l /2)d„; moreover, we m a y assume tha t kn+i > kn > • • • 
> ki. For each n, since kn+i > kn, we have 

\\Ukn+1*XUkn+1 - Uk*XUkn\\ ^ \\Utn+*XUkn+l - Y\\ 

+ \}Y- Uk*XUkn\\ < 2 (1 /2 )5 , = 8„. 

T h u s 

\\UknUl;ni*XUkn^Uk* - X\\ <Sn, 

so there exists W„ in ^ ( j / ) such t ha t \\W„. - 1|| < 1/2" and W*XWn = 
UknUkn+*XUkn+1Uk*. If r „ = f/t„*WBf/,,„, then || Vn - 1|| < 1/2» and 
F„* £/A.„*X [/„„ F„ = Ukn + l*XUkn+l; thus , by repeated subst i tut ion, we have 

£/,„+1*Xt/ t.„+1 = F / J Z , - ! * • • • VfU^XU^V, • • • Vn-,Vn. 

Since V„ = 1 + (F„. - 1) and £ « = i | |F„ - 1|| < oo, then [4, Theorem 2, 

page 213] implies tha t 

F = ft 7» ( = l i m ( F 1 - - - F K ) ) 

is norm convergent, so t h a t V is uni tary. T h u s 

F = lim Ukn+1*XUkn+1 = lim (F n * • • • F ^ J ^ ^ ^ l F i • • • Vn) 

= F ^ . ^ Y L ^ F , 

so t ha t F is in & (X), and the proof is complete. 

In the Hilbert space case (s/ = S£(<#?)), the preceding result leads to the 
above mentioned s t ructure theorem for operators satisfying proper ty (P) . 

T H E O R E M 2.2. Let T be in J^7 (Jrff) and suppose that T satisfies the sequential 
unitary lifting property. Then there exist finite dimensional Hilbert spaces ffl\ 
and ^2 and operators A inJ^(J^i), 13 in cJSfp^) , such that T is unitarily 
equivalent to A 0 (B ® 1^) ( = A 0 B 0 • • • © B © • • •)• 

Proof. Since T satisfies (P) , Proposition 2.1 implies tha t &(T) is closed in 
i f («^) . Now by a theorem of D. Voiculescu [12, Proposition 2.4], <%(T) is 
closed if and only if C*(T) is finite dimensional. T h e la t ter condition is equiv­
alent to the proper ty t h a t T is an orthogonal direct sum of copies of a finite 
number of finite dimensional operators /Y\, . . . , Fn [1, section 3]. Suppose, after 
renumbering, t ha t Fi, . . . , Fm(l ^ m ;g n) are the operators amongst the 
Fi's t h a t appear as direct summands infinitely many times in the above de­
composition of T. W e may then set B = ^ ? = i © Fi a n d let A be the direct 
sum of Fm+i, . . . , Fn, each repeated as a direct summand according to its 
(finite) multiplicity as a summand in the original decomposition. 

COROLLARY 2.3. If T satisfies the sequential unitary lifting property, then T is 
reducible and algebraic, and dim (C*(T)) < oo. 

Remark. From the preceding corollary and L e m m a 1.1 it follows t h a t if an 
operator T \x\Jf£{3f) is irreducible, then irT is not an open mapping and qT is 
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not a homeomorphism ; in particular, T does not have a local uni tary cross 
section. On the other hand, in this case pT does have a local cross section since 

(Tyn <%(#>) = {si*.-1*| = i}, 
a compact Lie group [3, Theorem 5.8, page 88] (cf., the remark following 
Corollary 1.2). In contrast to Corollary 2.3, not every algebraic operator 
satisfies ( P ) ; this is discussed more fully in Example 5.2 (below). 

3. C o m p a c t operators . In this section we characterize the compact opera­
tors which satisfy the sequential uni tary lifting property. 

T H E O R E M 3.1. A compact operator T in££ ffl) satisfies the sequential unitary 
lifting property if and only if it is of finite rank. 

Proof. Let T be a finite rank operator; let J ^ i = (ker (T))1- and J ^ 2 = ker 
(T). Wi th respect to the decomposition Jf7 = Jt?i ©J^?, T has an operator 
matr ix of the form 

[A ol 
LB Oj ' 

and since r h a s closed range, / = A*A + B*B is invertible. Let { Un] £ y(T); 
with respect to the above decomposition, Un has an operator matrix of the form 

Xn Yn~\ 

zn wj' 
Since \\TUn — UnT\\ = \\TUn* — Un*T\\ —» 0, matrix calculations yield the 
following limits: 

U)AXn - XnA - F n B - > 0 ; 
ii) BXn - ZnA - WnB - > 0 ; 

i i i ) ^ F n - > 0 ; 
iv)BYn->0; 

II-i)AXn* -X*A - Zn*B ~->0; 
ii)BXn* - Yn*A - Wn*B - > 0 ; 

iii) AZn* - > 0 ; 
iv) BZ* -> 0. 

Now I-iii)-iv) imply tha t A*A Yn + B*BYn —> 0, and since / is invertible, 
we have Yn —>0; similarly, using II-iii)-iv) it follows tha t Zn —> 0. We thus 
have the limits Xn*Xn = 1 - Zn*Zn -> 1, XnXn* = 1 - YnYn* - » 1, and, like­
wise, W*Wn - » 1 and WnWn* -> 1. For each n, \\Xn\\ S 1, and M?

l is finite 
dimensional; thus, by passing to a subsequence and using proper ty P I ) , we 
may assume tha t [Xn] is norm convergent to some operator X in S£ Çtffi). 
Since Xn*Xn —» 1 and XwXre* —> 1, X is uni tary, and I-i) implies t ha t X 
commutes with A. 

Since the unit ball of ££ Çtffi) is compact and metrizable in the weak operator 
topology, by passing to a further subsequence we may assume there exists W 
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in i f p f 2 ) such that Wn ->w W. Thus JTnP - ^ TTP, and since Zn -> 0, I-ii) 
implies the following relations: 

Ill-i) WB = P X ; 
ii) WWP -> bFP. 

Let P iivJ^pf'o) and Q in J2? p f \ ) denote, respectively, the projections onto 
the range of P and the initial space of B (J^i 0 ker (P)). We claim that 

hi) \\(wn - w)\pje2\\ ->o. 
Since P has closed range, there exists Ô > 0 such that \\BQt\\ ^ d\\Qt\\ (JinJf'i). 
Now 

|](IT„ - W)Bt\\ = \\(W„. - W)BQt\\ g ||(IT,( - W0£|| ||(2/|| 

g HOn - W 0 £ | | ( l / « ) p # l l = \\(Wn - W)B\\(l/ô)\\Bt\\, 

and 11 I-ii) implies the claimed convergence. 
Taking adjoints, we have W„* —*„ II7*, and arguments analogous to those 

preceding (but using I I-ii) give the following relations: 

IV-i) W*B = BX*; 
ii) BXn* - W,*B - > 0 ; 

iii) | | ( IT„* - w*)\pj^t\\ ->o . 

Now IT/i?f i = i iZjTi C a ^ i and W*B^Cl = £X*jT i C i ^ ' i , so the range 
of B reduces If/; moreover, since W*WB = IT*£X = #"AT*X = B and 
JFIT*i! = WBX* = i i Z Z * = /J, then C = IT|5Jif j is unitary. 

Our aim is to use the unitary operators X and C in the construction of a 
re-implementing sequence for { Un\. To this end, we setJ^> = M7-.\ ®JÎ?.\, with 
-5^3 = P-2€Ji\ then the operator matrices of IT„ and W relative to this decompo­
sition assume the form 

Wn = 
C„ 
E„ and IT = 

C 
LO 

I A , ] I = 
*Fn - • 1 
= V P 

Since \\(Wn - W)\^\\ -> 0, P „ - > 0 ; similarly IV-iii) implies 
| |A*| | - » 0 . Thus, since W*Wn -» 1 and ITttIT„* -» 1, we have p , 
and P„PW* —> 1, and we may assume that Fn is invertible. If Fn 

denotes the polar decomposition of Fln then Vn is unitary and \\Fn — Yn\\ = 
\\Vn(Pn — 1)|| = ||P„ - 1|| - » 0 . Let Sn be the unitary operator on Jlf = 

yfi 0 ^ 3 0 ^ i defined by S„ = X* 0 C* 0 TV, and let Kn = C 0 TV 
Since X* commutes with 4̂ and Rn*B = IT*P = PAT*, a matrix calculation 
shows that Sn commutes with P. 

The re-implementing sequence for { Un) may now be defined by T„ = SnUn] 
evidently \Fn} Ç_ <%{$>) and T*TTn = Un*TUn. It thus suffices to verify 
that Tn —> 1. The operator matrix of Tn = 5„cP is of the form 

'x*Xn X*Yn 

.R*Zn R*Wn} 
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and we have X*Xn-+l, \\X*Yn\\ = | | F n | | -> 0, and \\Rn*Zn\\ = \\Zn\\ -> 0. 
Moreover, the matr ix of Rn*Wn is 

\c*cn W*DJ 
LVn*En V*Fn\' 

and we have 11 W*Dn\\ = \\Dn\\ -> 0, || Vn*En\\ = \\En\\ -> 0, and || Vn*Fn - 1|| 
= \\Pn - 1|| - > 0 . Finally, since \\(Wn - W)\^f3\\ -> 0, Cn - » C, and since C 
is uni tary we have \\C*Cn — 1|| —> 0, which completes the proof tha t T satis­
fies the sequential uni tary lifting property. 

For the converse, if T is an infinite rank compact operator, then it follows 
easily t ha t C*(T) is infinite dimensional, so the result follows from Corollary 
2.3. 

The same argument yields the following result. 

COROLLARY 3.2. If T is a compact, infinite rank operator which is a direct 
summand of an operator S, then S does not satisfy the sequential unitary lifting 
property. 

Remark 3.3. In |7] it was proved tha t each irreducible compact operator fails 
to satisfy property (P) . By a rather lengthy elaboration of the method of [7] 
it is possible to prove the "converse" direction of Theorem 3.1 without recourse 
to Corollary 2.3. Our original proof of Theorem 3.1 used this more elementary, 
if lengthier, approach. Indeed, the original proofs of the results in this section 
and the next provided the motivat ion for Theorem 2.2. and Corollary 2.3. 

4. H y p o n o r m a l operators . In [7] it was proved tha t a normal operator or 
an isometry satisfies the sequential uni tary lifting property if and only if its 
spectrum is finite, in which case it has a local uni tary cross section. In the 
present section we extend this result to hyponormal operators and give an 
analogue of this result for hyponormal elements of the Calkin algebra. 

PROPOSITION 4.1. If Re (T) is infinite, then T does not satisfy the sequential 
unitary lifting property. 

Proof. Theorem 2.2 implies tha t the spectrum of each operator satisfying (P) 
is finite; since, from [10], Re (7") C v{T), the result follows immediately. 

PROPOSITION 4.2. If T in S£\^f) is hyponormal, then T satisfies (P) if and 
only if a(T) is finite, in which case T has a local unitary cross section. 

Proof. If a(T) is finite, then [9, Theorem 1] implies tha t T is normal, and 
the existence of a cross section follows from [7, Theorem 3.2]. If a(T) is infinite, 
then Theorem 2.2 implies t ha t T does not satisfy (P) , so the proof is complete. 

To obtain analogues of the preceding results for the Calkin algebra we rely 
on the following lemma. 
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L E M M A 4.3. If T is in<f£ ffl) and Re (T) is infinite, then there exists an element 
{ Wn) of ff (T) such that if V is unitary and V*TV = Wn*TWnfor some n} then 
II V — X|| ^ lfor all scalar s X such that |X| = 1. 

Proof. Let {X„} denote a convergent sequence of dist inct elements of Re (T). 

Let Jf^ denote a copy oîJrff, let 

oo oo 

<&<* = E ®^<» and D = ]C © x*-

Let 5 denote the operator on j f = J f 0 ^ œ given by 5 - T ® D\ then 
[10, Theorem 4.6] implies t ha t there exists a sequence of uni tary operators 
Un : ^ f - » J f such t ha t if i ; = Un*SUnj then ||T„ - T|| < 1/w and Kn = 
Tn — T is compact . We now define the uni tary operator Xn on <yf by the 
following relations: Xnek = /#; X „ / t = ek) for each k, where [ek] and {fk\ denote, 
respectively, or thonormal bases for Jti?n and J f n +r , also, X„ is the identi ty on 

J f 6 (Jfw ® ^ f M + i ) . If we set Wn = Un*XnUn, then 

= \\xn*sxn-s\\ = |x„+ 1- x„|. 
Now 

|rav7Ww - 711 g \Wn*TWn - Wn*TnWn\\ + \\Wn*TnWn - Tn\\ 

+ \\Tn- T\\ < 2/n+ \ \ „ + 1 - K 0 

so t h a t {Wn} is a member of Sf(T). 
Suppose tha t V is uni tary and t ha t V*TY — Wn*TWn is compact for some n. 

S i n c e J ^ X J 7 - Wn*TJV^ = V*(T + Kn) V - Wn*(T + 2 Q W7*, then V*I\V 
= Wn*TnWn, whence VWn* commutes with Tn. Since 

VUn*XnSUn - Un*SUnVUn*XnUn 

= vun*xn*unun*sun - un*sunvun*xnun, 
which is compact, then UnVUn*XnS — SUnVUn*Xn is compact . Let W = 
UnVUn*\ with respect to the decomposition Crtf = f£n ©3F n © ^ „ . + i , the 
operator matrices of 5 , J w , and W are, respectively, of the following form: 

Xn = 5 
1 0 0 
0 0 1 
0 1 0. 

F„ 0 0 
0 X, 0 

L 0 0 Xn+1_ 

W = (Vij)i^1tj^' As L = i yX„5 — SWX„ is compact , a calculation of the 
row 2, column 3 ent ry in the matr ix of L shows t ha t (\„+i — X„) L22 = Ir2 2X71+1 
— XnF22 is compact ; since the X„'s are distinct, V22 is compact . Let (Kij) 1^1.^3 
denote the operator matr ix of any compact operator K relative to the above 
decomposition of Jf, and let X be a scalar such t h a t |X| = 1. Nowr 

\ W - \ + K\\ è IIF22 - \ + K22\\ è HF22 - X|| = |X| = 1; 
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thus, for |X| = 1 we have \\V - X|| = \\UnVU* - X|| t 1, and the proof is 
complete. 

COROLLARY 4.4. If Re (7") is infinite, then T does not satisfy the sequential 
unitary lifting property relative to the Calkin algebra. 

We sta te for ease of reference the following result of [7]. (Although this 
result was stated in [7, Theorem 3.2] only for the separable case, it is easy to 
see t ha t the same proof holds regardless of the dimension.) 

LEMMA 4.5. Let N be a normal operator on the complex Hilbert spaced. If 
<J(N) is finite, then N has a local cross section (p, Se) such that for each S in £§, 
p(S) is contained in the norm closed algebra generated by N, S, and 1. 

PROPOSITION 4.6. Lets/ be a C*-algebra with identity. If X is a normal element 
of se and <r(X) is finite, then X has a local unitary cross section. 

Proof. Let r : s/ —>J£ffl) denote an isometric C*-isomorphism oisé onto 
a C*-subalgebra S of J5f (frff) (where J ^ is a Hilbert space of suitable dimen­
sion). Let °U denote the uni tary group i n j / ; s e t ^ = r ( ^ ) a n d ^ = T(°U(X)) 
(note t ha t ^ = °U(Jf) C\ (?).LetZ = r(X) ; since a(Z) = a(X), Lemma 4.5 
implies t ha t Z, as a normal operator o n j f , has a local uni tary cross section 
(\[/, 2)) such tha t for each Y in Qi, \p(Y) is in the norm closed algebra gener­
ated by Z, Y, and 1. In particular, if Y is in IV C\ 2 , then ^{Y) is in "V. 
Thus , since r~l : $ -+s/ is an isometric C*-isomorphism, a local uni tary 
cross section for X may be defined by (p, Se), where âê = r^^iV C\ 2) and 
p = r~^r\Sê. 

We note t ha t the converse of Proposition 4.6 is false; each element of a 
commutat ive C*-algebra has a cross section. For T in <f£(fffî), T i shyponormal 
if ir(T*T — TT*) is positive. 

COROLLARY 4.7. If T is hyponormal, then T satisfies property (P) (relative to 
the Calkin algebra) if and only if ae(T) is finite, in which case T has a local 
unitary cross section. 

Proof. Since T is hyponormal, [10, Theorem 3.10] implies t ha t bdry (cre(T)) 
C Re (T)\ thus, if cre(T) is infinite, Corollary 4.4 implies t ha t T does not 
satisfy (P) . Conversely, if ae(T) is finite, then it follows (e.g., by representing 
the Calkin algebra as an operator algebra and applying [9, Theorem 1]) t ha t T 
is normal, so the result follows from Proposition 4.6. 

Remark. The proof of Proposition 4.6 shows t ha t the cross sections of 
Proposition 4.6 and Corollary 4.7 also have the additional property possessed 
by the cross section (p, âê) of Lemma 4.5. 

Let T be an essentially normal operator and let aT denote the restriction of 
7T to %(T). A question of Brown, Douglas, and Fillmore [5, page 121] asks 

https://doi.org/10.4153/CJM-1978-101-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-101-8


1224 LAWRENCE A. FIALKOW 

whether aT is an open mapping. I t is easily verified tha t aT is open if and only if 

T satisfies the following proper ty : 

(R) If { Un] C °U(^) and ictU*TUn) - » TT(P) , then there exists a sequence 
{Vn} C ^ P O such tha t Vn*TVn -> T and Tr(V*TVn) = ir(Un*TUn) for 
each w. 

For the case when a e (T) if finite, we next show tha t T satisfies a proper ty t ha t 
is stronger t han proper ty (R) . 

PROPOSITION 4.8. Let T be an essentially normal operator whose essential spec­
trum is finite. If { Un) C i f p f ) , ir(Un) unitary for each n, and ir(Un*TUn) —-> 
TT(T), then there exists {Vn} C °U (tf) such that Vn -> 1 and ir(Vv*TVn) = 
TT ( Un*T Un) ; in particular, aTis an open mapping. 

Proof. Suppose tha t {Un\ satisfies the above hypotheses; since <re(T) is 
finite, Corollary 4.7 implies t ha t there exists a sequence {Wn\ of essentially 
uni tary operators such t ha t lim ir(Wn) = 1 and ir(Wn*TWn) = ir(U„*TUn) 
for each n. In particular, there exists a sequence {Kn\ C ^f {^) such t ha t 
Wn + Kn —> 1. If Wn. + Kn = F„PW denotes the polar decomposition of 
Wn + K7lJ we may thus assume tha t Vn is uni ta ry and Pn is invertible. Since 
Pn

2 = ( ^ + ^ „ ) * ( ^ + i£ J -> 1 then PM -> 1, and so Pn~
l - » 1, which in 

tu rn implies t ha t Vn -> 1. Now 7r(Pn
2) - TT (P n Fw* TWPW ) = 7r(IT„*ITJ = 1, 

and it follows tha t there is a compact operator Jn such t ha t Pn = 1 + / „ . 
Thus ^ ( J T J = 7r(7w)7r(l + / J = ^ ( F J , so 7 r ( I ^ * P i ; ) = ^(IFN*PIF„) = 
Tr(Un*TUn), which completes the proof. 

Remark. Some of the results of this section are analogues for operators with 
cross sections of certain results pertaining to operators which generate an 
inner derivation having closed range. T h u s Proposition 4.1 and Corollary 4.4 
are analogues of [2, Proposition 1] and [2, Proposition 2] respectively, while 
Proposition 4.2 corresponds to [11, Theorem 1]. Moreover, Theorem 3.1 
parallels [2, Theorem 2]. Flowever, as we show in Section 5, this correspondence 
breaks down for arbi t rary operators. 

5. S o m e n o n - n o r m a l operators w i t h cross s e c t i o n s . In [7, Theorem 
2.7] it was proved t ha t if Tl is in i f p ^ ) , 1 ^ i S n, and a{l\) C\ <T(TJ) = 0 
for i 9^ j , then ]T)*=i © 1\ has a cross section if and only if each 7\- has a cross 
section. In this section wre give an addit ional procedure for construct ing opera­
tors with cross sections. For operators T in i f p ^ i ) and S in i f ( ^ 1 , ^ 2 ) such 
t ha t S*S + T*T is invertible, let M = M(T, S) denote the (possibly non-
normal) operator o n ^ i © J^2 whose operator matr ix is of the form 

\T ol 
IS Oj ' 

Of course, the above hypotheses on S and T are equivalent to the conditions 
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tha t S% (M) is closed and ker (M) = ffl*. Note also tha t each uni tary operator 
t ha t commutes with M is reduced byJrffi. 

T H E O R E M 5.1. Suppose S has closed range and S*S commutes with every unitary 
operator that T commutes with. If T has a local unitary cross section, then so 
does M. 

Remark. The hypothesis on S*S is equivalent to the condition tha t S*S 
belongs to the von Neumann algebra generated by T [6, page 4]. If S is right 
invertible and an element of C*{T), the theorem reduces to [7, Theorem 4.2]; 
the case when S is an isometry corresponds to [7, Theorem 4.3]. 

Before proving Theorem 5.1 we give an example which shows tha t some 
hypothesis on 5 is required in order to conclude tha t M has a cross section. 

Example 5.2. Let 5 be such tha t C*(S*S) is infinite dimensional and let 
T — l ^ i - Obviously T has a cross section, but we assert t ha t M does not. 
Although direct (but lengthy) proofs of this can be given for,specific examples 
of such operators S, we prefer to rely on Corollary 2.3. Indeed, since C*(S*S) is 
infinite dimensional, then so is C*(M*ilf). Thus C*(M) is infinite dimensional 
and it follows tha t M does not satisfy the sequential uni tary lifting property. 

I t is instructive to compare this example and Theorem 5.1 to the results of 
[1]. In [1] C. Apostol characterized the class of operators T which generate an 
inner derivation A (7") having closed range in «5? (&). Although a hyponormal 
or compact operator is in this class if and only if it has a cross section (see the 
remark a t the end of Section 4) , this class actually differs from the class of 
operators having cross sections. Indeed, the former class is clearly closed under 
similarity; however, the operator M of Example 5.2 is similar to an operator 
with a cross section, namely, the projection o n t o J ^ i . Fur ther , [1, Lemma 3.3] 
s tates t ha t 3$(A(M(T, S))) is closed if and only if 3$ (A(T)) is closed, while 
Example 5.2 shows tha t the analogue of this result for operators with cross 
sections is false. In showing t ha t algebraic operators need not satisfy ( P ) , 
Example 5.2 answers [7, Question 4] negatively. 

Proof of Theorem 5.1. Since the case when S = 0 may be proved by a straight­
forward modification of the following argument , we assume tha t S ^ 0. Let 
Q = Pker(s*) and let (7, 3ë(Q, 1)) denote a cross section for Q. We first note 
a proper ty of 7 tha t will be used somewhat later in the proof. Since SS* has 
closed range, the mapping g: °U(SS*) —> ££ ( ^ ) , defined by g(R) = R^eKR), 
is norm continuous (see e.g. [7, Lemma 4.1]). Thus there exists <5i > 0 such 
tha t if R is in ^ ( 5 5 * , <5i), then \\g(R) - Q\\ < 1, so t ha t y(g(R)) is defined. 

Proceeding as in the proof of [7, Theorem 4.3] we show how to continuously 
replace an element of °li (M) (sufficiently close to M) by a nearby element of 
°ti(l\l) whose kernel is exac t ly J f 2 ( = ker (M)). Let (<p, 38{P, 1)) denote a 
cross section for the projection, P, o n t o ^ 2 . Let (^, 38 {T, e)) denote a cross 
section for T with e < ô i / (2 | | 5 | | ) . Since M has closed range it follows as above 
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that there exists Ô2 > 0 such that if X is in 38 (M, <52), then ||PkCrU) - P | | < 1, 
so that V = <p(-Pker(x)) is defined. Now we have 

| |FXF* - M|| g 2 | | F - 1|| | |M|| + \\X - M\\; 

thus, since the composite mapping X —> ^(Pker(x)) (X in 38 (M, <52)) is norm 
continuous, there exists ô > 0, with ô < <52, such that if X is in 38 (M, 5), 
then || FXF* - il/|| < e. It follows as in the proof of [7, Theorem 4.3] that 
ker (VXV*) = ker (if) = J f 2 and that there exist unitary operators Z and F, 
acting o n J f i andJf2 respectively, such that F Z F * = M(Th 5i), with 7\ = 
Z*TZ and Si = F*5Z. 

Now ||Z*TZ - r | | S \\VXV* - M\\ < e, and thus ^CTi) is defined; set 
L7 = 7*5Z^(ri)*. We define a mapping Wi: 3? (S) -> 3? (U) by the formula 
Wi(St) = Ut (t in J f \ ) . Since Z\[/(Ti)* commutes with T, it commutes with 
S*S, and it follows from this that W\ is well-defined, linear, isometric, and onto. 
We next define a suitable unitary extension of W\ to all of J^2 . We have 
(3?(S)y = ker (5*) = ker (55*) and ( ^ ( £ / ) ) x = ker (U*) = ker (UU*) = 
ker (F*55*F). Now 

|| F * 5 5 * F - 55*|| = ||SiSi* - 55*| | g 2||5i - 5 | | | |5 | | < 2 e | | 5 | | < ôi, 

and thus 

7 (Pker(U*))*Pker(S*) = ^ker(*7*) 7 C^kerCC/*) )*• 

Since y(Py,eHu*))* maps (^?(5))x isometrically onto (^(U))1-, 7(Aer(t/*))* 
may be used to extend TFi to a unitary operator IF in «if p ^ 2 ) such that 
IFSi/KrO = F*5Z = 5i(*). 

We set T(X) = ( ^ ( r 0 © IF)^(PkerGY)) and we claim that (r, 38 (M, b)) is 
a cross section for M. Easy matrix calculations (using (*)) show that TTMT = 
^•M(M,h) and that r(M) = l j^e .#>.,. The proof of the continuity of r will be 
omitted since it is very similar to the proof when 5 is an isometry [7, Theorem 
4.3]. (To modify the argument given in [7] Ave need only note that 5, having 
closed range, is bounded below o n J f i © ker (5). It follows readily from this 
fact that W\3? (5) varies continuously with X; the rest of the proof is identical 
to that given in [7].) 

6. Conclusion. WTe note that by using our previous results, the converse of 
Theorem 2.2 can be established for certain choices of (finite dimensional) 
operators A and B. Thus if A and B are normal, then T = A © (B <g) 1^) is 
a normal operator with finite spectrum and thus T has a cross section. More­
over, T is a finite rank operator if and only if B = 0, so in this case T satisfies 
property (P). In [7, Section 4] it was proved that if A is absent and B acts on 
a one or two dimensional space, then T has a cross section. Using Theorem 5.1 
it is not difficult to prove a similar result in case B acts on a three dimensional 
space. Based on these results we conjecture the following characterization of 
operators with cross sections. 
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C O N J E C T U R E . For Tin <££{&), the following are equivalent: 

1 ) T satisfies the sequential unitary lifting property; 
2) T has a local unitary cross section; 

3) <%{T) is closed in ^(Jf). 

Of course, other conditions tha t are equivalent to (1 ) are given in Lemma 1.1. 
Also, as mentioned in the proof of Theorem 2.2, condition (3) is known to be 
equivalent to each of the following: 

4) C*(T) is finite dimensional [12]; 
5) T is unitarily equivalent to A © (B ® 1#>) where A and B are operators 

on finite dimensional Hilbert spaces [1]. 

We also observe tha t the analogue of the above conjecture for a rb i t rary 
C*-algebras is false. In the case of the Calkin algebra, Corollary 4.7 shows t ha t 
if T is normal, then T satisfies (P) if and only if a(T) is finite, in which case 
T has a cross section However, it follows from a result of Brown, Douglas, 
and Fillmore concerning the index invariant for essentially normal operators 
[5, page 63], tha t if T is normal, then &(T) is closed in the Calkin algebra; 
thus 2) and 3) are inequivalent. 

Added in Proof. In a forthcoming paper by Don Deckard and the author , we 
prove the preceding Conjecture, thereby characterizing the Hilbert space 
operators having uni tary cross sections. 
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