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On Special Fiber Rings of Modules

Cleto B. Miranda-Neto

Abstract. We prove results concerning themultiplicity as well as the Cohen–Macaulay and Goren-
stein properties of the special ûber ring F(E) of a ûnitely generated R-module E ⊊ Re over a Noe-
therian local ring R with inûnite residue ûeld. Assuming that R is Cohen–Macaulay of dimension
1 and that E has ûnite colength in Re , our main result establishes an asymptotic length formula for
themultiplicity ofF(E), which, in addition to being of independent interest, allows us to derive a
Cohen–Macaulayness criterion and to detect a curious relation to the Buchsbaum–Rim multiplicity
of E in this setting. Further, we provide a Gorensteinness characterization for F(E) in the more
general situation where R is Cohen–Macaulay of arbitrary dimension and E is not necessarily of
ûnite colength, and we notice a constraint in terms of the second analytic deviation of the module
E if its reduction number is at least three.

1 Introduction

_e study of blowup rings in the classical situation of ideals has attracted the attention
of several authors in the past decades, and the list of works on the subject is huge,
e.g., [1,6–10, 13–18, 20, 21, 23–25, 28, 29, 31, 32, 34–36, 38]. However, as far as we know,
there exist only a few papers in the literature considering the context ofmodules [2,11,
12, 24, 27, 30, 33]. For instance, Goto, Hayasaka, Kurano, and Nakamura [12] studied
the case of the second syzygy module of the residue ûeld of a regular local ring and
Lin and Polini [24] proved some results in the situation where themodule is a direct
sum of powers of the homogeneous maximal ideal of a standard graded polynomial
ring. For the case of themodule of logarithmic vector ûelds of a quasi-homogeneous
hypersurface, see [27].

In the present paperwe dealwith the special ûber of theRees algebra, the so-called
special ûber ring, of ûnitely generatedmodules over a (commutative, unital) Noether-
ian local ring (R,m). We are interested more precisely in the Cohen–Macaulay and
theGorenstein properties of this blowup algebra. For the former,we focus on the case
ofmodules of ûnite colength in a free R-module provided that R is one-dimensional
and Cohen–Macaulay. Regarding theGorenstein property, we study it in amore gen-
eral context where R is Cohen–Macaulay of arbitrary dimension and the module is
not necessarily of ûnite colength. As will be clear, the investigation developed herein
highlights, in particular, the fact that certain numerical invariants, such as analytic
spread,multiplicity, and reduction number, play a crucial role in the study of the spe-
cial ûber ring in the situation ofmodules as well.
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_e structure of the paper is as follows. First, in Section 2, we ûx the setup to be
in force in the entire paper and we give some preliminaries, for instance, concerning
the notions of Rees algebra and reduction number ofmodules.

Let E ⊊ Re be a ûnitely generated R-module (possessing a generic, constant rank)
with n-th Rees power En for n ≥ 0. Consider the special ûber ring

F (E) =
∞

⊕
n=0

En

mEn

and let deg(F (E)) be its Hilbert–Samuel multiplicity (or degree). In the investi-
gation of the Cohen–Macaulay property (Section 3), we essentially derive results in
terms of deg(F (E)). Proposition 3.2 invokes the generalization, for modules, of the
useful criterion furnished by Corso, Polini, and Vasconcelos [7, Proposition 2.4] in
the case of ideals (it is worth noting that a multiplicity-based Cohen–Macaulayness
criterion for the special ûber ring of an ideal was ûrst given by Shah [32, _eorem
5]). _e case of reduction number 1 is considered in Corollary 3.3. Concerning the
multiplicity of F (E), the situation of interest is when E is not of linear type, i.e.,
the symmetric algebra of E has nontrivial R-torsion, since otherwise it is easy to see
that deg(F (E)) = 1; see Remark 3.4 (ii), where we furnish an example of a max-
imal Cohen–Macaulay R-module E of rank 2 that is not of linear type but satisûes
deg(F (E)) = 1. In Remark 3.4 (iii) we raise some issues pointing to possible de-
velopments of a well-known result due to Sancho de Salas [31] (later improved by
Lipman [25]) on the connection between Cohen–Macaulayness of associated graded
rings of high powers and the vanishing of certain cohomology groups of a Cohen–
Macaulay blowing-up with supports in the closed ûber.

In the situation where R is one-dimensional and Cohen–Macaulay and E has û-
nite colength in the free R-module Re (we require the rank of E to be equal to e ≥ 1),
we establish in _eorem 3.5 (see also Corollary 3.9) an asymptotic length formula for
deg(F (E)) that, in addition to being of independent interest, led us to the character-
ization given in Corollary 3.12. In Proposition 3.14 we apply our formula in order to
obtain, in particular, a new expression for the Buchsbaum–Rimmultiplicity of E,with
the aid of results from Brennan, Ulrich, and Vasconcelos [2]. Furthermore, in a gen-
eral setting, Proposition 3.16 gives a test for the detection of anF (E)-regular element,
whichmight presumably be helpful in trying to derive amaximalF (E)-sequence to-
wards a general Cohen–Macaulayness criterion.

In the last part of the paper (Section 4) we exploit the Gorensteinness of F (E),
without any restriction on the dimension of the Cohen–Macaulay ring R andwithout
assuming that E has ûnite colength in Re . As a warming-up result, in Proposition 4.1
we study the casewhere the second analytic deviation of E is equal to 1; it is illustrated
in Example 4.3, where we consider the module of logarithmic derivations of a Fer-
mat-type cubic in 4 indeterminates. _e main result of the section is _eorem 4.4,
which provides a general Gorensteinness characterization. Furthermore, Proposition
4.8 detects a constraint to this property in terms of the second analytic deviation of
themodule E in the case where its reduction number is at least 3.
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2 Setup and Preliminaries

_roughout this paper, by ring we mean commutative ring with 1. We permanently
ûx, unless explicitly stated otherwise, aNoetherian local ring (R,m) having Krull di-
mension d ≥ 1 and inûnite residue ûeld k (this latter condition may be super�uous to
some of the arguments, in virtue of the classical trick of passing to the faithfully �at
extension R[t]mR[t], butwe have adopted it in order to avoid technicalities), aswell as
a strict embedding E ⊊ Re of a ûnitely generated R-module E possessing a rank e ≥ 1,
which means, as usual, that K ⊗R E ≃ K e , where K is the total ring of fractions of R.
_us, E is torsionfree over R. We shall denote S ∶= SR(Re) =⊕n≥0 Sn , the homoge-
neous symmetric algebra of Re thatmay be regarded as a standard graded polynomial
ring S = R[t1 , . . . , te] in indeterminates t1 , . . . , te over S0 = R. In degree 1, we get the
R-module S1 = ∑

e
i=1 R t i together with the natural “linearization” map l ∶Re → S1

that sends a given v = (x1 , . . . , xe) ∈ Re to the linear form l(v) = ∑
e
i=1 x i t i . Now

restricting l to E yields the so-called Rees algebra of E, that is, the graded subalgebra
R(E) =⊕n≥0 En ⊂ S, En = [R(E)]n generated over E0 = R by l(v1), . . . , l(vm), for
some (in fact, any) generating set {v1 , . . . , vm} of E as an R-module. In other words,
R(E) is the R-algebra generated by E1 ⊂ S1. Its Krull dimension is known to be
d + e [2, Proposition 2.1]. Each En is dubbed a Rees power of E ⊂ Re .
An R-submoduleU ⊆ E is said to be a reduction of E ifU 1Er = Er+1 for r ≫ 0. _e

reduction number of E with respect to U is deûned as

rU(E) = min{n ≥ 0 ∣ U 1En
= En+1

}.

A minimal reduction of E is a reduction that is minimal with respect to inclusion.
Since the residue ûeld k of R is assumed to be inûnite,minimal reductions are known
to exist; moreover, they have rank e as well. _e (absolute) reduction number of E is
the integer r(E) = min{rU(E)}, where U ⊆ E ranges over all minimal reductions
of E.

Still in analogy with the case of ideals, the special ûber ring of the R-module E ⊂ Re

is the special ûber of its Rees algebra, that is, the graded ring

F (E) = R(E)⊗R k =⊕
n≥0

En

mEn ,

which is standard graded over the ûeld [F (E)]0 = k. Its Krull dimension is the so-
called analytic spread of E, denoted by ℓ(E). Since k is inûnite, it is well known that
ℓ(E) = ν(U) for any minimal reduction U ⊆ E, where ν( ⋅ ) stands for the mini-
mal number of generators; moreover, if E is of ûnite colength in Re , in the sense that
λ(Re/E) < ∞, where λ( ⋅ ) denotes length function, then any minimal reduction U
of E satisûes ν(U) = d + e − 1 and hence ℓ(E) = d + e − 1, so that E has maximal
analytic spread in this case. In general, e ≤ ℓ(E) ≤ d + e − 1.
For the basicnotions and facts of commutative algebra thatwehave tacitly assumed

in this paper, see Bruns–Herzog [3]. For the general theory of blowup algebras of
modules we refer to Vasconcelos [37].
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3 Cohen–Macaulayness and Multiplicity

In this section we aremainly concerned with the Cohen–Macaulay property and the
Hilbert–Samuel multiplicity of special ûber rings of modules. In Subsection 3.3 we
will describe a precise relation to the Buchsbaum–Rim multiplicity in a suitable set-
ting.

3.1 A Multiplicity-based General Characterization

We begin by recalling a very useful characterization proved byCorso, Polini, andVas-
concelos [7, Proposition 2.4] for the Cohen–Macaulay property of the special ûber
ring F (I) = ⊕n≥0 In/mIn of an ideal I ⊂ R in terms of its multiplicity deg(F (I))
(denoted f0 therein). We point out that a multiplicity-based Cohen–Macaulayness
criterion for F (I) was ûrst achieved by Shah [32,_eorem 5].

Proposition 3.1 Let I ⊂ R be an ideal and let J ⊂ I be a minimal reduction of I. Set
r = rJ(I). _en F (I) isCohen–Macaulay if and only if deg(F (I)) = 1+∑i≤r ν(

I i
JI i−1 ).

Proposition 3.2 provides the well-known extension of this characterization into
the context of modules. We require E to possess a rank and to be embedded in a
free R-module Re in order to keep the very deûnition of Rees algebra as adopted in
Section 2, but, speciûcally for this result, we do not require the rank of E to be equal
to e.

Proposition 3.2 Let U ⊂ E be a minimal reduction of E and set r ∶= rU(E), with
r ≥ 1 (as wemay assume; see Remark 3.4 (ii) below). _en F (E) is Cohen–Macaulay
if and only if its multiplicity can be written as

deg(F (E)) = 1 +
r

∑
i=1

ν(
E i

U 1E i−1 ) .

Proof SinceU is aminimal reduction of E, the ideal U 1F (E) ⊂ F (E) is generated
by a homogeneous system of parameters and therefore, by the graded version of [3,
Corollary 4.7.11], we have that F (E) is Cohen–Macaulay if and only if deg(F (E)) is
equal to the length ofF (E)/U 1F (E). But we can write

F (E)
U 1F (E)

= k ⊕ (
∞

⊕
i=1

E i

mE i +U 1E i−1 ) = k ⊕ (
r
⊕
i=1

E i

mE i +U 1E i−1 )

so that

λ(
F (E)

U 1F (E)
) = 1 +

r

∑
i=1

ν(
E i

U 1E i−1 ) ,

which gives the result.

Corollary 3.3 Assume that E ⊊ Re has rank e and reduction number 1. _en F (E)
is Cohen–Macaulay if and only if deg(F (E)) = ν(E) − ℓ(E) + 1. In particular, if E is
of ûnite colength, we have that F (E) is Cohen–Macaulay if and only if deg(F (E)) =
ν(E) − d − e + 2.
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Proof Choose any minimal reduction U ⊂ E such that r(E) = rU(E). As we shall
verify later, the number ν(E1/U 1) = λ(E1/(mE1+U 1)) is equal to the second analytic
deviation ν(E)− ℓ(E) (see the proof of Proposition 4.8, and notice that this part does
not depend on the condition rU(E) ≥ 3 imposed therein). Now the result follows
from Proposition 3.2. _e particular assertion also follows easily since in the ûnite
colength case we have ℓ(E) = d + e − 1.

Remarks 3.4 (i) Cohen–Macaulayness and independence on theminimal reduction:
as in Proposition 3.2, let U ⊂ E be aminimal reduction of E and set r ∶= rU(E) ≥ 1. If
F (E) is Cohen–Macaulay, the ideal U 1F (E) ⊂ F (E) can be generated by a regular
sequence and therefore the Hilbert series of F (E) and F (E)/U 1F (E) are related
by the equality

H(F (E), t) =
1

(1 − t)ℓ(E)
H(

F (E)
U 1F (E)

, t) ,

where t is a variable. Hence, the h-polynomial ofF (E) is

H(
F (E)

U 1F (E)
, t) = 1 +

r

∑
i=1

λ(
E i

mE i +U 1E i−1 ) t i = 1 +
r

∑
i=1

ν(
E i

U 1E i−1 ) t ,

whose degree is rU(E). _is shows, in particular, that the reduction number of E
does not depend on the choice of the minimal reduction U ⊂ E in this situation.
For ideals, this feature was observed by Huckaba–Marley [15, _eorem 3.3] through
diòerent arguments.

(ii) _e linear type case: for E of linear type, in the sense that R(E) = SR(E), or
equivalently, SR(E) has trivial R-torsion, it is well known that E admits no proper
reductions, that is, r(E) = 0. In this case,F (E) = SR(E)⊗R k = Sk(E⊗R k),which
is a polynomial ring (in ν(E) indeterminates) over k, and hence deg(F (E)) = 1,
so that the interesting situation is when rU(E) ≥ 1 for any given minimal reduction
U ⊂ E, as in Proposition 3.2.

However, it is possible for a module E that is not of linear type (hence r ≥ 1) to
satisfy deg(F (E)) = 1, so that F (E) cannot be Cohen–Macaulay as the sum of
minimal numbers of generators in the statement of Proposition 3.2 must be strictly
positive in this case. To illustrate this situation, consider the surface singularity R =

C[x , y, z](x ,y ,z)/(x3 − y2z) and set E ∶= DerC(R) ↪ R3, the (maximal Cohen–
Macaulay, 4-generated, rank 2) module ofC-derivations of R. In [26, Subsection 2.4],
where we dealt with the graded context, we checked that E is not of linear type (since
SR(E) is Cohen–Macaulay while R(E) is not) and that its special ûber ring admits
a presentation

F (E) ≃
C[T1 , T2 , T3 , T4]

(T2
1 , T1T2)

,

which is not Cohen–Macaulay and has multiplicity 1. It would be of interest to inves-
tigate whether this phenomenon is related to the non-normality of the domain R.

Later in Example 4.3 we shall consider a similar module (namely, the one formed
by the logarithmic derivations of the Fermat cubic in four indeterminates, which in
particular yields anormal residue ring)whose specialûber ring isCohen–Macaulay (it
will, in fact, deûne a hypersurface) ofmultiplicity 2. As a bonus from Proposition 3.2,
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wewill get that the reduction number of this module is exactly 1. Since,moreover, we
will check that its second analytic deviation is 1, this example will serve to illustrate
Corollary 3.3.

(iii) Cohen–Macaulayness and the vanishing of cohomology: let us consider provi-
sionally the standard situationwhere e = 1 and E = I ⊂m is an ideal of positive height.
Assume that R is a d-dimensional Cohen–Macaulay local ring that is essentially of û-
nite type over k = C, and that the blowup X ∶= Proj(R(I)) (which clearly equals
Proj(R(In)) for any given n) is a not necessarily smooth Cohen–Macaulay scheme.
(See Kurano [22, _eorem 2.2] for a criterion in the case where I is equimultiple in
the sense that its height equals ℓ(I).) Let Y = f −1(m) ⊂ X be the closed ûber of the
natural proper morphism f ∶X → Spec(R). In this setting, some of the results proved
by Sancho de Salas [31] can be summarized in terms of the following statement: the
associated graded ring G (In) is Cohen–Macaulay for n ≫ 0 if and only if

H i
Y(X ,OX) = 0, ∀i < d ,

where H i
Y(X ,OX) denotes the i-th cohomology with supports in Y (this fact was

proved in more generality by Lipman [25, _eorem 4.3] and was also invoked, pre-
cisely with the above statement, by Huckaba–Marley [16, p. 147]). For the sake of
completeness recall that, in general, given a sheafE of Abelian groups on a topological
space Z and a closed subsetW ⊂ Z, the i-th cohomology group of Z with coeõcients
in E and supports in W , denoted by H i

W(Z ,E ), was introduced by Grothendieck in
the 1960s in such a way that, if Z is the spectrum of a Noetherian ring A, E is the
sheaf of sections of an A-module E, and W is the Zariski-closed subset associated
with an A-ideal a, then H i

W(Z ,E ) turns out to be the i-th local cohomologymodule
H i

a(E) = lim
Ð→

ExtiA(A/a
n , E), where the maps in the direct limit system are induced

by the natural surjections A/an+1 → A/an . In particular,

H0
W(Z ,E ) = Γa(E) = ⋃

n≥0
0 ∶E an .

For an illustration of the aforementioned result of Sancho de Salas, let R be the
two-dimensionalCohen–Macaulay local domainC[x , y, z](x ,y ,z)/(xy−z2), and take
the nonzero ideal I = (x2 , y2 , xz, yz)R. By Korb–Nakamura [21, Example 2.6], the
Rees algebra R(In) is Cohen–Macaulay for n ≥ 2 (so the blowup X ∶= Proj(R(I))
is Cohen–Macaulay) and therefore so is G (In) byHuneke [17, Proposition 1.1]. _us,
considering the natural morphism f ∶X→ Spec(R), we get

H0
f −1((x ,y ,z)R)(X,OX) = H1

f −1((x ,y ,z)R)(X,OX) = 0.

By virtue of the above discussion, it seemsnatural to raise a couple of general issues.
• Is there any cohomological characterization in terms of Proj(R(I)) for the Co-

hen–Macaulayness of the special ûber ring F (In) for n large? A quite naive starting
point might be to control the local cohomology modules of the extended ideal

mG (In) =⊕
j≥0

mI jn

In+ jn ⊂ G (In)

that is the kernel of the natural epimorphism G (In)→ G (In)⊗R k = F (In), so that
we could attempt to rely back on the Sancho de Salas’ situation.
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• Is there any reasonable analogue of Sancho de Salas’s result in the context of
(torsionless) modules? Given the embedded module E ⊊ Re , a strategy could be to
consider the annihilator I ∶= E ∶R Re of the cokernel Re/E, assumed to be of positive
height, as well as the associated graded G (In)-module

G (E , In) ∶=⊕
j≥0

I jnE
In+ jnE

of E with respect to In for n ≫ 0. As a replacement for the blowup, we should pre-
sumably resort to X ∶= Proj(R(E)) that, correspondingly, we assume to be Cohen–
Macaulay. _us, under this viewpoint, the transcription for modules seems to rely
on the problem of characterizing the (maximal) Cohen–Macaulayness of G (E , In)
for n ≫ 0 in terms of the vanishing of cohomology groups of X with coeõcients in
OX and supports in the closed ûber of the natural morphism X → Spec(R). In case
G (E , In) fails to be a good candidate, it could be useful to ûnd out whether the Rees
power En plays any (eventually amajor) role in the formation of the ring or module
replacing G (In).

3.2 Modules of Finite Colength Over One-dimensional Cohen–Macaulay Rings

In a particular setting, we are able to obtain an asymptotic length formula for the
multiplicity ofF (E).

_eorem 3.5 Assume that R is Cohen–Macaulay and d = 1. If E ⊊ Re is of ûnite
colength and x ∈m is a nonzero-divisor, then the limit

LE(x) ∶= lim
n→∞

1
ne−1 λ(

mEn

xEn )

exists. More precisely, it satisûes deg(F (E)) = λ( R
(x)) − (e − 1)!LE(x).

Proof In virtue of the natural short exact sequence

0Ð→
En

mEn Ð→
Sn

mEn Ð→
Sn

En Ð→ 0

we canwrite λ( Sn
mEn ) = λ( Sn

En )+ λ( En

mEn ). Similarly, comparing length along the short
exact sequences

0Ð→
mEn

xEn Ð→
Sn

xEn Ð→
Sn

mEn Ð→ 0,

0Ð→
xSn

xEn Ð→
Sn

xEn Ð→
Sn

xSn
Ð→ 0,

we obtain λ( Sn
mEn ) + λ(mEn

xEn ) = λ( Sn
xSn

) + λ( xSn
xEn ). Now set R ∶= R/(x), which is

an Artinian ring. Clearly, ( Sn
xSn

) ≃ R[t1 , . . . , te]n and then λ( Sn
xSn

) = λ(R)(n+e−1
e−1 ).

Moreover, x is S-regular, since this element is R-regular, and thus we have

λ(
xSn

xEn ) = λ(
Sn

En ) .
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Putting these facts together, we can write

λ(
En

mEn ) = λ(R)(
n + e − 1
e − 1

) − λ(
mEn

xEn ) .

Since E ⊂ Re is of ûnite colength and d = 1, we have that F (E) has Krull dimension
ℓ(E) = e. _erefore, theHilbert polynomial of the graded ringF (E) has total degree
e − 1, and themultiplicity can be computed as the limit

deg(F (E)) = lim
n→∞

(e − 1)!
ne−1 λ([F (E)]n) = lim

n→∞

(e − 1)!
ne−1 λ(

En

mEn )

so that

deg(F (E)) = lim
n→∞

(e − 1)!
ne−1 [ λ(R)(

n + e − 1
e − 1

) − λ(
mEn

xEn )] .

Now from the elementary observation that

(
n + e − 1
e − 1

) =
ne−1 + q(n)

(e − 1)!

for some polynomial q(n) that is either zero if e = 1 or of total degree e − 2 if e ≥ 2,
we derive that

lim
n→∞

(e − 1)!
ne−1 (

n + e − 1
e − 1

) = lim
n→∞

( 1 +
q(n)
ne−1 ) = 1.

We thus conclude that the limit LE(x) = limn→∞
1

ne−1 λ(mEn

xEn ) exists and satisûes the
proposed equality deg(F (E)) = λ(R) − (e − 1)!LE(x).

Remark 3.6 Considering the classical situation where e = 1 and E =m, we wish to
show that if x ∈ m is R-regular, then the limit Lm(x) ûts into an alternative upper
bound for the embedding dimension edim(R) = ν(m) of R. To this end, use that
F (m) equals the associated graded ring G (m) = ⊕n≥0mn/mn+1, i.e., the so-called
(Zariski) tangent cone of R, known to possess the samemultiplicity as R. _eorem 3.5
yields deg(R) = λ(R/(x)) − Lm(x). Of course, by the additivity of length along
standard short exact sequences, this turns out to be amanifestation of thewell-known
fact that deg(R) = ν(mn), n ≫ 0, provided that d = 1 [3, Exercise 4.6.15(c)]. Now the
classical Abhyankar bound (in the present case where d = 1) simply reads deg(R) ≥
edim(R) and thus we immediately obtain edim(R) ≤ λ( R

(x)) −Lm(x).

In order to derive an interesting consequence of_eorem 3.5 in the case where x
belongs to a suitable class of nonzero-divisors (Corollary 3.9), we invoke ûrst a basic
ingredient. Recall that if d = 1 then, as we are assuming that the residue ûeld k is
inûnite, there exists an element x ∈ R which is superûcial, awell-studied property that
in this situation can be characterized by the equality mn+1 = xmn , n ≫ 0 [3, Exer-
cise 4.6.15(a)]. In otherwords, the principal ideal (x) is a reduction ofm; in particular,
x lies in m ∖m2 and is necessarily a nonzero-divisor.

It is clear that Lm(x) = 0 if x is superûcial. _us, from the discussion in Re-
mark 3.6 we easily recover the following standard fact, which is known to admit
higher-dimensional statements.
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Lemma 3.7 Assume that R is Cohen–Macaulay and d = 1. If x ∈ R is a superûcial
element, then deg(R) = λ(R/(x)).

Remark 3.8 _ere are examples where, for a (necessarily nonsuperûcial) suitable
nonzero-divisor x ∈m, the diòerenceLm(x) = λ(R/(x))−deg(R) can take any pre-
scribed value. In order to illustrate this easily, consider the one-dimensional regular
local ring R = k[[t]], a formal power series ring in an indeterminate t over an inûnite
ûeld k. Let α ≥ 1 be an arbitrary positive integer, and take the element x = tα+1,which
cannot be superûcial since x ∈m2. We have λ(R/(x)) = λ(⊕α

j=0 kt j) = α + 1, so that
λ(R/(x)) − deg(R) = (α + 1) − 1 = α.

Combining _eorem 3.5 and Lemma 3.7, we immediately obtain that the set of
superûcial elements of R, S(R) ⊂ R ∖ ⋃P∈Ass(R) P, is such that the restriction of the
assignment x ↦LE(x) to S(R) turns out to be constant.

Corollary 3.9 Assume that R is Cohen–Macaulay, d = 1, and E ⊂ Re is of û-
nite colength. If S(R) stands for the set of superûcial elements of R, then the function
S(R) → Q given by x ↦ LE(x) is constant; explicitly, if we denote its value by LE ,
then it satisûes deg(F (E)) = deg(R) − (e − 1)!LE .

Example 3.10 Apart from the case E = m ⊂ R (for which Lm = 0, since d = 1 and
superûcial elements exist), the simplest instance is when E = F ≃ Re is free, e.g., if
F =⊕e

i=1(x i) for nonzero-divisors x1 , . . . , xe ∈m. In this situation,

LF =
deg(R) − 1
(e − 1)!

and thus, since R is a one-dimensional Cohen–Macaulay ring, we have that LF = 0 if
and only if R is a discrete valuation ring.

Remark 3.11 Itwouldbe of interest to extend_eorem 3.5 (and consequentlyCorol-
lary 3.9) to the case of arbitrary d ≥ 2. We suggest, quite vaguely, two independent
approaches that could presumably be eõcient.
• To extend the R-regular element x1 ∶= x to an appropriate sort of R-sequence

{x1 , . . . , xd}, so that our result could serve to start a proof by induction. For the
formulations of sequences, e.g., the so-called superûcial sequence, that might work
well in this regard, see [19, §§8.5, 8.6].
• To discover conditions under which the upper bound for λ([F (E)]n) given

in [2,_eorem 3.2] is an equality at least for n ≫ 0. In this case the Buchsbaum–Rim
multiplicity of E would turn out to be an ingredient in the formula for deg(F (E))
(see Proposition 3.14 for the case d = 1).

From Proposition 3.2 and Corollary 3.9 we readily establish a Cohen–Macaulay-
ness criterion for F (E) in terms of the number LE . Notice, for completeness, that if
E ⊂ Re is of ûnite colength, then any minimal reduction F of E is necessarily R-free
since d = 1; in fact, ν(F) = ℓ(E) = d + e − 1 = e = rank(E) = rank(F). In particular,
any minimal reduction of an m-primary ideal of R is necessarily principal.
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Corollary 3.12 Assume that R is Cohen–Macaulay and d = 1. Suppose in addition
that E ⊊ Re is of ûnite colength, and let F be any minimal reduction of E with r ∶=
rF(E) ≥ 1. _en F (E) is Cohen–Macaulay if and only if

LE =
1

(e − 1)!
[deg(R) −

r

∑
i=1

λ(
E i

mE i + F 1E i−1 ) − 1] .

Corollary 3.13 Assume that R is Cohen–Macaulay and d = 1. Let I ⊂ R be an
m-primary ideal, and let (y) be anyminimal reduction of I with r ∶= r(y)(I) ≥ 1. _en
F (I) is Cohen–Macaulay if and only ifLI = deg(R) −∑r

i=1 λ(
I i

mI i+yI i−1 ) − 1.

3.3 Connection to the Buchsbaum–Rim Multiplicity

Our aimnow is toprovide,with the aidofour resultson theHilbert–Samuelmultiplic-
ity of F (E) together with suitable facts from Brennan, Ulrich, and Vasconcelos [2],
a new formula for the Buchsbaum–Rim multiplicity of the ûnite colength R-module
E ⊂ mRe (the classical reference for this numerical invariant is [4]). Along the way,
as a bonus, we shall obtain information about the reduction number of E.
A fundamental result proved in [4] states that the length function n ↦ λ(Sn/En)

gives a polynomial for n ≫ 0 with the leading term given by

br(E)
(d + e − 1)!

nd+e−1

for an integer br(E) ≥ 1, called the Buchsbaum–Rimmultiplicity of E ⊊ Re . _is num-
ber can be expressed bymeans of anEuler–Poincaré characteristic of the Buchsbaum–
Rim complex [4, Corollary 4.3]. _e special casewhereR is a two-dimensional regular
local ring is considered in [5].
As previously observed, if d = 1, then any minimal reduction F of E is necessar-

ily a free R-module (of rank e). _erefore, F can be expressed as the image of an
R-linear endomorphism φF ∶Re → Re that we regard as a squarematrix (we consider
the canonical basis of Re)whose determinant det(φF) ∈ R is immediately seen to be a
nonzero-divisor, so that evaluating the asymptotic length function LE (_eorem 3.5)
at det(φF) is meaningful. For convenience, we set δE(F) ∶= (e − 1)!LE(det(φF)).
As will be clear from Proposition 3.14 (i), the function F ↦ δE(F) (deûned on the set
ofminimal reductions of E) is constant; this fact will justify the notation δE , without
explicit reference to any minimal reduction of E. In particular, from the perspec-
tive of eòectiveness, in trying to compute the number δE , we can choose a minimal
reduction F corresponding to the simplest det(φF) possible.

Proposition 3.14 Suppose that R is Cohen–Macaulay and d = 1, and that E ⊂ mRe

is nonfree and of ûnite colength.

(i) If F ⊂ E is aminimal reduction, then br(E) = deg(F (E))+δE(F). In particular,
the number δE ∶= δE(F) does not depend on the choice ofminimal reduction, and
br(E) ≥ δE + 1.
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(ii) (char(k) = 0) IfF (E) is Cohen–Macaulay and deg(F (E)) ≤ 2e − δE , then the
following hold.
(a) r(E) = 1.
(b) br(E) = 2e.
(c) ν(E) = 3e − δE − 1.

Proof For simplicity, write x ∶= det(φF), which clearly lies inme and hence cannot
be superûcial if e ≥ 2. By [2,_eorem 3.1] we can write

br(E) = br(F) = λ(
R
(x)

) .

It is clear that r(E) ≥ 1, since d = 1 and E is nonfree. Hence, _eorem 3.5 yields
deg(F (E)) = br(E)−(e−1)!LE(x),which gives (i). Now let us prove (ii). Note that
ν(Re/E) = e, since E ⊂mRe . In virtue of part (i) above, the hypothesis deg(F (E)) ≤
2e − δE means that br(E) ≤ 2e. _us, by [2, Remark 4.2], we get

r(E) <
br(E)
e

≤ 2,

which yields r(E) = 1 and br(E) = 2e. In particular, part (i) forces deg(F (E)) =

2e − δE . On the other hand, since r(E) = 1 andF (E) is Cohen–Macaulay, we are in
a position to apply Corollary 3.3 in order to express this multiplicity as

deg(F (E)) = ν(E) − d − e + 2 = ν(E) − e + 1,

and consequently ν(E) − e + 1 = 2e − δE , that is, ν(E) = 3e − δE − 1.

Remarks 3.15 From the proof abovewe immediately obtain an upper bound for the
reduction number of E without requiring any prior constraint on F (E). Precisely, if
R is Cohen–Macaulay and one-dimensional, and if E ⊂ mRe is nonfree and of ûnite
colength, then (if in addition char(k) = 0, so that [2, Remark 4.2] can be employed)
we have r(E) < deg(F(E))+δE

e .
Under the conditions required in the second part of the proposition, the equality

ν(E) = 3e − δE − 1 readily yields that δE ≤ 2(e − 1), since ν(E) ≥ e + 1 as E is nonfree.
In particular, if e ≥ 2 and F ⊂ E is any given minimal reduction, we get

LE(det(φF)) =
3e − ν(E) − 1

(e − 1)!
≤

2
(e − 2)!

.

3.4 Detecting a Regular Element in the Special Fiber Ring

Independently of the results obtained so far in this paper, but with a view towards
Cohen–Macaulayness, we now easily establish a test for the detection of a non-
zero-divisor in F (E), where E ⊊ Re is not required to be of ûnite colength and R
is not assumed to be Cohen–Macaulay.
As before, given v = (x1 , . . . , xe) ∈ Re ,we set l(v) = ∑e

i=1 x i t i ∈ S1. _us, l(v) ∈ E1

(resp. l(v) ∈ mE1) if and only if v ∈ E (resp. v ∈ mE). Now for a homogeneous
element η ∈ En = [R(E)]n , we set ηo ∶= η +mEn ∈ [F (E)]n ; equivalently, ηo is the
image of η under the natural homogeneous epimorphism

R(E)→R(E)/mR(E) = F (E).
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Given v ∈ E and n ≥ 0, we conveniently introduce the R-submodule

Q(E , v , n) ∶=
mEn+1 ∶En l(v)

mEn ⊂ [F (E)]n ,

where mEn+1 ∶En l(v) = {η ∈ En ∣ ηl(v) ∈ mEn+1}. Note that v ∉ mE if and only if
Q(E , v , 0) = 0 (thus, v ∈mE if and only ifQ(E , v , 0) = k = [F (E)]0).

Proposition 3.16 Let v ∈ E ∖mE be given. _en l(v)o is F (E)-regular if and only
ifQ(E , v , n) = 0, for all n ≥ 1.

Proof Since l(v) ∈ E1, the inclusionmEn ⊆mEn+1∶En l(v) is always true for every n.
_uswe need to prove that l(v)o is F (E)-regular if and only ifmEn+1∶En l(v) ⊆mEn

for all n ≥ 1.
Suppose that the element l(v)o is a nonzero-divisor, and pick an arbitrary η ∈ En

(for any given n ≥ 1) satisfying ηl(v) ∈mEn+1. _en

ηo l(v)o
= (ηl(v))o

= 0 ∈ [F (E)]n+1 ,

which implies ηo = 0 ∈ [F (E)]n as l(v)o is F (E)-regular. It follows that η ∈mEn .
Conversely, suppose that mEn+1∶En l(v) ⊆ mEn for all n ≥ 1. In order to con-

clude that l(v)o is F (E)-regular, it suõces to check that it cannot be annihilated by
a nonzero homogeneous element ofF (E). _us, take σ ∈ En satisfying σ o l(v)o = 0
and let us prove that σ o = 0; equivalently, σ ∈ mEn . We have (σ l(v))o = 0 ∈

[F (E)]n+1, which implies that σ l(v) ∈mEn+1 and therefore

σ ∈ En
∩ (mEn+1

∶ l(v)) =mEn+1
∶En l(v) ⊆mEn .

_e consequence below gives a useful Cohen–Macaulayness characterization in
the situation of ideals of analytic spread 1. It will be employed later in Example 4.2.

Corollary 3.17 Let I ⊊ R be an ideal with ℓ(I) = 1, e.g., if I is m-primary and R is
one-dimensional. _en F (I) is Cohen–Macaulay if and only if there exists x ∈ I ∖mI
such that mIn+1 ∶In x =mIn for all n ≥ 1.

Proof If there exists an element x ∈ I ∖ mI satisfying mIn+1 ∶In x = mIn for all
n ≥ 1, then by Proposition 3.16 its image xo ∈ [F (I)]1 is F (I)-regular, and hence
F (I)must be Cohen–Macaulay since it has dimension 1 by hypothesis. Conversely, if
the one-dimensional ringF (I) isCohen–Macaulay, then there exists a homogeneous
nonzero-divisor yo ∈ [F (I)]s , for some y ∈ Is∖mIs , s ≥ 1. Since the graded k-algebra
F (I) is standard, wemay assume that s = 1. Now, given any n ≥ 1, take an arbitrary
z ∈ mIn+1 ∶In y. We have yz ∈ mIn+1, or, equivalently, yozo = 0 ∈ [F (I)]n+1, which
yields zo = 0 ∈ [F (I)]n , since yo is F (I)-regular. _us z ∈mIn , as needed.

Remark 3.18 Along the same lines of Remark 3.11, it seems plausible to guess that
Proposition 3.16 (and hence Corollary 3.17) admits a more general statement that
could be useful for the detection of maximal F (E)-sequences, with a view to the
Cohen–Macaulayness of F (E) regardless of any constraint on its dimension. _is
might be achieved by considering an appropriate sequence of homogeneous elements
starting with l(v)o for a given v ∈ E ∖mE.
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4 The Gorenstein Property

_roughout this section, we assume that the local ring R is Cohen–Macaulay (of ar-
bitrary dimension). As before, we suppose that the residue ûeld k = R/m is inûnite
andwe let E ⊊ Re be a ûnitely generated R-module (not necessarily of ûnite colength)
with rank e ≥ 1.

4.1 Warming-up: Modules of Second Analytic Deviation One

By tensoring the natural epimorphism SR(E)→RR(E) with the residue ûeld k, we
easily derive ν(E) ≥ ℓ(E). _e non-negative integer s(E) ∶= ν(E)−ℓ(E) is the second
analytic deviation of E.

We start with a characterization of the Gorensteinness ofF (E) in the case where
E has second analytic deviation equal to 1. Notice that this condition is satisûed if, for
instance, E ⊊ Re has ûnite colength and isminimally generated by d+e elements. As it
turns out, the result,which aòords a very simple proof, also characterizeswhenF (E)
is a hypersurface ring in this case, extending a result for modules due to Heinzer and
Kim [13, Proposition 5.4] in the standard situation of ideals.

Proposition 4.1 Assume that s(E) = 1. _en the following assertions are equivalent.
(i) F (E) is Gorenstein.
(ii) F (E) is Cohen–Macaulay.
(iii) F (E) is a hypersurface ring.

Proof Since the implications (iii) ⇒ (i) ⇒(ii) are clear, it remains to prove that
(ii)⇒ (iii). Let {v1 , . . . , vm} ⊂ Re be aminimal set of generators of E as an R-module.
Consider the polynomial ring A = k[T1 , . . . , Tm] in indeterminates T1 , . . . , Tm over
k, as well as the homomorphism φ∶A→F (E) deûned by

φ(Ti) = l(v i) +mE1 , i = 1, . . . ,m,

where l ∶Re → S1 = [SR(Re)]1 is the natural linearization map (see Section 2). _us,
φ is surjective and its kernel a ⊂ A has height equal to m− ℓ(E) = 1. Furthermore, a is
unmixed, as the ring A/a ≃ F (E) is Cohen–Macaulay. Since A is factorial, it follows
that ν(a) = 1.

Example 4.2 We ûrst want to illustrate that, as expected, Proposition 4.1 may fail
if the second analytic deviation is bigger than 1. We give a simple instance in the case
of an ideal whose second analytic deviation is 2. Consider the ideal

I = (s4 , s5 , s6) ⊂ R = k[[s4 , s5 , s6 , s7]].

_e R-ideal J = (s4) is easily seen to be a minimal reduction of I. _us, ℓ(I) =

ν(J) = 1, and sinceF (I) has a presentation of the form k[T1 , T2 , T3]/a, this k-algebra
cannot deûne a hypersurface, but we claim that it is Cohen–Macaulay. Taking the
element x ∶= s4 ∈ I ∖mI and using that I3 = xI2 andmx = mI, we easily verify that
mIn+1 ∶In x = mIn for every n ≥ 1. By Corollary 3.17, the ring F (I) must be Cohen–
Macaulay (we shall see in Example 4.6 that F (I) is, in fact, Gorenstein). Note that
s(I) = ν(I) − ℓ(I) = 3 − 1 = 2.
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Example 4.3 Take the Fermat cubic f = x3+ y3+z3+w3 ∈ R = k[x , y, z,w](x ,y ,z ,w)

and consider its tangential idealizer E ∶= TR/k( f ) ⊂ R4, quite o�en denoted by
Der(−log f ) and also called the logarithmic derivation module of ( f ) ⊂ R, deûned
as

E = {(g , h, p, q) ∈ R4
∣ g

∂ f
∂x

+ h
∂ f
∂y

+ p
∂ f
∂z

+ q
∂ f
∂w

∈ ( f )} .

It is easily seen to be a torsionless R-module of rank e = 4 that is not of ûnite colength
in R4 (more precisely, the cokernel R4/E is isomorphic to the Jacobian ideal of R/( f )).
Since f deûnes a quasi-homogeneous isolated complete intersection singularity (at
the origin), themodule structure of E [26, Lemma 2.2] yields that E is a re�exive R-
module (minimally generated by the Euler derivation of R and the sixKoszul syzygies
of the gradient ideal of f ) of projective dimension 2, so that, in particular, it cannot be
of linear type by [36, Proposition 3.1.11] [27, Example 5.12]. Using,moreover, suitable
facts from the theory of blowup algebras of torsionlessmodules applied to the present
situation, we get that the Rees algebra R(E) turns out to be a (eight-dimensional)
Cohen–Macaulay ring and its special ûber F (E) is a six-dimensional ring which is
Cohen–Macaulay as well. _erefore s(E) = ν(E) − ℓ(E) = 7 − 6 = 1, which implies,
by Proposition 4.1, that the k-algebra F (E) is a hypersurface ring; in fact, by the
computation given in [27, Example 5.12], we obtain that it can be explicitly described
as

F (E) =
k[T1 , T2 , T3 , T4 , T5 , T6 , T7]

(T2T4 − T1T5 − T3T6)
.

Notice that, since F (E) is Cohen–Macaulay and deg(F (E)) = 2, Proposition 3.2
forces rU(E) = 1 for any minimal reduction U of E (see Remark 3.4 (i)). Hence
r(E) = 1, thus putting this example in a position to illustrate Corollary 3.3 as well.

4.2 A General Characterization

For the proof of _eorem 4.4, which will provide a Gorensteinness characterization
for F (E), recall that the socle of a graded k-algebra A = A0 ⊕ A+ = k ⊕ A+, with
A+ = ⊕i≥1 A i the homogeneous maximal ideal, is deûned by Soc(A) = 0 ∶A A+.
_us, if A is standard graded over the ûeld k, we can write Soc(A) = 0 ∶A (A1). Also
recall that the type of A is, by deûnition, the number t(A) ∶= λ(ExtqA(k,A)), where
q = depth(A). Alternatively, we have t(A) = λ(Soc(A/(a))) provided that a ⊂ A+ is
amaximal A-sequence of homogeneous elements (see [3, Lemma 1.2.19],which states
this standard fact in the local setting). By a well-known basic characterization, A is
Gorenstein if and only if A is Cohen–Macaulay and t(A) = 1.

_eorem 4.4 Let U ⊂ E be aminimal reduction and set r ∶= rU(E) ≥ 1. _en F (E)
is Gorenstein if and only if the following conditions hold: F (E) is Cohen–Macaulay,
Er/U 1Er−1 is cyclic, and (in case r ≥ 2)

(mE i+1
+U 1E i

) ∶E i E1
=mE i

+U 1E i−1 i = 1, . . . , r − 1.

238

https://doi.org/10.4153/CJM-2018-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-031-6


On Special Fiber Rings ofModules

Proof Set ℓ ∶= ℓ(E). _us, ν(U) = ℓ. Let {u1 , . . . , uℓ} ⊂ Re be a set of generators of
U . For each j ∈ {1, . . . , ℓ}, consider the linear form l(u j) ∈ U 1 ⊂ E1 and set

L j ∶= l(u j) +mE1
∈ [F (E)]1 .

_e crucial point is to note that if the standard graded k-algebra F (E) is Cohen–
Macaulay, then L ∶= {L1 , . . . , Lℓ} ⊂ F (E)+ is amaximal F (E)-sequence and

Soc(
F (E)
(L)

) ≃ Soc(A ),

whereA ∶= F (E)/U 1F (E) =⊕∞
i=0 Ai , so that

Ai =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

k if i = 0,
E i

mE i +U 1E i−1 if i = 1, . . . , r,

0 if i > r.

Since Soc(A ) = 0 ∶A (A1) = 0 ∶A (E1/(mE1 + U 1)), an easy inspection yields
that this socle can be written explicitly as Soc(A ) = (⊕

r−1
i=1 Ãi) ⊕Ar , where

Ãi ∶=
(mE i+1 +U 1E i) ∶E i E1

mE i +U 1E i−1 ⊂ Ai , i = 1, . . . , r − 1.

Notice that λ(Ar) = ν(Er/U 1Er−1) ≠ 0. We ûnally obtain that the ring F (E) is
Gorenstein if and only if it is Cohen–Macaulay and λ(Soc(A )) = 1, the latter condi-
tion being equivalent to the equalities ν(Er/U 1Er−1) = 1 and Ãi = 0 for i = 1, . . . , r−1,
as asserted.

In the classical situation of ideals we readily obtain the following.

Corollary 4.5 Let I ⊊ R be an ideal and let J ⊂ I be a minimal reduction. Set
r ∶= rJ(I) ≥ 1. _en F (I) is Gorenstein if and only if the following conditions hold:
F (I) is Cohen–Macaulay, ν(Ir/JIr−1) = 1, and (in case r ≥ 2)

(mI i+1
+ JI i) ∶I i I =mI i + JI i−1 i = 1, . . . , r − 1.

Example 4.6 Let I ⊂ R be exactly as in Example 4.2. _e element x = s4 ∈ I ∖mI
is easily seen to satisfy xI ≠ I2 and xI2 = I3, which means r(x)(I) = 2. Moreover,
mI = mx ⊂ (x), which implies that mI2 ⊂ xI. As we have veriûed in Example 4.2,
the ring F (I) is Cohen–Macaulay. Since clearly xI ∶I I = (x), we get (mI2 + xI) ∶I
I = xI ∶I I = (x) = mx + (x) = mI + (x). Furthermore, I2 = xI + (s11), so that
ν(I2/xI) = 1. By Corollary 4.5, we conclude that F (I) is Gorenstein.

4.3 An Obstruction in the Case of Reduction Number at Least 3

We ûnish the paper by detecting a quite rigid constraint (on the second analytic devi-
ation) for theGorensteinness of the special ûber ringF (E) in the situationwhere the
reduction number of E is at least 3. We shall need the following technical observation,
which is well known, at least in the case of ideals [19, Proposition 8.3.3].

Lemma 4.7 For any minimal reduction U of E, we have U 1 ∩mE1 =mU 1.
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Proof Set L ∶= U 1 ∩mE1. By virtue of the natural surjection U 1/mU 1 → U 1/L, we
have λ(U 1/L) < ∞, so that U 1/L ≃ ks for some positive integer s, and we can write
U 1 = ∑

s
i=1 Rl(u i) + L for certain u1 , . . . , us ∈ U . We claim that the R-submodule

G ∶= ∑
s
i=1 Ru i ⊆ U is a reduction of E. By hypothesis, there exists an integer n such

that U 1En = En+1. _us, noticing that U 1 = G1 + L ⊆ G1 +mE1, we get

En+1
= U 1En

⊆ (G1
+mE1

)En .

NowNakayama’s Lemma yields En+1 ⊆ G1En , whence En+1 = G1En as needed. More-
over, by the minimality of U , we must have G = U . Hence s = ν(U), yielding
L =mU 1.

Proposition 4.8 Let U be aminimal reduction of E such that r ∶= rU(E) ≥ 3. If

s(E) ≠ ν(
Er−1

U 1Er−2 ) ,

then F (E) is not Gorenstein.

Proof Suppose by contradiction that F (E) is Gorenstein. Set

A ∶= F (E)/U 1F (E),

so that A = ⊕
r
i=0 Ai with homogeneous components Ai ’s as in the proof of _e-

orem 4.4. _is standard graded k-algebra is, in this situation, a zero-dimensional
Gorenstein ring. As we have seen in Remark 3.4 (i), the h-polynomial ofF (E) is

H(A , t) = 1 +
r

∑
i=1

λ(Ai)t i

and hence its h-vector is (1, λ(A1), . . . , λ(Ar−1), λ(Ar)), which, by Gorensteinness,
must be symmetric; since r ≥ 3, this implies λ(A1) = λ(Ar−1) and therefore,

λ(A1) = λ(
Er−1

mEr−1 +U 1Er−2 ) = ν(
Er−1

U 1Er−2 ) ,

so that λ(A1) ≠ s(E). On the other hand, from Lemma 4.7 we derive

(mE1
+U 1

)/mE1
≃ U 1

/mU 1 ,

thus yielding a short exact sequence 0 → U 1

mU 1 →
E 1

mE 1 → A1 → 0 and, consequently,
λ(A1) = ν(E) − ν(U) = ν(E) − ℓ(E) = s(E), a contradiction.
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