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A NOTE ON UNITARY CROSS SECTIONS FOR
OPERATORS

LAWRENCE A. FIALKOW

1. Introduction. This note addresses the question of characterizing the
elements of a C*-algebra which have local unitary cross sections in the sense
described below. Let .7 denote a C*-algebra with identity and let % (/') denote
the unitary group in .27. For an element X in &7, let % (X) denote the unitary
orbit of X and let wy denote the norm continuous mapping of % (&/) onto
U (X) defined by my(U) = U*XU (U in U (Z)). A local cross section for rx
is a pair (¢x, &) such that & is a relatively open subset of % (X) that con-
tains X and ¢y: # — () is a norm continuous function such that
ex(X) =1 and mx(ex(Y)) = V for each’ ¥V in . If ry has a local cross
section, we say that X has a (local unitary) cross section, and in this case X
clearly satisfies the following sequential unitary lifting property:

(P) If {U,} C (/) and lim ||U*X U, — X|| = 0, then there exists a
sequence { W,} C % (/) such that lim ||W, — 1|| = 0 and such that W,*X W,
= U*XU, for each n.

In [7] we began to study the problem of characterizing the Hilbert space
operators which have cross sections or which satisfy (I”). In the present note
we establish the following structure theorem for operators satisfying the se-
quential unitary lifting property: each such operator is unitarily equivalent to
an operator of theformd4d @ B ® - - - @ B @ - - -, where 4 and B are operators
on finite dimensional Hilbert spaces (Theorem 2.2). This result, whose proof
employs one of the deep results on C*-algebras due to D. Voiculescu [12],
enables us to extend the results of [7] in several directions.

Let 2 denote a separable infinite dimensional complex Hilbert space and
let.o/ = % () denote the C*-algebra of all bounded linear operators on ..
Each operator on a finite dimensional Hilbert space satisfies (P) [7, Corollary
2.4], and in Section 3 we prove that a compact operator in.% () satisfies (I)
if and only if it is of finite rank. It was proved in [7, Section 3] that a normal
operator or isometry has a cross section if and only if its spectrum is finite.
In Section 4 we extend this characterization to the class of hyponormal
operators and we give an analogous result for hyponormal elements of the
Calkin algebra. Section 5 contains a procedure for constructing non-normal
operators with cross sections.
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Theorem 2.2 also yields answers to several questions raised in [7]. Thus, we
show that each operator satisfying (I’) is algebraic and has a closed unitary
orbit. On the other hand, not every algebraic operator satisfies (I’) and, more-
over, the class of operators satisfying (I’) is not closed under similarity.

While our emphasis is on the case.o/ = % ('), we prove several results for
general C*-algebras and we point out the extent to which the results in the
ITilbert space case extend to the more general setting. In this connection, the
following results summarize some useful facts about the general problem. For
X in.oZ, let (X)" denote the commutant of X and let ¥ (X) = % (/) N (X)';
thus 77 (X) is a closed subgroup of % (7). Let py denote the canonical pro-
jection of % (<7') onto the right coset quotient space % (7)) /¥ (X). If we endow
U (7)) /7 (X) with the quotient topology, then py is open and continuous. Let
gx: U) )V (X)) — U (X) be defined by gx(px(U)) = 7 (U); gy is a well-

defined continuous bijection, and we have the following commutative diagram:

U A
- ) be

?/(X)(—p——%(&/)/V(X).

The proof of the following result is routine diagram chasing and will be
omitted; in view of our previous results, this result shows that ¢y need not be
a homeomorphism.

LemMma 1.1. The following are equivalent:

1) X satisfies the sequential unitary lifting property;
i) myis an open mapping;
i) gy s @ homeomorphism.

CoroLLARY 1.2. If X has « local cross section, then px has « local cross section.

We will show in Section 2 that the converse of the preceding corollary is
false. Nonetheless, the existence of a local cross section for py can be utilized
in some cases, as the following results show.

CoroLLaRrY 1.3. If X satisfies the sequential unitary lifting property, then X
hus @ cross section if and only if px has a local cross section.

CoROLLARY 1.4. If# is a finite dimensional Hilbert space und 1" is in L (H),
then T has a local cross section.

Proof. |7, Corollary 24] implies that 7" satisfies (). Since.# is finite dimen-
sional, % (#) is a compact Lie group, so py has a local cross section (see [3,
pg. 23-24]), and the result now follows from Corollary 1.3.

We conclude this section with some notation and terminology. For X in.&/
C*(X) denotes the C*-subalgebra of %7 generated by X and 1; ¢(X) denotes
the spectrum of X. Let % (X) denote the set of all sequences {U,} C Z ()
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such that lim U,*X U, = X. A sequence {W,} C % (/) is said to re-implement
{U,} for X if lim [|W, — 1]| = 0 and W *XW, = U*XU, for each n. We
include for completeness two additional criteria that are each equivalent to
property (I’):

P1) Given {U,} in % (X), there exists a subsequence {U,,} that can be re-
implemented.

P2) Given ¢ > 0, there exists 6 > 0, such that if U is in % (¢/) and
|U*X U — X|| <8, then there exists W in % (27) such that |[|[W — 1]] < e
and W*XW = U*X U.

The proofs of these equivalences are the same as in the Hilbert space case
[7, Lemma 2.3]. For ¢ > 0, we denote by Z (X, ¢) the set {V € U (X) :
[|IX — V]| < ¢}. In the sequel we will use the fact that an orthogonal projection
P always has a cross section of the form (o, & (P, 1)) (see [7, Theorem 3.2]
and its proof).

All Hilbert spaces that we consider are complex and separable, unless other-
wise noted, and % denotes an infinite dimensional separable Hilbert space.
For a closed subspace-# of a llilbert space, P, denotes the projection onto
M. KX () denotes the ideal of all compact operators in & (%), then the
Calkin algebra is the quotient ¢ = £ () /H (), and we let m:.L (H) —-C
denote the canonical projection. For 17" in & (), we set T = =(1), ¢,(1) =
o(T) (the essential spectrum of 17), and we let Re (7)) denote the set of all
reducing essential eigenvalues of 7" [10]. For an operator S on a Banach space,
the range and null space will be denoted, respectively, by Z (S) and ker (.S).

The author is grateful to the referce for helpful comments and suggestions.
The author also appreciatively acknowledges the contributions of R. J. Zimmer,
who indicated the connections to Lie groups and who furnished the proof of
Corollary 1.4 and the example following Corollary 2.3.

2. Structure of operators satisfying property (P). In this section we
show that ecach operator satisfying the sequential unitary lifting property
admits a direct sum decomposition of the form 4 ® (5 ® 1,4), where A and B
are operators on finite dimensional Hilbert spaces. We begin with a result for
the case of a general C*-algebra.o/. We show that if an element in.o/ satisfies
(P), then its unitary orbit is norm closed; this result answers [7, Question 2]
affirmatively.

ProrositioN 2.1. If X is in.o/ und X satisfies the sequential unitary lifting
property, then % (X) is norm closed in </ .

Proof. Since X satisfies (P), property 1’2) implies that for ¢, = 1/2" there
exists 8, > 0 such that if Uis in % (&/) and |[|U*XU — X|| < é,, then there
exists Win % (/) such that ||W — 1|] < 1/2" and W*XW = U*XU. Let V'
be in % (X)~ and suppose that {U,} is a sequence in % (27) such that lim
UXXU, =Y. For n > 0, there exists k, > 0 such that if £ = k,, then
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|UXX U, — V|| < (1/2)8,; moreover, we may assume that k.1 >k, > - -
> k. For each #, since k,11 > k,, we have
H Zj]\'ntl*XUkné] - Ukn*XUan é ||Ukn11*XUkn+l - Yi[
+ HY - Ukn*XUI:nH < 2(1/2)611 = 511-

Thus
||U7\'nU]\'n+1*XUkn+lUkn* - X” < 6'”
so there exists W, in % (/) such that |[|[W, — 1|| < 1/2" and W*XW, =
U U XU UG 1T, = U WUy, then ||V, — 1]| < 1/2" and
VXU X U Ve = Upy  FX U,y thus, by repeated substitution, we have
U)\'n +1*X Ukn-u = I/rn* I/n—l* e I/71* Ukl*X Ukll’rl te I’/vn—l‘(‘rn-

Since 1, =1+ (1, — 1) and > 5
page 213] implies that

17, — 1|| < «, then [4, Theorem 2,

oo}

V=11 v (z lim (Vy--- Vn))

n=1 N-00
is norm convergent, so that 1" is unitary. Thus
Y = lim Uy, *X Uy, .y = lim (V* - V) Up* X Ui (V- -+ 1)
= 1*U, *X U, T,
so that Y is in % (X), and the proof is complete.

In the Hilbert space case (&/ = .2 (), the preceding result leads to the
above mentioned structure theorem for operators satisfying property (P’).

TuEorEM 2.2, Let 1" be in L (A and suppose that 1" satisfies the sequential
unitary lifting property. Then there exist finite dimensional Hilbert spaces
and Hy and operators A in L (), B in L (Hs), such that T is unitarily
equivalentto A ® (BQly)(=4A®B®---@B®---).

Proof. Since T satisfies (), Proposition 2.1 implies that % (T) is closed in
L (). Now by a theorem of D. Voiculescu [12, Proposition 2.4], % (1) is
closed if and only if C*(7") is finite dimensional. The latter condition is equiv-
alent to the property that 7" is an orthogonal direct sum of copies of a finite
number of finite dimensional operators /4y, . . ., F, |1, section 3]. Suppose, after
renumbering, that /7y, ..., [I5,(1 < m = n) are the operators amongst the
I'/’s that appear as direct summands infinitely many times in the above de-
composition of 7. We may then set B = >i.y @ [7; and let 4 be the direct
sum of F,y1, ..., F,, each repeated as a direct summand according to its
(finite) multiplicity as a summand in the original decomposition.

COROLLARY 2.3. If T satisfies the sequential unitary lifting property, then T 1s
reducible and algebraic, and dim (C*(1T")) < .

Remark. From the preceding corollary and Lemma 1.1 it follows that if an
operator 1" in ¥ () is irreducible, then =, is not an open mapping and ¢ is
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not a homeomorphism; in particular, 7" does not have a local unitary cross
section. On the other hand, in this case p, does have a local cross section since

(DY NUK) = {21y |2 = 1},
a compact Lie group [3, Theorem 5.8, page 88] (cf., the remark following

Corollary 1.2). In contrast to Corollary 2.3, not every algebraic operator
satisfies (I”); this is discussed more fully in Example 5.2 (below).

3. Compact operators. In this section we characterize the compact opera-
tors which satisfy the sequential unitary lifting property.

THEOREM 3.1. A compact operator T in L () satisfies the sequential unitary
lifting property if and only if it is of finite rank.

Proof. Let T be a finite rank operator; let #; = (ker (7))t and #, = ker
(7). With respect to the decomposition # =%, @ #,, T has an operator
matrix of the form

5 o)

B 04’

and since 7" has closed range, J = A*4 + B*Bisinvertible. Let {U,} € ¥ (7I');
with respect to the above decomposition, U, has an operator matrix of the form

o
Ly W,d°
Since |[|TU, — U,T|| = ||TU* — U*T|| - 0, matrix calculations yield the
following limits:

[-i) AX, — X,4 — V,B —0;
ii) BX, — Z,A — W,B —0;
i) AY, —0;

iv) BY, —0;

1) AX,* — X,*4A — Z,*B —0;
i) BX,* — V,*4 — W,*B —0;
ii) AZ,* —0;

iv) BZ,* — 0.

Now I-iii)-iv) imply that 4*4 Y, + B*BY, — 0, and since J is invertible,
we have YV, — 0; similarly, using Il-iii)-iv) it follows that Z, — 0. We thus
have the limits X,*X, =1 - Z*Z, - 1, X, X,* =1 — V,V,* — 1, and, like-
wise, W,*W, — 1 and W,W,* — 1. For each #, ||X,|| £ 1, and /, is finite
dimensional; thus, by passing to a subsequence and using property P’1), we
may assume that {X,} is norm convergent to some operator X in & ().
Since X,*X, — 1 and X, X,* — 1, X is unitary, and I-i) implies that X
commutes with 4.

Since the unit ball of & () is compact and metrizable in the weak operator
topology, by passing to a further subsequence we may assume there exists W
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in & (A 5) such that W, —, W. Thus W,B —, WB, and since Z, — 0, I-ii)
implies the following relations:

I11-i) WB = BX;

i) W,B — WB.
Let P inZ (%) and Q in . () denote, respectively, the projections onto
the range of B and the initial space of B (%, © ker (B)). We claim that

iii) | (W, — W) PAS|| — 0.

Since B3 has closed range, there exists 8 > 0such that ||BQt|| = 8]|Q¢/| (tin).
Now

W, — Wil = |[(W, = MBH| < [[(W, — W)B|l [l
= [, = M BIIA/D)IBQ| = [[(W, — W)B[[(1/6)[|Bt]],

and I11-ii) implies the claimed convergence.
Taking adjoints, we have W,* —, W* and arguments analogous to those
preceding (but using I1-ii) give the following relations:
IV-i) W*B = BX*,
i) BX,* — W*B — 0;
i) || (W,* — W*)|PA )| — 0.

Now WB¥ = BXAH| C B#Hy and W*BH, = BX*, C BA 1, so the range
of B reduces 1V; moreover, since W*WB = W*BX = BX*X = B and
WW*B = WBX* = BXX* = B, then C = W|B#’, is unitary.

Our aim is to use the unitary operators X and C in the construction of a
re-implementing sequence for { U,}. To this end, we set. s = 3, @ 7, with
Hy = PHy; then the operator matrices of W, and W relative to this decompo-
sition assume the form

. D, _fco
W"“[En Fn] and W‘[o 1}

Since |[(W, — W)|A|| — 0, E, —0; similarly IV-iii) implies ||D,|| =
[|1D*|| = 0. Thus, since W,*I¥, — 1 and W,W,* — 1, we have I,*I, — 1

and [I7,F* — 1, and we may assume that [, is invertible. If F, = 1,0,
denotes the polar decomposition of F,, then 17, is unitary and ||/, — 17,|| =
[V, (P, — D] = |P, — 1]] = 0. Let S, be the unitary operator on .# =

Hy @Ay @A, defined by S, = X* @ C*@ 1% and let R, = C® I,
Since X* commutes with 4 and R*B = W*B = BX*, a matrix calculation
shows that.S, commutes with 7.

The re-implementing sequence for { U,} may now he defined by 7°, = S,U,;
evidently {7} C % () and 1,*17, = U*T'U,. It thus suffices to verify
that 73, — 1. The operator matrix of 7', = S, U, is of the form

[X*Xn X+ Yn}
R*Z, RX*W,|’
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and we have X*X, — 1, [|X*YV,|| = ||V,]| =0, and ||R*Z,|| = ||Z,|]] — 0.
Moreover, the matrix of R,*W, is

[c*cn W*Dn]
VXE, VJ*F,J°
and we have ||W*D,|| = ||D,|| — 0, ||V.*E,|| = ||E.|| = 0, and ||V, *F, — 1]|
= ||P, — 1]| — 0. Finally, since |[(W, — W)| || — 0, C, — C, and since C
is unitary we have |[|C*C, — 1|| — 0, which completes the proof that 7 satis-
fies the sequential unitary lifting property.

FFor the converse, if 7 is an infinite rank compact operator, then it follows

easily that C*(7') is infinite dimensional, so the result follows from Corollary
2.3.

The same argument yields the following result.

CoroLLARY 3.2, If T is a compact, infinite rank operator which 1s « direct
summand of an operator S, then S does not satisfy the sequential unitary lifting

property.

Remark 3.3. In |7] it was proved that each irreducible compact operator fails
to satisfy property (I’). By a rather lengthy elaboration of the method of [7]
it is possible to prove the “‘converse’” direction of Theorem 3.1 without recourse
to Corollary 2.3. Our original proof of Theorem 3.1 used this more elementary,
if lengthier, approach. Indeed, the original proofs of the results in this section
and the next provided the motivation for Theorem 2.2. and Corollary 2.3.

4. Hyponormal operators. In [7] it was proved that a normal operator or
an isometry satisfies the sequential unitary lifting property if and only if its
spectrum is finite, in which case it has a local unitary cross section. In the
present section we extend this result to hyponormal operators and give an
analogue of this result for hyponormal elements of the Calkin algebra.

Prorosition 4.1. If Re (T') is infinite, then 1" does not satisfy the sequential
unttary lifting property.

Proof. Theorem 2.2 implies that the spectrum of each operator satisfying (P)
is finite; since, from [10], Re (7°) C o(7'), the result follows immediately.

ProrositioN 4.2. If T in L () 1s hyponormal, then T satisfies (P) if and
only if o (1) is fintte, in which case 1" has a local unitary cross section.

Proof. If ¢(T’) is finite, then [9, Theorem 1] implies that 7" is normal, and
the existence of a cross section follows from [7, Theorem 3.2]. If ¢(7) is infinite,
then Theorem 2.2 implies that 7" does not satisfy (P), so the proof is complete.

To obtain analogues of the preceding results for the Calkin algebra we rely
on the following lemma.
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LemMa 4.3, If Tis in L () and Re (T) is infinite, then there exists an element
LW,) of (1) such that if Vis unitary and V¥TV = W, *T W, for some n, then
|V — M| = 1 for all scalars X such that |\ = 1.

Proof. Let {\,} denote a convergent sequence of distinct elements of Re (7).
Let % ; denote a copy of 7, let

H = Zl @K, and D = Zl @D \;
i= i=

Let S denote the operator on ¥ = # ® #_ given by S =T @ D; then
(10, Theorem 4.6] implies that there exists a sequence of unitary operators
U, : X —HA such that if T, = U,*SU,, then ||T, — T|| < 1/n and K, =
7, — 1" is compact. We now define the unitary operator X, on.# by the
following relations: X,¢, = f; X, fx = e, for each k, where {e;} and {f;} denote,
respectively, orthonormal bases for 5, and 5 ,.1; also, X, is the identity on
K e, ®H ). If weset W, = U*X,U,, then

||H/”*T"LV” - T?IH = ||U72*X71*SXnUn - Un*SUn1
= |an*SXn - SH = |I\”+1 —_ /\n‘

Now
H‘”/n*zjm/n - Y‘H é HWn*TWn - VVn*TnVVnH + HWn*TnVI[n - ’I‘nH
+ HTn - TH < 2/" + |)\n+1 - )\nl —)0

so that {W,} is a member of ¥ (7).

Suppose that 7 is unitary and that 1"*7°1" — W,*T'W, is compact for some n.
Sinw' — WX*T,W, = V(1" + K,)V — W*(T" + K,)W,, then I"*1, 1"
= W,*T,W,, whence /1"\1/17/,,* commutes with T',. Since

v Un*){nS Dvn - Un*S Un Vv Un*Xn Z]n
=V Un*Xn* Un Un*S Un - Un*S []11 vV Un*Xn (Jnv

which is compact, then U,VU*X,S — SU,VU,*X, is compact. Let WV =
U, VU*; with respect to the decomposition # =%, ® A, ® A 1, the
operator matrices of .S, X,, and W are, respectively, of the following form:

Y, 0 0 1 0 0
S=[0 N, 0 [; Xp,=]0 0 1¢;
0 0 Mg 010

W = (Vi j=s. As L = WX,S — SWX, is compact, a calculation of the
row 2, column 3 entry in the matrix of L shows that (\,;1 — X\,) 1722 = 1ealp1
— N\, V2o is compact; since the \,’s are distinct, 172, is compact. Let (K ;;)1<4, =3
denote the operator matrix of any compact operator K relative to the above
decomposition of ', and let A be a scalar such that [A\| = 1. Now

W =N+ K[| Z [[Vas = N+ Koof| Z [|[Vez = M| = N = 1;
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~ —~——
thus, for [\ = 1 we have [!V — \|| = ||U,VU,* — \| = 1, and the proof is
complete.

CoroLLARY 4.4. If Re (T) is infinite, then T does not satisfy the sequential
unttary Lifting property relative to the Calkin algebra.

We state for ease of reference the following result of [7]. (Although this
result was stated in [7, Theorem 3.2] only for the separable case, it is easy to
see that the same proof holds regardless of the dimension.)

Lemma 4.5. Let N be a normal operator on the complex Hilbert space K . If
o (N) s finite, then N has a local cross section (p, B ) such that for each S in X,
0(S) s contained in the norm closed algebra generated by N, S, and 1.

PROPOSITION 4.6. Let.o/ be a C*-algebra with identity. If X is a normal element
of &7 and o(X) is finite, then X has a local unitary cross section.

Proof. Let 7 :.o/ — % () denote an isometric C*-isomorphism of .27 onto
a C*-subalgebra & of & (#) (where# is a Hilbert space of suitable dimen-
sion). Let Z denote the unitary group in./;set?” = 7(¥)and¥ = (% (X))
(note that?” = U (H) N\ &). Let Z = 7(X):since o(Z) = ¢(X), Lemma 4.5
implies that Z, as a normal operator on.#’, has a local unitary cross section
(¢, 2) such that for each Yin &, ¢(V) is in the norm closed algebra gener-
ated by Z, V, and 1. In particular, if Vis in? N &, then ¢(V) is in ¥ .
Thus, since r=': & —.o7 is an isometric C*-isomorphism, a local unitary
cross section for X may be defined by (p, &), where & = —1(W N Z) and
p =17 Z.

We note that the converse of Proposition 4.6 is false; each element of a
commutative C*-algebra has a cross section. For 7" in ¥ (), T is hyponormal
if #(T*T — T'T*) is positive.

COROLLARY 4.7. If T is hyponormal, then T satisfies property (P) (relative to
the Calkin algebra) if and only if o.(T) is finite, in which case T has a local
unitary cross section.

Proof. Since T is hyponormal, [10, Theorem 3.10] implies that bdry (s.(7°))
C Re (T); thus, if ¢,(7) is infinite, Corollary 4.4 implies that 7* does not
satisfy (P). Conversely, if ¢,(7") is finite, then it follows (e.g., by representing
the Calkin algebra as an operator algebra and applying [9, Theorem 1]) that 7'
is normal, so the result follows from Proposition 4.6.

Remark. The proof of Proposition 4.6 shows that the cross sections of
Proposition 4.6 and Corollary 4.7 also have the additional property possessed
by the cross section (p, #) of Lemma 4.5.

Let 7" be an essentially normal operator and let o, denote the restriction of
7 to % (T). A question of Brown, Douglas, and Fillmore [5, page 121] asks
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whether a7 is an open mapping. It is easily verified that a, is open if and only if
1" satisfies the following property:

(RYIf{U,} CU ) and «#(UXTU,) — w(T), then there exists a sequence
(10 C %K) such that 1*T1V, — T and o(V,*T'V,) = =(UXTU,) for
each n.

For the case when ¢,(7") if finite, we next show that 7" satisfies a property that
is stronger than property (R).

ProrosiTioN 4.8. Let T be an essentially normal operator whose essential spec-
trum is finite. If {U,} C L), n(U,) unitary for euch n, and =(U¥1T'U,) —
w (1), thew there exists {1} C U ) such that V, — 1 and =(V,*T'TV,) =
(UXTU,); in particular, ar is an open mapping.

Proof. Suppose that {U,} satisfies the above hypotheses; since o,(7) is
finite, Corollary 4.7 implies that there exists a sequence {W,} of essentially
unitary operators such that lim = (W,) = 1 and #(W,*TW,) = «(U,*1TU,)
for each n. In particular, there exists a sequence {K,} C 2 (#°) such that
w, + K, —» 1. If W, + K, = 1,P, denotes the polar decomposition of
W, 4+ K,, we may thus assume that 17, is unitary and P, is invertible. Since
Pr= (W, + K)*(W, + K,) — 1then P, — 1, and so ,”' — 1, which in
turn implies that 1", — 1. Now = (P,?) = «(P,V,*1,P,) = «(WF W,) = 1,
and it follows that there is a compact operator J, such that 2, = 1 + J,.
Thus #(W,) = «#(V,)r(l + J,) = x(17,), so #(V,*T'T",) = c(W*T'W,) =
(U *T'U,), which completes the proof.

Remark. Some of the results of this section are analogues for operators with
cross sections of certain results pertaining to operators which generate an
inner derivation having closed range. Thus PProposition 4.1 and Corollary 4.4
are analogues of |2, Proposition 1] and [2, Proposition 2] respectively, while
Proposition 4.2 corresponds to [11, Theorem 1]. Moreover, Theorem 3.1
parallels |2, Theorem 2]. However, as we show in Section 3, this correspondence
breaks down for arbitrary operators.

5. Some non-normal operators with cross sections. In [7, Theorem
2.7 it was proved that if 7', is inZ (X#;),1 =i < n,and (1) Na(1,) = 0
for i # j, then 2251 @ 1, has a cross section if and only if each 7°; has a cross
section. In this section we give an additional procedure for constructing opera-
tors with cross sections. For operators 7" in % (#)) and S in & (', 4 5) such
that S*S 4 I™*1" is invertible, let 3/ = M (7, S) denote the (possibly non-
normal) operator on.#; @ .# s whose operator matrix is of the form

[§ 6]

Of course, the above hypotheses on .S and 7" are equivalent to the conditions
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that Z (M) is closed and ker (M) = .. Note also that each unitary operator
that commutes with A7 is reduced by ..

THEOREM 5.1. Suppose S has closed range and S*S commautes with every unitary
operator that 1" commutes with. If T has « local unitary cross section, then so
does M.

Remark. The hypothesis on S*S is equivalent to the condition that S*S
belongs to the von Neumann algebra generated by 7" [6, page 4]. If S is right
invertible and an element of C*(7"), the theorem reduces to [7, Theorem 4.2];
the case when S is an isometry corresponds to [7, Theorem 4.3].

Before proving Theorem 5.1 we give an example which shows that some
hypothesis on S is required in order to conclude that A7 has a cross section.

Example 5.2. Let S be such that C*(S*S) is infinite dimensional and let
1" = 14,. Obviously T has a cross section, but we assert that 1/ does not.
Although direct (but lengthy) proofs of this can be given for.specific examples
of such operators .S, we prefer to rely on Corollary 2.3. Indeed, since C*(S*S) is
infinite dimensional, then so is C* (M*A). Thus C*(M) is infinite dimensional
and it follows that M does not satisfy the sequential unitary lifting property.

I't is instructive to compare this example and Theorem 5.1 to the results of
[1]. In [1] C. Apostol characterized the class of operators 7" which generate an
inner derivation A(7") having closed range in.% (#). Although a hyponormal
or compact operator is in this class if and only if it has a cross section (see the
remark at the end of Section 4), this class actually differs from the class of
operators having cross sections. Indeed, the former class is clearly closed under
similarity; however, the operator 17 of Example 5.2 is similar to an operator
with a cross section, namely, the projection onto . Further, [1, Lemma 3.3]
states that Z (A(M (T, S))) is closed if and only if Z (A(1")) is closed, while
Example 5.2 shows that the analogue of this result for operators with cross
sections is false. In showing that algebraic operators need not satisfy (P),

Example 5.2 answers [7, Question 4] negatively.

Proof of Theorem 5.1. Since the case when.S = 0 may be proved by a straight-
forward modification of the following argument, we assume that S = 0. Let
Q = Prerss and let (y, Z (0, 1)) denote a cross section for Q. We first note
a property of v that will be used somewhat later in the proof. Since SS* has
closed range, the mapping g: % (S5*) — ¥ (), defined by g(R) = Pyercr),
is norm continuous (see e.g. [7, Lemma 4.1]). Thus there exists 6; > 0 such
that if R is in Z (SS*, 6,), then ||g(R) — Q|| < 1, so that y(g(R)) is defined.

Proceeding as in the proof of [7, Theorem 4.3] we show how to continuously
replace an element of % (M) (sufficiently close to }/) by a nearby element of
9/ (M) whose kernel is exactly 5y (= ker (M)). Let (¢, Z (P, 1)) denote a
cross section for the projection, P, onto. 3. Let (¢, Z (T, ¢)) denote a cross
section for 7" with ¢ < §:/(2||S]|). Since M has closed range it follows as above
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that there exists §; > Osuch that if X isin & (M, 8,), then ||Pyerx) — PJ] < 1,
so that 17 = ¢ (Prer(xy) 1s defined. Now we have

VX V* = M| = 2V = [ [[M]] + |[X = M];

thus, since the composite mapping X — ¢(Prerv)) (X in Z (M, 8,)) is norm
continuous, there exists 8§ > 0, with § < 8, such that if X is in & (M, §),
then [|[VX 1™ — M| < e It follows as in the proof of [7, Theorem 4.3] that
ker (VX 17%*) = ker (M) = ., and that there exist unitary operators Z and Y,
acting on.#’; and ', respectively, such that VX T* = M (7, Sy), with 1, =
Z*¥T7Z and S; = V*SZ.

Now ||Z*¥TZ — T|| < ||[VXT* — M|| < ¢ and thus ¢(7;) is defined; set
U = Y*SZy(11)*. We define a mapping Wy: #(S) — % (U) by the formula
W, (St) = Ut (¢t in’y). Since Zy(T1)* commutes with 7, it commutes with
S*S, and it follows from this that W, is well-defined, linear, isometric, and onto.
We next define a suitable unitary extension of W, to all of #.. We have
(A (S)L = ker (S*) = ker (SS*) and (Z (U))+ = ker (U*) = ker (UU*) =
ker (Y*SS*Y). Now

|| VESS*V — SS*|| = [|S:iSi* — SS*|| < 2[|S: — S| [IS]] < 2€][S]| < 6,

and thus
Y (Pxerws ) *Prercs® = Prerw® ¥ (Prerws) ™.

Since ¥ (Pyerps)* maps (Z(S))+ isometrically onto (Z (U))L, v (Prercws)*
may be used to extend ¥, to a unitary operator W in & () such that
WSy (1) = V*SZ = S;(*).

We set 7(X) = (W(T1) @ W)e(Pyercxy) and we claim that (r, @ (M, 6)) is
a cross section for 1/. Easy matrix calculations (using (*)) show that =, 7 =
1z0r,5 and that 7(M) = 1, e, The proof of the continuity of = will be
omitted since it is very similar to the proof when S is an isometry [7, Theorem
4.3]. (To modify the argument given in [7] we need only note that .S, having
closed range, is bounded below on#"; © ker (S). It follows readily from this
fact that W|Z (S) varies continuously with X; the rest of the proof is identical
to that given in [7].)

6. Conclusion. We note that by using our previous results, the converse of
Theorem 2.2 can be established for certain choices of (finite dimensional)
operators A4 and B. Thus if 4 and B are normal, then 7" = 4 @ (B ® 14) is
a normal operator with finite spectrum and thus 7" has a cross section. More-
over, 1'is a finite rank operator if and only if B = 0, so in this case 1" satisfies
property (I”). In [7, Section 4] it was proved that if 4 is absent and B acts on
a one or two dimensional space, then 7" has a cross section. Using Theorem 5.1
it is not difficult to prove a similar result in case B acts on a three dimensional
space. Based on these results we conjecture the following characterization of
operators with cross sections.
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CONJECTURE. For T in L (H), the following are equivalent:
1) 7" satisfies the sequential unitary lifting property;
2) T has a local unitary cross section;

3) U (T) is closed in ¥ ().

Of course, other conditions that are equivalent to (1) are given in Lemma 1.1.
Also, as mentioned in the proof of Theorem 2.2, condition (3) is known to be
equivalent to each of the following:

4) C*(7') is finite dimensional [12];
5) T is unitarily equivalent to 4 @ (B ® 14) where 4 and B are operators
on finite dimensional Hilbert spaces [1].

We also observe that the analogue of the above conjecture for arbitrary
C*-algebras is false. In the case of the Calkin algebra, Corollary 4.7 shows that
if T is normal, then 7' satisfies (P) if and only if ¢(7°) is finite, in which case
T has a cross section IHowever, it follows from a result of Brown, Douglas,
and Fillmore concerning the index invariant for essentially normal operators
|5, page 63], that if 7" is normal, then % (T) is closed in the Calkin algebra;
thus 2) and 3) are inequivalent.

Added in Proof. In a forthcoming paper by Don Deckard and the author, we
prove the preceding Conjecture, thereby characterizing the Hilbert space
operators having unitary cross sections.

REFERENCES

1. C. Apostol, Inner derivations with closed range, Rev. Roum. Pures et Appl. 21 (1976),

249-265.

2. C. Apostoland J. G. Stampfli, On derivation ranges, Indiana U. Math. J. 25 (1976), 857-869.

3. G. E. Bredon, Introduction to compact transformation groups (Academic Press, New York,

1972).

N. Bourbaki, General topology, Part 11 (Hermann, Paris, 1966).

.. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact
operators and extensions of C*-algebras, Lecture Notes in Mathematics 345 (Springer-
Verlag, 1973).

6. J. Dixmier, Les algebres d'operateurs dans l'es pace Hilbertien (Gauthier-Villars, Paris, 1969).
7. L. A. Fialkow, A note on limits of unitarily equivalent operators, Trans. Amer. Math. Soc.,
232, (1977), 205-220.
8. C. R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer.
Math. Soc. 133 (1968), 505-510.
9. ——— An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330.
10. N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580.
11. J. G. Stampfli, On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 62 (1975),
117-120.
12. D. Voiculescu, A non-commutative 1Weyl-von Neumann theorem, Rev. Roum. Pures et Appl.
21 (1976), 97-113.

4.
5.

—

Western Michigan University,
Kalamazoo, Michigan

https://doi.org/10.4153/CJM-1978-101-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-101-8

