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This paper considers a model for oncolytic virotherapy given by the doubly
haptotactic cross-diffusion system⎧⎪⎪⎨

⎪⎪⎩
ut = DuΔu − ξu∇ · (u∇v) + μuu(1 − u) − ρuz,
vt = −(αuu + αww)v,
wt = DwΔw − ξw∇ · (w∇v) − w + ρuz,
zt = DzΔz − δzz − ρuz + βw,

with positive parameters Du, Dw, Dz , ξu, ξw, δz , ρ, αu, αw, μu, β. When posed under
no-flux boundary conditions in a smoothly bounded domain Ω ⊂ R

2, and along with
initial conditions involving suitably regular data, the global existence of classical
solution to this system was asserted in Tao and Winkler (2020, J. Differ. Equ. 268,
4973–4997). Based on the suitable quasi-Lyapunov functional, it is shown that when
the virus replication rate β < 1, the global classical solution (u, v, w, z) is uniformly
bounded and exponentially stabilizes to the constant equilibrium (1, 0, 0, 0) in the
topology (L∞(Ω))4 as t → ∞.
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1. Introduction

As compared to the traditional treatment like chemotherapy or radiotherapy for
cancer diseases, the prominent advantage of virotherapy is that the therapy can
reduce the side-effect on the healthy tissue. In clinical treatments, the so-called
oncolytic viruses which are either genetically engineered or naturally occurring can
selectively attack the cancer cells and eventually destroy them without harming
normal cells because virus can replicate inside the infected cells and proceed to
infect adjacent cancer cells with the aim to drive the tumour cells to extinction [8,
9]. Despite some partial success, implementation of virotherapy is not in sight. In
fact, clinical data reveal that the efficacy of virotherapy will be reduced by many
factors, such as circulating antibodies, various immune cells or even deposits of
extracellular matrix (ECM) may essentially decrease [10, 16]. Therefore, to facil-
itate the understanding of the mechanisms that hinder virus spread, the authors
of [1] proposed a mathematical model to describe the interaction between both
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uninfected and infected cancer cells, as well as ECM and oncolytic virus particles,
which is given by

⎧⎪⎪⎨
⎪⎪⎩

ut = DuΔu − ξu∇ · (u∇v) + μuu(1 − u) − ρuuz, x ∈ Ω, t > 0,
vt = −(αuu + αww)v + μvv(1 − v), x ∈ Ω, t > 0,
wt = DwΔw − ξw∇ · (w∇v) − δww + ρwuz, x ∈ Ω, t > 0,
zt = DzΔz − δzz − ρzuz + βw, x ∈ Ω, t > 0,

(1.1)

in a smoothly bounded domain Ω ⊂ R
n, with positive parameters Du,Dw,Dz, ξu,

ξw, αu, αw, μu, δw, δz, β and nonnegative constants μv, ρu, ρw, ρz, and with the
unknown variables u,w, z and v denoting the population densities of uninfected
cancer cells, infected cancer cells, virus particles and ECM, respectively. Here,
the crucial modelling hypothesis underlying (1.1), which accounts for haptotac-
tic motion of cancer cells and thereby marks a substantial difference between (1.1)
and related more classical reaction–diffusion models for virus dynamics [13, 19],
is that apart from its random diffusion, both uninfected and infected cancer cells
bias their motion upward ECM gradients simultaneously due to the attraction by
some macromolecules trapped in the ECM. In addition, the oncolytic virus particles
infect the uninfected cancer cells upon contact with uninfected tumour cells, and
new infectious virus particles are released at rate β > 0 when infected cells burst (a
process known as lysis); beyond this, (1.1) presupposes that the ECM is degraded
upon interacting with both type of cancer cells, and is possibly remodelled by the
normal tissue according to logistic laws.

Due to its relevance in several biological contexts, inter alia the cancer invasion
[2, 5], haptotaxis mechanism has received considerable attention in the analytical
literature [3, 11, 12, 14, 17, 21, 27–30, 32, 33]. The most characteristic ingredient
of the model (1.1) is the presence of two simultaneous haptotaxis processes of cancer
cells, and thereby distinguishes it from most haptotaxis [11, 29, 33] and chemo-
taxis–haptotaxis systems [3, 17, 27] studied in the literature, especially the ECM
is degraded by both type of cancer cells in (1.1) directly, rather matrix-degrading
enzymes secreted by tumour cells (see e.g. [12, 17, 18, 27]). It is observed that
the former circumstance seems to widely restrict the accessibility to the approaches
well established in the analysis of related reaction–diffusion systems, and accord-
ingly the considerable challenges arise for the rigorous analysis of (1.1), particularly
when addressing issues related to qualitative solution behaviour.

To the best of our knowledge, so far the quantitative comprehension available for
(1.1) is yet mainly limited in some simple setting [4, 15, 20, 22–26]. For instance,
based on the construction of certain quasi-Lyapunov functional, Tao and Winkler
[22] established the global classical solvability of (1.1) in the two-dimensional case.
With respect to the boundedness of solutions to (1.1), authors in [15] considered
some slightly more comprehensive variants of (1.1), which accounts for the hapto-
taxis mechanisms of both cancer cells and virions, in the situation when zero-order
term has suitably strong degradation. Apart from that, existing analytical works
indicate that the virus reproduction rate relative to the lysis rate of infected cancer
cells appears to be critical in determining the large time behaviour of the cor-
responding solutions at least in some simplified version of (1.1), inter alia upon
neglecting haptotactic cross-diffusion of infected cancer cells and renew of ECM.
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Indeed, for the reaction–diffusion–taxis system

⎧⎪⎪⎨
⎪⎪⎩

ut = DuΔu − ξu∇ · (u∇v) + μuu(1 − u) − ρuz, x ∈ Ω, t > 0,
vt = −(αuu + αww)v, x ∈ Ω, t > 0,
wt = DwΔw − w + uz, x ∈ Ω, t > 0,
zt = DzΔz − z − uz + βw, x ∈ Ω, t > 0,

(1.2)

it is shown in [24] that if β > 1, then for any reasonably regular initial data satis-
fying u0 > 1/(β − 1) the global classical solution of (1.2) with ρ = 0, μu = 0 must
blow up in infinite time, which is also implemented by the result on bounded-
ness in the case when u0 < 1/(β − 1)+ and v0 ≡ 0 for any β > 0. Beyond the
latter, it was proved that when ρ > 0 and μu = 0, the first solution component
u of (1.2) possesses a positive lower bounds whenever 0 < β < 1 and the initial
data u0 �≡ 0 [25]. Furthermore, as an extension of above outcome, the asymp-
totic behaviour of solution was investigated in [26] if 0 < β < 1. It is remarked
that for system (1.2) with μu > 0 and 0 < β < 1, the convergence properties of
the corresponding solutions was also discussed in [4]. We would like to mention
that as the complementing results of [26], the recent paper [23] reveals that for
any prescribed level γ ∈ (0, 1/(β − 1)+), the corresponding solution of (1.2) with
μu = 0, ρ � 0, β > 0 will approach the constant equilibrium (u∞, 0, 0, 0) asymp-
totically with some u∞ > 0 whenever the initial deviation from homogeneous
distribution (γ, 0, 0, 0) is suitably small.

The purpose of this work is to investigate the dynamical features of the models
involving the simultaneous haptotactic processes of both uninfected and infected
cancer cells when the virus replication rate β < 1. To this end, we are concerned
with the comprehensive haptotactic cross-diffusion systems of the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = DuΔu − ξu∇ · (u∇v) + μuu(1 − u) − ρuz, x ∈ Ω, t>0,
wt = DwΔw − ξw∇ · (w∇v) − w + ρuz, x ∈ Ω, t>0,
vt = −(αuu + αww)v, x ∈ Ω, t>0,
zt = DzΔz − δzz − ρuz + βw, x ∈ Ω, t>0,
(Du∇u − ξuu∇v) · ν = (Dw∇w − ξww∇v) · ν = ∇z · ν = 0, x∈∂Ω, t>0,
u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), z(x, 0) = z0(x), x ∈ Ω

(1.3)
in a smoothly bounded domain Ω ⊂ R

2. To import the precise framework underlying
the basic theory from [22] we shall henceforth assume that

{
u0, w0, z0 and v0 are nonnegative functions from C2+ϑ(Ω̄) for some ϑ ∈ (0, 1),

with u0 �≡ 0, w0 �≡ 0, z0 �≡ 0, v0 �≡ 0 and
∂v0

∂ν
= 0 on ∂Ω.

(1.4)
Hence the outcome of [22] asserts the global existence of a unique classical solution
(u, v, w, z) to (1.3). Our main results reveal that whenever β < 1, (u, v, w, z) is uni-
formly bounded and exponentially converges to the constant equilibrium (1, 0, 0, 0)
in the topology (L∞(Ω))4 in a large time limit, which can be stated as follows.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded domain with smooth boundary,

Du,Dw,Dz, ξu, ξw, μu, ρ, αu, αw, δz are positive parameters, and suppose that
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0 < β < 1. Then system (1.3) admits a unique global classic positive solution
satisfying

sup
t>0

{‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω)

}
< ∞.

(1.5)
Moreover there exist positive constants η, �, γ1, γ2 and C > 0 such that

‖u(·, t) − 1‖L∞(Ω) � Ce−ηt, (1.6)

‖w(·, t)‖L∞(Ω) � Ce−�t, (1.7)

‖z(·, t)‖L∞(Ω) � Ce−γ1t (1.8)

as well as

‖v(·, t)‖L∞(Ω) � Ce−γ2t. (1.9)

Since the third equation in (1.3) is merely an ordinary differential equation, no
smoothing action on the spatial regularity of v can be expected. To overcome the
analytical difficulties arising from the latter, inter alia in the derivation of global
boundedness of solutions, we accordingly introduce the variable transformation a =
e−χuvu and b = e−χwvw, and establish a priori estimate for the solution components
a, b of the corresponding equivalent system (2.2) below in the space L log L(Ω)
rather than the solution components u,w to (1.3). Note that in the evolution of
density v of ECM fibres the quantity u,w appears via a sink term, whereas it
turns to a genuine superlinear production terms of system (2.2) in the style of
χua(αuaeχuv + αwbeχwv)v and χwb(αuaeχuv + αwbeχwv)v. Taking advantage of the
exponential decay of w in L1 norm in the case 0 < β < 1, we shall track the time
evolution of

F(t) =
∫

Ω

eχuva(·, t) log a(·, t) +
∫

Ω

eχwvb(·, t) log b(·, t) +
∫

Ω

z2(·, t)

with a = e−χuvu and b = e−χwvw, which is somewhat different from the quasi-
Lyapunov functional (4.11) in [22] where a Dirichlet integral of

√
v is involved. Here,

the quadratic degradation term in the first equation of (1.3) seems to be necessary.
Thereafter applying a variant of the Gagliardo–Nirenberg inequality involving cer-
tain L log L-type norms and performing a Moser-type iteration, the L∞-bounds of
solutions is derived.

In addition, our result indicates that although haptotaxis mechanism may have
some important influence on the properties of the related system on short or inter-
mediate time scales, the large time behaviour of solution to (1.3) can essentially be
described by the corresponding haptotaxis-free system at least under the biological
meaningful restriction β < 1. In order to prove theorem 1.1, a first step is to derive
a pointwise lower bound for a := e−χuvu (lemma 4.2), which, in turn, amounts to
establishing an exponential decay of z with respect to the norm in L∞(Ω) (lemma
4.2). To achieve the latter, we will make use of L1(Ω)-decay information of w, z
explicitly contained in lemma 2.3. Secondly, as a consequence of the former, the
exponential decay of v with respect to L∞(Ω) norm is achieved (lemma 4.3), which
along a a−1-testing procedure will provide quite weak convergence information of
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u, inter alia the integrability property of ∇√
a in L2((0,∞);L2(Ω)) (lemma 4.4).

The next step will consist of verifying the integrability of ∇v in L2((0,∞);L2(Ω))
rather than that of at (lemma 4.5), which will turn out to be sufficient a condi-
tion in the derivation of exponential decay property of ‖u(·, t) − 1‖Lp(Ω). Indeed,
this integrability property of ∇v enables us to derive an exponential decay of∫
Ω
|∇v|2 (lemma 4.6), upon which and through a testing procedure, it is shown that

the convergence property of u actually takes place in the type of (4.22) (lemma
4.7). Furthermore, upon the above decay properties, we are able to verify that∫
Ω
|∇v|4 decays exponentially by means of the suitable quasi-Lyapunov functional

(lemma 4.9). At this position, thanks to the integrability exponent in
∫
Ω
|∇v|4

exceeding the considered spatial dimension n = 2, the desired decay property stated
in theorem 1.1 can be exactly achieved.

This paper will be organized as follows: § 2 will introduce an equivalent system
of (1.3) and give out some basic priori estimates of classical solutions thereof, inter
alia the weak decay properties of w, z. Section 3 will focus on the construction of
an entropy-type functional, which entails certain L log L-type norms and thereby
allows us to establish the L∞-bounds. Finally, starting from the exponential decay
of quantities w, z with respect to the norm in L1(Ω), we established the exponential
convergence properties of the solutions in § 4.

2. Preliminaries

Let us firstly recall the result in [22] which warrants the global smooth solvability
of problem (1.3).

Lemma 2.1. Let Ω ⊂ R
2 be a bounded domain with smooth boundary,

Du,Dw,Dz, ξu, ξw, μu, ρ, αu, αw, δz, β are positive parameters. Then for any choice
of (u0, v0, w0, z0) fulfilling (1.4), the problem (1.3) (1.4) possesses a uniquely
determined classical solution (u, v, w, z) ∈ (C2,1(Ω × [0,∞)))4 for which u > 0, w >
0, z > 0 and v � 0.

Following the variable of change used in related literature [6, 15, 26, 28], which
can conveniently reformulate the haptotactic interaction in (1.3), we define χu :=
ξu/Du and χw := ξw/Dw and set

a := e−χuvu and b := e−χwvw. (2.1)

Then we transform (1.3) into an equivalent system as below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = Due−χuv∇ · (eχuv∇a) + f(a, b, v, c), x ∈ Ω, t > 0,

bt = Dwe−χwv∇ · (eχwv∇b) + g(a, b, v, c), x ∈ Ω, t > 0,

vt = −(αuaeχuv + αwbeχwv)v, x ∈ Ω, t > 0,

zt = DzΔz − δzz − ρzuz + βw, x ∈ Ω, t > 0,
∂a

∂ν
=

∂b

∂ν
=

∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

a(x, 0) = u0(x)e−χuv0(x), b(x, 0) = w0(x)e−χwv0(x), x ∈ Ω,

v0(x, 0) = v0(x), z(x, 0) = z0(x), x ∈ Ω

(2.2)
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with

f(a, b, v, c) := μua(1 − aeχuv) − ρaz + χua(αuaeχuv + αwbeχwv)v,

as well as

g(a, b, v, c) := −b + ρaze(χu−χw)v + χwb(αuaeχuv + αwbeχwv)v.

In our subsequent analysis, unless otherwise stated we shall assume that (a, v, b, z)
is the global classical solution to (2.2) addressed in lemma 2.1.

The damping effects of quadratic degradation in the first equation in (1.3) will
be important for us to verify the global boundedness of the solutions. Let us first
apply straightforward argument to achieve the following basic L1-bounds for u,w
and z, which is also valid for the solution components a, b of (2.2).

Lemma 2.2. For all t > 0, the solution (u,w, v, z) satisfies
∫

Ω

u(·, t) � max
{∫

Ω

u0, |Ω|
}

:= mu, (2.3)

and

max
x∈Ω

v(x, t) � ‖v0‖L∞(Ω) := mv (2.4)

and ∫
Ω

w(·, t) � max
{
‖u0‖L1(Ω) + ‖w0‖L1(Ω),

|Ω|μu

min{1, μu}
}

:= mw, (2.5)

as well as ∫
Ω

z(·, t) � max
{∫

Ω

z0,
βmw

δz

}
:= mz. (2.6)

Proof. It is easy to see that (2.3) can be derived through an integration of the
first equation in (1.3) along with Cauchy–Schwarz’s inequality, and (2.4) is a direct
consequence of (αuu + αww)v � 0 due to the nonnegativity of u,w and v.

In addition, integrating the w-equation as well as u-equation respectively and
adding the corresponding results, we then have

d
dt

(∫
Ω

u +
∫

Ω

w

)
+
∫

Ω

w + μu

∫
Ω

u � |Ω|μu, (2.7)

which readily leads to (2.5) upon an ODE comparison. At last, thanks to (2.5),
(2.6) clearly results from the integration of z-equation in (1.3). �

Beyond that, making use of the restriction β ∈ (0, 1), one can derive the decay
properties of the solution components w and z with respect to L1(Ω), which will
be used later on.
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Lemma 2.3. Suppose that 0 < β < 1 then there exists constant C > 0 such that

∫
Ω

w(·, t) +
∫

Ω

z(·, t) � Ce−δt for all t > 0 (2.8)

with δ = min{1 − β, δz}.

Proof. We use the z-equation and w-equation to compute

d
dt

(∫
Ω

w +
∫

Ω

z

)
+ (1 − β)

∫
Ω

w + δz

∫
Ω

z = 0. (2.9)

Due to 0 < β < 1, this readily implies that

(∫
Ω

w(·, t) +
∫

Ω

z(·, t)
)

�
(∫

Ω

w0 +
∫

Ω

z0

)
e−min{1−β,δz}t

and hence (2.8) is valid with C =
∫
Ω

w0 +
∫
Ω

z0. �

3. Global boundedness

As in [15, 28], the crucial step in establishing a priori L∞ bounds for a, b and z
is to derive estimates for a and b in L log L, which turn out to be consequences of
a quasi-energy structure associated with the system (2.2) rather than the system
(1.3). Indeed, making appropriate use of the logistic degradation in the first equation
of (2.2) and inter alia the L1-decay property of the solution component w, one can
verify that functional

F(t) :=
∫

Ω

eχuva(·, t) log a(·, t) +
∫

Ω

eχwvb(·, t) log b(·, t) +
1
2

∫
Ω

z2(·, t),

which does not involve the Dirichlet integral of
√

v, actually possesses a certain
quasi-dissipative property for all t > t0 with constant t0 > 1 suitably chosen.

Lemma 3.1. For any ε > 0, there exists C(ε) > 0 such that

d
dt

∫
Ω

eχuva log a +
∫

Ω

eχuva log a + Du

∫
Ω

eχuv |∇a|2
a

+
μu

2

∫
Ω

e2χuva2 log a

� ε

∫
Ω

b2 + C(ε)
(3.1)

for all t > 0.
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Proof. From the first equation in (1.3), it follows that

(eχuva)t = Du∇ · (eχuv∇a) + μueχuva(1 − eχuva) − ρeχuvaz. (3.2)

Hence, a testing procedure on the first equation in (2.2) leads to

d
dt

∫
Ω

eχuva log a =
∫

Ω

(eχuva)t log a +
∫

Ω

eχuvat

� −Du

∫
Ω

eχuv |∇a|2
a

+ μu

∫
Ω

eχuva log a − μu

∫
Ω

e2χuva2 log a

− ρ

∫
Ω

eχuvza log a + μu

∫
Ω

aeχuv − ρ

∫
Ω

eχuvza

+ χuαu

∫
Ω

e2χuvva2 + χuαw

∫
Ω

e(χw+χu)vvab.

Thanks to lemma 2.2 and the elementary inequality a log a � − 1
e valid for all a > 0,

one can find c1 > 0 such that

d
dt

∫
Ω

eχuva log a + Du

∫
Ω

eχuv |∇a|2
a

+ μu

∫
Ω

e2χuva2 log a

� αuχue2χumvmv

∫
Ω

a2 + αwχue(χu+χw)mvmv

∫
Ω

ab + μu

∫
Ω

eχuva log a + c1,

which along with Young’s inequality implies that for any ε > 0

d
dt

∫
Ω

eχuva log a + Du

∫
Ω

eχuv |∇a|2
a

+ μu

∫
Ω

e2χuva2 log a

�
(

αuχue2χumvmv +
1
ε
α2

wχ2
ue2(χu+χw)mvm2

v

)∫
Ω

a2

+ ε

∫
Ω

b2 + μu

∫
Ω

eχuva log a + c1.

Further invoking the inequality a2 � ε1a
2 log a + e2/ε1 for any ε1 > 0, we arrive at

d
dt

∫
Ω

eχuva log a + Du

∫
Ω

eχuv |∇a|2
a

+
3μu

4

∫
Ω

e2χuva2 log a

� ε

∫
Ω

b2 + μu

∫
Ω

eχuva log a + c2(ε)
(3.3)

with some c2(ε) > 0. Accordingly, (3.1) is a consequence of (3.3) and the fact that
a log a � ε2a

2 log a − ε−1
2 ln ε2 with ε2 = μu/(4(μu + 1)). �

For the solution component b of (2.2), we also have
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Lemma 3.2. Let 0 < β < 1. Then one can find C > 0 and t0 > 0 such that for all
t > t0

d
dt

∫
Ω

eχwvb log b +
∫

Ω

eχwvb log b +
Dw

2

∫
Ω

eχwv |∇b|2
b

�
∫

Ω

a2 + C

(∫
Ω

z4

)1/2

. (3.4)

Proof. From the second equation in (1.3), it follows that

(beχwv)t = Dw∇ · (eχwv∇b) − w + ρuz.

Relying on 0 � v � mv in Ω × (0,∞), a straightforward calculation along with the
Young’s inequality yields

d
dt

∫
Ω

eχwvb log b +
∫

Ω

eχwvb log b + Dw

∫
Ω

eχwv |∇b|2
b

=
∫

Ω

(eχwvb)t log b +
∫

Ω

eχwvbt +
∫

Ω

eχwvb log b + Dw

∫
Ω

eχwv |∇b|2
b

=
∫

Ω

log b(Dw∇ · (eχwv∇b) − w + ρuz) +
∫

Ω

eχwvg(a, b, v, c)

+
∫

Ω

eχwvb log b + Dw

∫
Ω

eχwv |∇b|2
b

=
∫

Ω

(1 + log b)(ρuz − w) + χw

∫
Ω

w(αuu + αww)v +
∫

Ω

w log b (3.5)

� ρ

∫
Ω

(1 + log b)uz + χwαu

∫
Ω

wuv + χwαw

∫
Ω

w2v

� ρ

∫
Ω

azeχuv log b + ρeχumv

∫
Ω

az + αuχwe(χu+χw)mvmv

∫
Ω

ab

+ αwχwe2χwmvmv

∫
Ω

b2

� c1

∫
Ω

b2 +
∫

Ω

a2 + c1

∫
Ω

z2 + c1

∫
{x∈Ω;b(x,t)�1}

z2 log2 b

� c1

∫
Ω

b2 +
∫

Ω

a2 + c1

∫
Ω

z2 + c1

(∫
Ω

z4

)1/2
(∫

{x∈Ω;b(x,t)�1}
| log b|4

)1/2

� c1

∫
Ω

b2 +
∫

Ω

a2 + c1

∫
Ω

z2 + c1

(∫
Ω

z4

)1/2(∫
Ω

b + c2|Ω|
)1/2

with some c1 > 0, where we use the fact that there exits c2 > 0 such that log4 s �
s + c2 for all s � 1 and w2 = e2χwvb2 � e2χwmvb2.
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Furthermore, in order to appropriately estimate the first summand on the right-
hand side of (3.5), we apply the two-dimensional Gagliardo–Nirenberg inequalities

‖ϕ‖4
L4(Ω) �Cg‖∇ϕ‖2

L2(Ω)‖ϕ‖2
L2(Ω)+Cg‖ϕ‖4

L2(Ω) for some Cg >0 and all ϕ∈W 1,2(Ω)

to get

c1

∫
Ω

b2 = c1‖
√

b‖4
L4(Ω)

� c1Cg

∫
Ω

b

∫
Ω

eχwv |∇b|2
b

+ c1Cg

(∫
Ω

b

)2

� c1Cg

∫
Ω

w

∫
Ω

eχwv |∇b|2
b

+ c1Cg

(∫
Ω

w

)2

(3.6)

Therefore combining (3.6) with (3.5), we arrive at

d
dt

∫
Ω

eχwvb log b +
∫

Ω

eχwvb log b + Dw

∫
Ω

eχwv |∇b|2
b

(3.7)

� c1Cg

∫
Ω

w

∫
Ω

eχwv |∇b|2
b

+ c1Cg

(∫
Ω

w

)2

+
∫

Ω

a2

+ c1

∫
Ω

z2 + c1

(∫
Ω

z4

)1/2(∫
Ω

w + c2|Ω|
)1/2

.

By lemma 2.3, we can pick t0 > 0 suitably large such that

c1Cg

∫
Ω

w � Dw

2

and thereby for t � t0,

d
dt

∫
Ω

eχwvb log b +
∫

Ω

eχwvb log b +
Dw

2

∫
Ω

eχwv |∇b|2
b

� c1Cg

(∫
Ω

w

)2

+
∫

Ω

a2 + c1

∫
Ω

z2 + c1

(∫
Ω

z4

)1/2(∫
Ω

w + c2|Ω|
)1/2

,

which along with lemma 2.2 and the Young’s inequality completes the proof. �

While the expressions
∫
Ω

a2 appearing in (3.4) turns out to be conveniently

digestible through the dissipation rate in (3.1), it remains to estimate
(∫

Ω
z4
)1/2

by means of an interpolation argument.

Lemma 3.3. Let 0 < β < 1 and define

F(t) :=
∫

Ω

eχuva(·, t) log a(·, t) +
∫

Ω

eχwvb(·, t) log b(·, t) +
∫

Ω

z2(·, t).

Then there exist t1 > t0 and constant C > 0 such that for all t � t1

F ′(t) + F(t) � C. (3.8)
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Proof. Testing the fourth equation in (2.2) by z, we can see that

d
dt

∫
Ω

z2 +
∫

Ω

z2 + 2Dz

∫
Ω

|∇z|2 � 2β

∫
Ω

eχwvbz +
∫

Ω

z2

� Dw

4mwCg

∫
Ω

b2 +
(

1 +
4mwCge2χwmvβ2

Dw

)∫
Ω

z2.

Hence lemmas 3.1 and 3.2 provide positive constants ci > 0 (i = 1, 2) such that

F ′(t) + F(t) + Dw

∫
Ω

eχwv |∇b|2
b

+ Dz

∫
Ω

|∇z|2 +
μu

2

∫
Ω

e2χuva2 log a +
∫

Ω

z2

�
∫

Ω

a2 + c1

(∫
Ω

z4

)1/2

+
Dw

2mwCg

∫
Ω

b2 + c2

(3.9)
for all t � t0 with t0 given by lemma 3.2.

Now again since a2 � ε1a
2 log a + e2/ε1 for any ε1 > 0,∫

Ω

a2 � μu

4

∫
Ω

e2χuva2 log a + c3 (3.10)

with c3 > 0, whereas according to the two-dimensional Gagliardo–Nirenberg
inequalities,

Dw

2mwCg

∫
Ω

b2 =
Dw

2mwCg
‖
√

b‖4
L4(Ω)

� Dw

2mw

∫
Ω

b

∫
Ω

eχwv |∇b|2
b

+
Dw

2mw

(∫
Ω

b

)2

� Dw

2

∫
Ω

eχwv |∇b|2
b

+
Dw

2mw
m2

w.

(3.11)

In summary, (3.11), (3.10) and (3.9) show that for t � t0

F ′(t) + F(t) + Dz

∫
Ω

|∇z|2 +
∫

Ω

z2 � c1

(∫
Ω

z4

)1/2

+ c4 (3.12)

with some c4 > 0.
Furthermore to estimate

(∫
Ω

z4
)1/2 on the right-hand side of (3.12), we employ

(2.8), the Gagliardo–Nirenberg inequalities and Young’s inequality once more to
conclude that there exists t1 > t0 such that for all t � t1

c1‖z(·, t)‖2
L4(Ω) � c1Cg‖∇z(·, t)‖3/2

L2(Ω)‖z(·, t)‖1/2
L1(Ω) + c1Cg‖z(·, t)‖2

L1(Ω)

� Dz

2

∫
Ω

|∇z|2 + c5

(3.13)

with c5 > 0, which together with (3.12) readily establishes (3.8). �

As a consequence of (3.8), the L log L-estimate of quantities a and b is achieved
as follows.
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Lemma 3.4. Let 0 < β < 1. Then there exists C > 0 such that for all t > t0,

∫
Ω

a(·, t)| log a(·, t)| � C (3.14)

as well as ∫
Ω

b(·, t)| log b(·, t)| � C. (3.15)

Proof. As in lemma 3.4 of [15], by the inequality a log a > −e−1 in Ω × (0,∞), we
have

∫
Ω

a(·, t)| log a(·, t)| �
∫

Ω

eχuva(·, t) log a(·, t) − 2
∫

a<1

eχuva(·, t) log a(·, t)

�
∫

Ω

eχuva(·, t) log a(·, t) +
2|Ω|eχumv

e
.

Likewise, we can also obtain

∫
Ω

b(·, t)| log b(·, t)| �
∫

Ω

eχwvb(·, t) log b(·, t) +
2|Ω|eχwmv

e
.

According to (3.8), there exits c1 > 0 such that

F(t) � c1. (3.16)

Therefore by the definition of F(t), we can see that

∫
Ω

a(·, t)| log a(·, t)| +
∫

Ω

b(·, t)| log b(·, t)| � F(t) +
2|Ω|eχumv

e
+

2|Ω|eχwmv

e
� c2

with c2 = (2|Ω|/e)(eχwmv + eχumv ) + c1 for all t > t0, and thus complete the proof.
�

The a priori estimates for a, b gained in lemma 3.4 is the cornerstone to establish
a L∞(Ω)-bound for solution (u, v, w, z). Indeed, one can proceed to derive obtain
L∞(Ω)-bound by means of some quite straightforward Lp testing procedures.

Lemma 3.5. Let 0 < β < 1. Then there exists C > 0 such that for all t > 0

‖a(·, t)‖L∞(Ω) + ‖b(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) � C. (3.17)
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Proof. Testing the first equation in (2.2) by eχuvar−1 with r � 2, we obtain
c1(r) > 0

d
dt

∫
Ω

eχuvar +
4(r − 1)Du

r

∫
Ω

eχuv|∇ar/2|2 + rμu

∫
Ω

e2χvar+1

� μur

∫
Ω

eχuvar + rχu

∫
Ω

eχuvar(αuu + αww)v

� μur

∫
Ω

eχuvar + c1(r)
∫

Ω

ar(a + b),

which together with the Young’s inequality, leads to

d
dt

∫
Ω

eχuvar + 2Du

∫
Ω

|∇ar/2|2 +
∫

Ω

eχuvar

� c2(r)
∫

Ω

ar+1 + c2(r)
∫

Ω

br+1 + c2(r)
(3.18)

with constant c2(r) > 0. Likewise, there exist ci(r) > 0 (i = 3, 4) such that

d
dt

∫
Ω

eχwvbr + 2Dw

∫
Ω

|∇br/2|2 + r

∫
Ω

eχvbr

� c3(r)
∫

Ω

br−1az + c3(r)
∫

Ω

ar+1 + c3(r)
∫

Ω

br+1

� c4(r)
∫

Ω

ar+1 + c4(r)
∫

Ω

br+1 + c4(r)
∫

Ω

zr+1

(3.19)

as well as

d
dt

∫
Ω

zr + 2Dz

∫
Ω

|∇zr/2|2 +
rδz

2

∫
Ω

zr � 2rβr

δz

∫
Ω

wr. (3.20)

Collecting (3.18)–(3.20), we then arrive at

d
dt

∫
Ω

(eχuvar + eχwvbr + zr)

+ c5

∫
Ω

(eχuvar + eχwvbr + zr) + c5

∫
Ω

(|∇ar/2|2 + |∇br/2|2 + |∇zr/2|2)

� c6(r)
(∫

Ω

ar+1 +
∫

Ω

br+1 +
∫

Ω

zr+1

)
+ c6(r)

(3.21)

with c5 > 0 and c6(r) > 0.
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According to lemma 3.4, there exists c7(r) > 0 such that∫
Ω

a · | log |ar/2|| +
∫

Ω

b · | log |br/2|| +
∫

Ω

z · | log |zr/2|| � c7(r). (3.22)

Now we invoke the logarithm-type Gagliardo–Nirenberg inequality (we refer to
lemma A.5 in [28] for details) to obtain that there exists c8(r) > 0 such that

c6(r)
∫

Ω

ar+1 � c5

2c7(r)
‖∇ar/2‖2

L2(Ω) ·
∫

Ω

a · | log |ar/2||+c8(r)
(
‖ar/2‖(2(r+1)/r)

L2/r(Ω)
+1
)

,

(3.23)
and

c6(r)
∫

Ω

br+1 � c5

2c7(r)
‖∇br/2‖2

L2(Ω) ·
∫

Ω

b · | log |br/2|| + c8(r)
(
‖br/2‖(2(r+1)/r)

L2/r(Ω)
+ 1
)

(3.24)
as well as

c6(r)
∫

Ω

zr+1 � c5

2c7(r)
‖∇zr/2‖2

L2(Ω) ·
∫

Ω

z · | log |zr/2||+c8(r)
(
‖zr/2‖(2(r+1)/r)

L2/r(Ω)
+1
)

.

(3.25)
Therefore combining (3.22)–(3.25) and by lemma 2.2, we arrive at

d
dt

∫
Ω

(eχuvar + eχwvbr + zr) + c5

∫
Ω

(eχuvar + eχwvbr + zr) � c9(r)

and thereby ∫
Ω

ar(·, t) +
∫

Ω

br(·, t) +
∫

Ω

zr(·, t) � c10(r)

with c9(r) > 0, c10(r) > 0 by a standard ODE comparison argument. At this posi-
tion, one can derive a bound for a, b, z with respect to the norm in L∞(Ω) by
means of a Moser-type iteration argument in quite a standard manner. We omit
the proof thereof, and would like refer to [15, 26, 28] for details in a closely related
setting. �

4. Asymptotic behaviour

On the basis of the exponential decay of quantities w, z with respect to the norm in
L1(Ω) and global boundedness of solutions, we will address the large time asymp-
totics of the solution (u, v, w, z) to (1.3). To this end, we first turn the L1-decay
information explicitly contained in lemma 2.3 to the decay property of z in L∞-
norm by an appropriate application of the parabolic smoothing estimates in the
two-dimensional domain.

Lemma 4.1. Let β ∈ (0, 1). Then there exists C > 0 such that

‖z(·, t)‖L∞(Ω) � Ce−γ1t for all t > 0 (4.1)

with γ1 = min{1 − β, δz}/2.
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Proof. We invoke lemma 2.3 along with (3.17) to see that there exist c1 > 0 and
c2 > 0 such that

‖w(·, t)‖2
L2(Ω) � c1‖w(·, t)‖L∞(Ω)e−δt � c2e−δt (4.2)

with δ = min{1 − β, δz} > 0. According to known smoothing properties of the Neu-
mann heat semigroup (eσΔ)σ>0 on the domain Ω ⊂ R

2 [31], there exists c3 > 0 such
that for all σ > 0 and ϕ ∈ C0(Ω),∥∥eσDzΔϕ

∥∥
L∞(Ω)

� c3(1 + σ−(1/2))‖ϕ‖L2(Ω). (4.3)

Due to the nonnegativity of z and the comparison principle, we may use (4.2) and
(4.3) to infer that

z(·, t) = et(DzΔ−δz)z0 +
∫ t

0

e(t−s)(DzΔ−δz)(βw − ρuz)(·, s)ds

� et(DzΔ−δz)z0 + β

∫ t

0

e(t−s)(DzΔ−δz)w(·, s)ds

� e−δzt‖z0‖L∞(Ω) + βc3

∫ t

0

(1 + (t − s)−(1/2))e−δz(t−s)‖w(·, s)‖L2(Ω)ds

� e−δzt‖z0‖L∞(Ω) + βc2c3

∫ t

0

(1 + (t − s)−(1/2))e−δz(t−s)e−(δs/2)ds

� e−δzt‖z0‖L∞(Ω) + βc2c3c4e−min{δz,δ/2)t

(4.4)
with some c4 > 0, which along with the nonnegativity of z entails that (4.1) holds
with C = ‖z0‖L∞(Ω) + βc2c3c4. �

Now thanks to the uniform decay property of z, a pointwise lower bound for
a = ue−χuv can be achieved by means of an argument based on comparison with
spatially flat functions, which is documented as follows.

Lemma 4.2. Let β < 1. Then there exist γ > 0 and t1 > 0 such that

a(x, t) > γ for all (x, t) ∈ Ω × (t1,∞). (4.5)

Proof. According to lemma 4.1, one can pick t1 > 0 sufficiently large such that for
all t > t1

‖z(·, t)‖L∞(Ω) � μu

2ρ
. (4.6)

Hence by means of a straightforward computation based on (2.2), one can see that

at � Due−χuv∇ · (eχuv∇a) + μua(1 − aeχuv) − ρaz

� Due−χuv∇ · (eχuv∇a) + a
(μu

2
− eχu‖v0‖L∞(Ω)a

)
for all t > t1.
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Now let a(t) be the smooth solution to the initial value problem:⎧⎨
⎩

at = a
(μu

2
− eχu‖v0‖L∞(Ω)a

)
,

a(t1) = inf
x∈Ω

{u(x, t1)e−χu‖v0‖L∞(Ω)}, (4.7)

then through the explicit solution of above Bernoulli-type ODE, we have

a(t) � c1 := min
{

a(t1),
μu

2
e−χu‖v0‖L∞(Ω)

}
> 0 (4.8)

for all t > t1. It is observed that

at = Due−χuv∇ · (eχuv∇a) + a
(μu

2
− eχu‖v0‖L∞(Ω)a

)
(4.9)

and a(x, t1) � a(t1). Hence from the comparison principle of the parabolic equation,
one can conclude that

a(x, t) � a(t) � c1 for all (x, t) ∈ Ω × (t1,∞). (4.10)

and thereby (4.5) is valid with γ = c1. �

In view of the v-equation in (2.2), the latter information immediately entails the
exponential decay of v with respect to L∞(Ω) norm.

Lemma 4.3. Let β < 1. Then there exists C > 0 such that for all t > 0

‖v(·, t)‖L∞(Ω) � Ce−γ2t (4.11)

with γ2 = αuγ.

Proof. By recalling the outcomes of lemma 4.2, we have

vt = −(αuu + αww)v � −αuγv

for all t > t1 and hence v(x, t) � v0(x)e−αuγ(t−t1) � ‖v0‖L∞(Ω)eαuγt1e−αuγt. On
the other hand, v(x, t) � ‖v0‖L∞(Ω) � ‖v0‖L∞(Ω)eαuγt1e−αuγt for t ∈ (0, t1). Hence
(4.11) is valid with C = ‖v0‖L∞(Ω)eαuγt1 . �

Furthermore upon the decay property of v with respect to L∞(Ω), one can derive
the following basic stabilization feature of a(= e−χuvu).

Lemma 4.4. Let β < 1. Then we have∫ ∞

0

∫
Ω

|∇a|2
a2

< ∞ (4.12)

as well as ∫ ∞

0

∫
Ω

(u − 1)2 < ∞. (4.13)
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Proof. In view of s − 1 − log s > 0 for all s > 0 and vt < 0, we can conclude that

d
dt

∫
Ω

eχuv(a − 1 − log a)

=
∫

Ω

eχuv(a − 1 − log a)vt +
∫

Ω

eχuv

(
a − 1

a

)
at

� −Du

∫
Ω

eχuv |∇a|2
a2

+ μu

∫
Ω

eχuv(a − 1)(1 − u)

+ χu

∫
Ω

eχuv(a − 1)(αuu + αww)v − ρ

∫
Ω

eχuvz(a − 1).

(4.14)

Here by Young’s inequality,

(1 − a)(1 − u) = (1 − u)2 + (u − a)(1 − u)

� 1
2
(1 − u)2 − a2(eχuv − 1)2.

(4.15)

Due to the fact that es � 1 + 2s for all s ∈ [0, log 2], (4.11) allows us to fix a t1 > 1
suitably large such that for all t � t1,

(eχuv(·,t) − 1)2 � 4χ2
uv2(·, t),

which together with (4.15) entails that for t � t1

(1 − a)(1 − u) � 1
2
(1 − u)2 − 4a2χ2

uv2.

Therefore we infer from (3.17) and (4.14) that for all t � t1

d
dt

∫
Ω

eχuv(a − 1 − log a) + Du

∫
Ω

eχuv |∇a|2
a2

+ μu

∫
Ω

(u − 1)2

� c1

∫
Ω

z + c1

∫
Ω

v

with some c1 > 0. After a time integration this leads to

Du

∫ t

t1

∫
Ω

eχuv |∇a|2
a2

+ μu

∫ t

t1

∫
Ω

(u − 1)2

� c1

∫ t

t1

∫
Ω

z + c1

∫ t

t1

∫
Ω

v +
∫

Ω

eχumv (a(·, t1) − 1 − log a(·, t1))

and thereby implies that both (4.12) and (4.13) is valid thanks to (4.1) and (4.11).
�

In order to improve yet quite weak decay information of u, we turn to consider
the exponential decay properties of

∫
Ω
|∇v(·, t)|2, rather than the integrability of at

in L2((0,∞);L2(Ω)). As the first step towards this, we first show the convergence
of integral

∫∞
0

∫
Ω
|∇v|2, which is stated below.
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Lemma 4.5. Assume that β < 1, then we have∫ ∞

0

∫
Ω

|∇v|2 < ∞. (4.16)

Proof. Multiplying the second equation in (2.2) by eχwvb and integrating by parts,
one can conclude that

d
dt

∫
Ω

eχwvb2 + 2Dw

∫
Ω

eχwv|∇b|2 + 2
∫

Ω

eχwvb2

= 2ρ

∫
Ω

abzeχwv + 2χw

∫
Ω

eχwvb2(αuaeχuv + αwbeχwv)v,

which together with the global-in-time boundedness property of a and b, implies
that

d
dt

∫
Ω

eχwvb2 + 2Dw

∫
Ω

eχwv|∇b|2 + 2
∫

Ω

eχwvb2 � c1

(∫
Ω

v +
∫

Ω

z

)

for some c1 > 0. Hence according to lemmas 4.3 and 2.3, we can get∫ ∞

0

∫
Ω

|∇b|2 < ∞. (4.17)

Now since

∇vt = −(αu∇u + αw∇w)v − (αuu + αww)∇v,

a direct computation shows that

1
2

d
dt

∫
Ω

|∇v|2 +
∫

Ω

(u + w)|∇v|2

= −αwχw

∫
Ω

veχwvb|∇v|2 − αw

∫
Ω

veχwv∇v · ∇b − αu

∫
Ω

v∇v · ∇u

� −αw

∫
Ω

veχwv∇v · ∇b − αu

∫
Ω

veχuv∇v · ∇a.

Therefore, recalling the pointwise lower bound in (4.5), (3.17) and by the Young’s
inequality, we can find a constant c2 > 0 such that

d
dt

∫
Ω

|∇v|2 + γ

∫
Ω

|∇v|2 � c2

(∫
Ω

|∇b|2 +
∫

Ω

|∇a|2
a2

)
(4.18)

and thus for any t > 0,

γ

∫ t

0

∫
Ω

|∇v|2 �
∫

Ω

|∇v0|2 + c2

(∫ ∞

0

∫
Ω

|∇b|2 +
∫ ∞

0

∫
Ω

|∇a|2
a2

)
,

which along with (4.17) and (4.12) makes sure that (4.16) is actually valid. �

Beyond the integrability of
∫
Ω
|∇v|2 over (0,∞), we make use of the explicit

expression of ∇v together with (4.17) and (4.12) to identify that
∫
Ω
|∇v|2

exponentially decays.
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Lemma 4.6. Let β < 1. Then one can find constant C > 0 such that∫
Ω

|∇v|2 � C(t + 1)e−2γt for all t > 0, (4.19)

where γ is given by lemma 4.2.

Proof. On the basis of the v-equation in (1.3), we have

∇v(·, t)=∇v(·, 0)e−
∫ t
0 (u+w)(·,s)ds−v(·, 0)e−

∫ t
0 (u+w)(·,s)ds

∫ t

0

(∇u(·, s)+∇w(·, s))ds

which along with (4.5) and the Young’s inequality entails that∫
Ω

|∇v|2 � 2e−2γt‖∇v0‖2
L2(Ω)

+ 4te−2γt‖v0‖2
L∞(Ω)

(∫ t

0

∫
Ω

|∇u|2ds +
∫ t

0

∫
Ω

|∇w|2ds

)
. (4.20)

Furthermore observing that

|∇w| � χweχwv|∇v|b + eχwv|∇b|
as well as

|∇u| � χueχuv|∇v|a + eχuv|∇a|,
we conclude from (4.20) that there exists c1 > 0 such that

∫
Ω

|∇v(·, t)|2 � c1e−2γt + c1te−2γt

∫ t

0

∫
Ω

(|∇b|2 + |∇a|2 + |∇v|2)ds

� c1e−2γt + c1te−2γt

∫ ∞

0

∫
Ω

(|∇b|2 + |∇a|2 + |∇v|2)ds

(4.21)

and thus ∫
Ω

|∇v(·, t)|2 � c2(t + 1)e−2γt

with some c2 > 0, thanks to (4.17), (4.12) and (4.16). �

On the basis of smoothing estimates for the Neumann heat semigroup on Ω, and
decay information provided by lemma 4.6, we can make sure that u − 1 decays
exponentially with respect to Lp(Ω)-norm.

Lemma 4.7. Assume that β < 1, then there exists η1 > 0 such that for every p � 2,

‖u(·, t) − 1‖Lp(Ω) � C(p)e−η1t (4.22)

with some C(p) > 0 for all t > 0.
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Proof. Testing the first equation in (1.3) by u − 1 and integrating by parts, we have

d
dt

∫
Ω

(u − 1)2 + 2Du

∫
Ω

|∇u|2 + 2μu

∫
Ω

u(u − 1)2

= 2ξu

∫
Ω

u∇v · ∇u − 2ρ

∫
Ω

(u − 1)uz.

We thereupon make use of lemmas 4.2, 3.5 along with the Young’s inequality to get

d
dt

∫
Ω

(u − 1)2 + Du

∫
Ω

|∇u|2 + 2μuγ

∫
Ω

(u − 1)2

� ξ2
u

Du

∫
Ω

u2|∇v|2 + 2ρ

∫
Ω

uz

� c1

∫
Ω

|∇v|2 + c1

∫
Ω

z

(4.23)

with some c1 > 0.
According to lemmas 4.6 and 2.3, (4.23) implies that

∫
Ω

(u − 1)2 � c2e−η1t (4.24)

with η1 := min{2μuγ, 2γ, δ} and c2 > 0 for all t > 0.
Recalling known smoothing estimates for the Neumann heat semigroup on Ω ⊂

R
2 [31], there exist c3 = c3(p, q) > 0, c4 = c4(p, q) > 0 fulfilling

∥∥eσDuΔϕ
∥∥

Lp(Ω)
� c3σ

−(1/q−1/p)‖ϕ‖Lq(Ω) (4.25)

for each ϕ ∈ C0(Ω), and for all ϕ ∈ (Lq(Ω))2,

∥∥eσDuΔ∇ · ϕ∥∥
Lp(Ω)

� c4(1 + σ−(1/2)−(1/q−1/p))e−λ1σ ‖ϕ‖Lq(Ω) (4.26)

with λ1 > 0 the first nonzero eigenvalue of −Δ in Ω under the Neumann boundary
condition.
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Relying on a variation-of-constants representation of u related to the first
equation in (1.3), we utilize (4.25) and (4.26) to infer that

‖(u − 1)(·, t)‖Lp(Ω)

� ‖et(DuΔ−δ)(u0 − 1)‖Lp(Ω) + ξu

∫ t

0

‖e(t−s)(DuΔ−δ)∇ · (u∇v)‖Lp(Ω)ds

+
∫ t

0

‖e(t−s)(DuΔ−δ)((μuu − δ)(1 − u) − ρuz)‖Lp(Ω)ds

� e−δt‖u0− 1‖Lp(Ω)+ c5(p)
∫ t

0

(1+ (t −s)−1+1/p)e−(δ+λ1)(t−s)‖∇v(·, s)‖L2(Ω)ds

+ c5(p)
∫ t

0

(1 + (t − s)−(1/2)+1/p)e−δ(t−s)‖(u − 1)(·, s)‖L2(Ω)ds

+ c5(p)
∫ t

0

(1 + (t − s)−1+1/p)e−δ(t−s)‖z(·, s)‖L1(Ω)ds

(4.27)
for some c5(p) > 0. Therefore by (4.24), (4.19), (2.8) and thanks to the fact that for
α ∈ (0, 1) γ1 and δ1 positive constants with γ1 �= δ1, there exists c6 > 0 such that∫ t

0

(1 + (t − s)−α)e−γ1se−δ1(t−s)ds � c6e−min{γ1,δ1}t,

(4.22) readily results from (4.27) with η1 = 1
2 min{γ, μuγ, 1−β

2 , δz

2 } and some
C(p) > 0. �

At this position, due to the fact that the integrability exponent in (4.19) does
not exceed the considered spatial dimension n = 2, the uniform decay of w is not
achieved herein, however a somewhat optimal decay rate thereof with respect to
Lp(Ω) may be derived by the argument similar to that in lemma 4.7 instead of the
simple interpolation. The desired result can be stated below and the corresponding
proof is omitted herein.

Lemma 4.8. Let β < 1. Then there exists �1 > 0 such that for every p � 2,

‖w(·, t)‖Lp(Ω) � C(p)e−�1t (4.28)

with some C(p) > 0 for all t > 0.

Next we proceed to establish the convergence properties in (1.6)–(1.7) stated in
theorem 1.1, which are beyond that in lemmas 4.7 and 4.8. To this end, thanks
to lemmas 4.7, 4.8, 4.1, 4.2 and 4.3, we turn to make sure that

∫
Ω
|∇v|4 decays

exponentially, which results from a series of testing procedures.

Lemma 4.9. Let conditions in theorem 1.1 hold. Then there exist η2 > 0 and C > 0
such that ∫

Ω

|∇v|4 � Ce−η2t for all t > 0. (4.29)

https://doi.org/10.1017/prm.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.24


902 Y. Wang and C. Xu

Proof. Testing the identity

at = Du
a + Du∇v · ∇a + f(x, t), x ∈ Ω, t > 0

with f(x, t) = μua(1 − u) − ρaz + χua(αuu + αww)v by −
a, and using Young’s
inequality, we get

d
dt

∫
Ω

|∇a|2 + 2Du

∫
Ω

|
a|2

= −2Duχu

∫
Ω

(∇a · ∇v)
a − 2
∫

Ω

f
a

� Du

∫
Ω

|
a|2 + 2Duχ2
u

∫
Ω

|∇a|2|∇v|2 +
2

Du

∫
Ω

|f |2.

(4.30)

Note that by the Gagliardo–Nirenberg type interpolation with standard elliptic
regularity theory and Poincaré’s inequality, one can find constants c1 > 0 and c2 > 0
such that for all ϕ ∈ W 2,2(Ω) with ∂ϕ/∂ν = 0 on ∂Ω,

‖∇ϕ‖4
L4(Ω) � c1‖Δϕ‖2

L2(Ω)‖ϕ‖2
L∞(Ω)

and

‖∇ϕ‖2
L2(Ω) � c2‖Δϕ‖2

L2(Ω)

(see lemmas A.1 and A.3 in [7]). Hence thanks to lemma 3.5, we can pick c3 > 0
such that

a(x, t) � c3, b(x, t) � c3

for all x ∈ Ω and t > 0, and thereby have

‖∇a‖4
L4(Ω) � c1c

2
3‖Δa‖2

L2(Ω), ‖∇a‖2
L2(Ω) � c2‖Δa‖2

L2(Ω) (4.31)

as well as

‖∇b‖4
L4(Ω) � c1c

2
3‖Δb‖2

L2(Ω), ‖∇b‖2
L2(Ω) � c2‖Δb‖2

L2(Ω). (4.32)

Combining (4.31) with (4.30), the Young’s inequality shows that

d
dt

‖∇a‖2
L2(Ω) +

Du

2c2
‖∇a‖2

L2(Ω) + Du‖
a‖2
L2(Ω)

� Du

4c1c2
3

‖∇a‖4
L4(Ω) +

Du

2c2
‖∇a‖2

L2(Ω) + 4Duχ4
uc1c

2
3‖∇v‖4

L4(Ω) +
2

Du
‖f‖2

L2(Ω)

� 3Du

4
‖
a‖2

L2(Ω) + 4Duχ4
uc1c

2
3‖∇v‖4

L4(Ω) +
2

Du
‖f‖2

L2(Ω),

(4.33)
which readily implies that

d
dt

‖∇a‖2
L2(Ω) +

Du

2c2
‖∇a‖2

L2(Ω) +
Du

4
‖
a‖2

L2(Ω)

� 4Duχ4
uc1c

2
3‖∇v‖4

L4(Ω) +
2

Du
‖f‖2

L2(Ω).

(4.34)
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Likely, we can get

d

dt
‖∇b‖2

L2(Ω) +
Dw

2c2
‖∇b‖2

L2(Ω) +
Dw

4
‖
b‖2

L2(Ω)

� 4Dwχ4
wc1c

2
3‖∇v‖4

L4(Ω) +
2

Dw
‖g‖2

L2(Ω)

(4.35)

with g(x, t) = −b + ρue−χwvz + χwb(αuu + αww)v.
Now in order to appropriately compensate the first summand on right-hand side

of (4.34) and (4.35), we use the third equation in (2.2) to see that

1
4

d
dt

∫
Ω

|∇v|4

= −
∫

Ω

|∇v|2∇v · ∇vt

= −αu

∫
Ω

a(v + χu)eχuv|∇v|4 − αu

∫
Ω

veχuv|∇v|2∇v · ∇a

− αw

∫
Ω

b(v + χw)eχwv|∇v|4 − αw

∫
Ω

veχwv|∇v|2∇v · ∇b.

(4.36)

Here, recalling the uniform positivity of a stated in lemma 4.2, we can pick c4 > 0
fulfilling

αu

∫
Ω

a(v + χu)eχuv|∇v|4 � αuχuc4

∫
Ω

|∇v|4

and thus infer by the Young’s inequality and lemma 2.2 that for all t > t0

d
dt

∫
Ω

|∇v|4 + c5

∫
Ω

|∇v|4

� c6‖v(·, t0)‖L∞(Ω)

∫
Ω

(|∇a|4 + |∇b|4)
(4.37)

with constants c5 > 0, c6 > 0.
Now if we write d1 := (8c1c

2
3(Duχ4

u + Dwχ4
w))/c5, combining (4.37), (4.34) with

(4.35) yields

d
dt

(
‖∇a‖2

L2(Ω) + ‖∇b‖2
L2(Ω) + d1‖∇v‖4

L4(Ω)

)

+
Du

2c2
‖∇a‖2

L2(Ω) +
Du

4
‖
a‖2

L2(Ω) +
Dw

2c2
‖∇b‖2

L2(Ω)

+
Dw

4
‖
b‖2

L2(Ω) +
c5d1

2
‖∇v‖4

L4(Ω)

� c6d1‖v(·, t0)‖L∞(Ω)(‖∇a‖4
L4(Ω) + ‖∇b‖4

L4(Ω)) +
2

Du
‖f‖2

L2(Ω) +
2

Dw
‖g‖2

L2(Ω),

(4.38)
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which together with (4.31), (4.32) and lemma 4.3 entails that there exists t1 > 1
suitably large such that for all t > t1,

d
dt

(
‖∇a‖2

L2(Ω) + ‖∇b‖2
L2(Ω) + d1‖∇v‖4

L4(Ω)

)

+
Du

2c2
‖∇a‖2

L2(Ω) +
Dw

2c2
‖∇b‖2

L2(Ω) +
c5d1

2
‖∇v‖4

L4(Ω)

� 2
Du

‖f‖2
L2(Ω) +

2
Dw

‖g‖2
L2(Ω).

(4.39)

Due to lemma 3.5, we see that

|f(x, t)|2 + |g(x, t)|2 � c7(|u(x, t) − 1|2 + |w(x, t)|2 + |z(x, t)|2 + |v(x, t)|2)

with some c7 > 0, and thus there exist η3 > 0 and c8 > 0 such that∫
Ω

|f(x, t)|2 + |g(x, t)|2 � c8e−η3t for all t > t1, (4.40)

thanks to lemmas 4.7, 4.8, 4.1 and 4.3. Therefore (4.29) readily results from (4.40)
and (4.39). �

At this position, as an application of known smoothing estimates for the Neumann
heat semigroup, the latter readily turns to the exponential decay property of u − 1
as well as w with respect to L∞(Ω)-norm.

Lemma 4.10. Let the conditions in theorem 1.1 hold. Then there exist η, � > 0 and
C > 0 fulfilling

‖u(·, t) − 1‖L∞(Ω) � Ce−ηt (4.41)

as well as

‖w(·, t)‖L∞(Ω) � Ce−�t (4.42)

for all t > 0.

Proof. Since the proof is similar to that of lemma 4.7, we only give a short proof
of (4.41). In view to known smoothing estimates for the Neumann heat semigroup
on Ω ⊂ R

2 [31], there exist c1 > 0, c2 > 0 fulfilling∥∥eσDuΔϕ
∥∥

L∞(Ω)
� c1σ

−(1/2)‖ϕ‖L2(Ω) (4.43)

for each ϕ ∈ C0(Ω), and for all ϕ ∈ (L4(Ω))2,∥∥eσDuΔ∇ · ϕ∥∥
L∞(Ω)

� c2(1 + σ−(3/4))e−λ1σ ‖ϕ‖L4(Ω) (4.44)

with λ1 > 0 the first nonzero eigenvalue of −Δ in Ω under the Neumann boundary
condition.
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According to the variation-of-constants representation of u related to the first
equation in (1.3), we utilize (4.43) and (4.44) to infer that

‖(u − 1)(·, t)‖L∞(Ω)

� ‖et(DuΔ−1)(u0 − 1)‖L∞(Ω) + ξu

∫ t

0

‖e(t−s)(DuΔ−1)∇ · (u∇v)‖L∞(Ω)ds

+
∫ t

0

‖e(t−s)(DuΔ−1)((μuu − 1)(1 − u) − ρuz)‖L∞(Ω)ds

� e−t‖u0 − 1‖L∞(Ω) + c3

∫ t

0

(1 + (t − s)−(3/4))e−(1+λ1)(t−s)‖∇v(·, s)‖L4(Ω)ds

+ c3

∫ t

0

(1 + (t − s)−
1
2 )e−(t−s)(‖(u − 1)(·, s)‖L2(Ω) + ‖z(·, s)‖L2(Ω))ds

(4.45)
with some c3 > 0. This readily establishes (4.41) with appropriate η > 0 in view of
(4.29), (4.22) and (4.1). �

Thereby our main result has essentially been proved already.

Proof of theorem 1.1. The statement on global boundedness of classical solutions
has been asserted by lemma 3.5. The convergence properties in (1.6)–(1.9) are
precisely established by lemmas 4.10, 4.1 and 4.3, respectively. �

Acknowledgments
The authors would like to express their gratitude to the anonymous referee for
the careful reading with useful comments to improve the manuscript. This work is
supported by the NNSF of China (No. 12071030) and Beijing key laboratory on
MCAACI.

References

1 T. Alzahrani, R. Eftimie and D. Trucu. Multiscale modelling of cancer response to oncolytic
viral therapy. Math. Bioci. 310 (2019), 76–95.

2 A. R. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thomp-
son. Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2 (2000),
129–154.

3 X. Cao. Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew.
Math. Phys. 67 (2016), 11.

4 Z. Chen. Dampening effect of logistic source in a two-dimensional haptotaxis system with
nonlinear zero-order interaction. J. Math. Anal. Appl. 492 (2020), 124435.

5 M. A. J. Chaplain and G. Lolas. Mathematical modelling of cancer cell invasion of tissue:
the role of the urokinase plasminogen activation system. Math. Mod. Meth. Appl. Sci. 18
(2005), 1685–1734.

6 M. A. Fontelos, A. Friedman and B. Hu. Mathematical analysis of a model for the initiation
of angiogenesis. SIAM J. Math. Anal. 33 (2002), 1330–1355.

7 M. Fuest. Global solutions near homogeneous steady states in a multi-dimensional pop-
ulation model with both predator-and prey-taxis. SIAM J. Math. Anal. 52 (2020),
5863–5891.

8 H. Fukuhara, Y. Ino and T. Todo. Oncolytic virus therapy: a new era of cancer treatment
at dawn. Cancer Sci. 107 (2016), 1373–1379.

https://doi.org/10.1017/prm.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.24


906 Y. Wang and C. Xu

9 S. Gujar, J. G. Pol, Y. Kim, P. W. Lee and G. Kroemer. Antitumor benefits of antivi-
ral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39
(2018), 209–221.

10 I. Ganly and D. Kirn. A phase I study of Onyx-015, an E1B-attenuated adenovirus, admin-
istered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res.
6 (2000), 798–806.

11 C. Jin. Global classical solutions and convergence to a mathematical model for cancer cells
invasion and metastatic spread. J. Differ. Equ. 269 (2020), 3987–4021.

12 H. Y. Jin and T. Xiang. Negligibility of haptotaxis effect in a chemotaxis–haptotaxis model.
Math. Mod. Meth. Appl. Sci. 31 (2021), 1373–1417.

13 N. L. Komarova. Viral reproductive strategies: how can lytic viruses be evolutionarily
competitive?. J. Theor. Biol. 249 (2007), 766–784.

14 Y. Li and J. Lankeit. Boundedness in a chemotaxis–haptotaxis model with nonlinear
diffusion. Nonlinearity 29 (2016), 1564–1595.

15 J. Li and Y. Wang. Boundedness in a haptotactic cross-diffusion system modeling oncolytic
virotherapy. J. Differ. Equ. 270 (2021), 94–113.

16 J. Nemunaitis and I. Ganly. Selective replication and oncolysis in p53 mutant tumors with
ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and
neck cancer: a phase II trial. Cancer Res. 60 (2000), 6359–6366.

17 P. Y. H. Pang and Y. Wang. Global boundedness of solutions to a chemotaxis–haptotaxis
model with tissue remodeling. Math. Models Methods Appl. Sci. 28 (2018), 2211–2235.

18 P. Y. H. Pang and Y. Wang. Asymptotic behavior of solutions to a tumor angiogenesis
model with chemotaxis–haptotaxis. Math. Models Methods Appl. Sci. 29 (2019), 1387–1412.

19 J. Prüss, R. Zacher and R. Schnaubelt. Global asymptotic stability of equilibria in models
for virus dynamics. Math. Model. Nat. Phenom. 3 (2008), 126–142.

20 G. Ren and B. Liu. Global classical solvability in a three-dimensional haptotaxis system
modeling oncolytic virotherapy. Math. Methods Appl. Sci. 44 (2021), 9275–9291.

21 C. Stinner, C. Surulescu and M. Winkler. Global weak solutions in a PDE–ODE system
modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46 (2014), 1969–2007.

22 Y. Tao and M. Winkler. Global classical solutions to a doubly haptotactic cross-diffusion
system modeling oncolytic virotherapy. J. Differ. Equ. 268 (2020), 4973–4997.

23 Y. Tao and M. Winkler. Asymptotic stability of spatial homogeneity in a haptotaxis model
for oncolytic virotherapy. Proc. R. Soc. Edinburgh Sect. A Math. 52 (2022), 81–101.

24 Y. Tao and M. Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with
nonlinear zero-order interaction. Discrete Contin. Dyn. Syst. A 41 (2021), 439–454.

25 Y. Tao and M. Winkler. A critical virus production rate for efficiency of oncolytic
virotherapy. European J. Appl. Math. 32 (2021), 301–316.

26 Y. Tao and M. Winkler. A critical virus production rate for blow-up suppression in a
haptotaxis model for oncolytic virotherapy. Nonlinear Anal. 198 (2020), 111870.

27 Y. Tao and M. Winkler. Large time behavior in a multidimensional chemotaxis–haptotaxis
model with slow signal diffusion. SIAM J. Math. Anal. 47 (2015), 4229–4250.

28 Y. Tao and M. Winkler. Energy-type estimates and global solvability in a two-dimensional
chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ.
257 (2014), 784–815.

29 C. Walker and G. F. Webb. Global existence of classical solutions for a haptotaxis model.
SIAM J. Math. Anal. 38 (2007), 1694–1713.

30 Y. Wang. Boundedness in the higher-dimensional chemotaxis–haptotaxis model with
nonlinear diffusion. J. Differ. Equ. 260 (2016), 1975–1989.

31 M. Winkler. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel
model. J. Differ. Equ. 12 (2010), 2889–2905.

32 J. Zheng and Y. Ke. Large time behavior of solutions to a fully parabolic chemo-
taxis–haptotaxis model in N dimensions. J. Differ. Equ. 266 (2019), 1969–2018.

33 A. Zhigun, C. Surulescu and A. Uatay. Global existence for a degenerate haptotaxis model
of cancer invasion. Z. Angew. Math. Phys. 67 (2016), 146.

https://doi.org/10.1017/prm.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.24

	1 Introduction
	2 Preliminaries
	3 Global boundedness
	4 Asymptotic behaviour
	References

