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1. Introduction

In the present paper, we consider the eigenvalue problem

− (py′)′ + qy = λwy, [y, u−1](−1) = 0 = [y, u1](1), (1.1)

where the functions p, q, w are real-valued and w changes sign on (−1, 1) and
u−1, u1 are the principal solutions of differential expression

− (py′)′ + qy = λwy (1.2)

at −1, 1 for λ = 0, respectively. Such a problem is called indefinite and the indefinite
nature, that non-real spectral points may appear, was noticed by Haupt [11] and
Richardson [19] at the beginning of the last century and has attracted a lot of
attention in the recent years, see [1, 7, 8, 10, 14].

A priori bounds on non-real eigenvalues for indefinite Sturm–Liouville problems
were raised in [15] by Mingarelli and stressed by Kong et al. [13]. Recently, the
regular indefinite case of this problem was solved by Qi et al. in [2, 17, 18, 21]. For
the singular indefinite Sturm–Liouville problems with limit-point type endpoints

(Af)(x) := sgn(x)(−f ′′(x) + V (x)f(x)) = λf(x), x ∈ R, (1.3)

the authors in [3] provided sufficient conditions for the existence of non-real eigen-
values. The explicit bounds on the non-real eigenvalues of (1.3) were obtained in
[4]. In [5, 6], the authors not only estimated the absolute values of the non-real
eigenvalues in terms of the L1-norm of the continuous potential, but also obtained
the bounds on the imaginary parts and absolute values of these eigenvalues in terms
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2 F. Sun

of the L1-norm of the potential and its negative part. Recently in [20], the authors
solved the estimates of absolute values on the non-real eigenvalues for the singular
indefinite Sturm–Liouville eigenvalue problems with limit-circle type non-oscillation
endpoints associated with a special self-adjoint boundary condition.

In the present paper, we will focus on the singular indefinite Sturm–Liouville
eigenvalue problems with self-adjoint boundary conditions associated with principal
solution at endpoints. The lower bounds of this eigenvalue problem are obtained
under the some conditions. This paper is organized as follows: the preliminary
knowledge and the main results, theorems 2.2 and 2.3, are stated in § 2 and their
proofs are given in § 3.

2. Preliminary knowledge and main results

In this section, we give some basic knowledge for the singular differential equation
(1.2) under the standard conditions that p, q, w are real-valued functions satisfying

p > 0, |w| > 0 a.e. on (−1, 1),
1
p
,w, q ∈ L1

loc(−1, 1),
∫ 1

−1

(∣∣∣∣1p
∣∣∣∣+ |q| + |w|

)
= ∞

(2.1)
and w changes its sign on (−1, 1) in the meaning that

mes{x : w(x) > 0} > 0, mes{x : w(x) < 0} > 0.

We first introduce some concepts. For fixed λ ∈ R, a real solution u(x) of (1.2)
is called a principal solution at 1 if there exists c ∈ (−1, 1) such that u(x) �= 0,
x ∈ (c, 1),

∫ 1

c
1/(pu2) = ∞. A real solution v(x) of (1.2) is called a non-principal

solution at 1 if there exists c ∈ (−1, 1) such that v(x) �= 0, x ∈ (c, 1),
∫ 1

c
1/(pv2) <

∞. If u and v are principal and non-principal solutions at 1, respectively, then
u(x)/v(x) → 0 as x→ 1. (cf. [16] and [22, Theorem 6.2.2]). In order to give the
asymptotic behaviours of eigenfunctions at the endpoints, we assume that

Υ(t) := sup
−1<x<1

∣∣∣∣ 1
p(t)

∫ x

t

q(s)ds
∣∣∣∣ ∈ L1(−1, 1),

∫ x

c

1
p(t)

dt ∈ L2
|w|(−1, 1) (2.2)

for some (and hence for all) c ∈ (−1, 1). Throughout this paper, the functions
p, q, w always satisfy (2.1) and (2.2). Then

Lemma 2.1. [20, Lemma 2.3] Assume that (2.2) holds, u1(·) is a principal solution
of (1.2) at 1 for λ = 0. Let y be an eigenfunction of (1.1) corresponding to the
eigenvalue λ. If either

∫ 1

c
1/p(t)dt = ∞ or

∫ 1

c
1/p(t)dt <∞, q ∈ L1(−1, 1), then y

is bounded and

[y, u1](1) = 0 ⇔ (py′)(x)y(x) → 0 as x→ 1. (2.3)

The similar conclusion holds for x→ −1.
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The lower bounds of non-real eigenvalues for singular indefinite 3

The operator S associated with the right-definite problem{ −(py′)′(x) + q(x)y(x) = λ|w(x)|y(x),
[y, u−1](−1) = 0, [y, u1](1) = 0 (2.4)

is defined as Sy = 1
|w|τy for y ∈ D(S), where τy := −(py′)′(x) + q(x)y(x),

D(S) = {y ∈ L2
|w|(−1, 1) : y, py′ ∈ ACloc(−1, 1), τy/|w| ∈ L2

|w|(−1, 1), By = 0}
and By = 0 := [y, u−1](−1) = 0 = [y, u1](1). It follows from [12] and [22, Theorem
10.6.2, p.195] that the operator S is self-adjoint in the Hilbert space (L2

|w|, (·, ·)|w|)
and it has discrete spectrum consisting of an infinite number of eigenvalues {μn :
n ∈ N := {1, 2, · · · }}, which are all real, unbounded from above and bounded from
below, i.e. −∞ < μ1 < μ2 < μ3 < · · · → +∞.

LetK = (L2
|w|(−1, 1), [·, ·]w) be the Krein space with the indefinite inner product

[f, g]w =
∫ 1

−1
w(x)f(x)g(x) dx, f, g ∈ L2

|w|(−1, 1) and J = sgn w the fundamental
symmetry operator. The operator T in K is defined as

Ty =
1
w
τy, y ∈ D(T ) = D(S).

Then S = JT , [Tf, g]w = (Sf, g)|w|, f, g ∈ D(T ) and T is a self-adjoint operator
in K [3, 7, 9]. In the following, we denote the resolvent set of S by ρ(S).

Now, we state the lower bound result on T .

Theorem 2.2. Let T and S be defined as above. Suppose that 0 ∈ ρ(S) and S−1

is compact. Let μ+ := min σ(S) ∩ (0, ∞), μ− := min {|λ| : λ ∈ σ(S) ∩ (−∞, 0)} ,
where min ∅ := ∞. Then for each eigenvalue λ of T we have |λ| � min {μ+, μ−}.

Moreover, if λ corresponds to an eigenvector φ of T with [φ, φ]w = 0, then the
following, in general stronger, estimate holds |λ|2 � −μ+μ−.

In order to give another result of the lower bound on T , we assume that q−(x) =
max{0, −q(x)} and for some C, C0, C1, C2 > 0, x ∈ (−1, 1)∣∣∣∣∣ 1 − x√

p(x)

∫ x

−1

q−(t)dt

∣∣∣∣∣ � C0,

∣∣∣∣∣ x+ 1√
p(x)

∫ 1

x

q−(t)dt

∣∣∣∣∣ � C1,

W (x) =
∫ x

−1

w(t)dt,
W (x)√
p(x)

� C2, C =
√

2C2. (2.5)

It is easy to verify that if q ∈ L2(−1, 1), p(x) = 1 − x2, w(x) = x, then (2.5) holds.
Let

γt := min
{∫ t0+t

t0

|w(x)|dx : t ∈ (−1, 1), t0 ∈ (−1, 1)
}
,

Δw,1,n = ‖w‖1 + C
(√

Δ +
√

Δn

)
, Δ = 2

∫ 1

−1

q−(t)dt+ 8α2,

Δn = 2
∫ 1

−1

q−(t)dt+ 8α2 + 2|μn|‖w‖1, α =
C0 + C1

2
. (2.6)
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4 F. Sun

With this notation, we give the following result.

Theorem 2.3. Assume that λ and μn are the non-real eigenvalue of (1.1) and the
nth eigenvalue of right-definite problem (2.4), respectively. Let μh−1 < 0 < μh for
some positive integer h � 2, then the eigenvalue λ satisfies

|λ|2 �
μhμ

2
h−1γδ

16(μh − μh−1)

(
h−1∑
n=1

Δ2
w,1,n

γδn

)−1

.

3. The proofs of theorems 2.2 and 2.3

In order to prove theorems 2.2 and 2.3, we prepare some lemmas. The follow-
ing lemma is the estimates of ‖√pφ′‖2, where φ is an eigenfunction of (1.1)
corresponding to a non-real eigenvalue λ. That is Bφ = 0 and

− (pφ′)′ + qφ = λwφ. (3.1)

Since problem (1.1) is a linear system and φ is continuous, we can choose φ satisfies
max{|φ(x)| : x ∈ [−1, 1]} = 1 in the following discussion.

Lemma 3.1. Let λ and φ be defined as above. Then∫ 1

−1

w|φ|2 = 0,
∫ 1

−1

p|φ′|2 � Δ, (3.2)

where Δ is given by (2.6).

Proof. It follows from Bφ = 0 and lemma 2.1 that φ is bounded and satisfies
(pφ′φ)(x) → 0 as x→ −1 or 1. Multiplying both sides of (3.1) by φ and integrating
over the interval [a, b], then∫ 1

−1

p|φ′|2 +
∫ 1

−1

q|φ|2 = λ

∫ 1

−1

w|φ|2. (3.3)

From Imλ �= 0 and (3.3) one sees that
∫ 1

−1
w|φ|2 = 0, and hence

∫ 1

−1

p|φ′|2 +
∫ 1

−1

q|φ|2 = 0. (3.4)

Set

Q(x) =
∫ x

−1

q−(t)dt− x+ 1
2

∫ 1

−1

q−(t)dt

Then one can verify that

Q(−1) = 0 = Q(1), Q′(x) = q−(x) − 1
2

∫ 1

−1

q−(t)dt a.e. x ∈ (−1, 1) and

|Q(x)| �
∣∣∣∣1 − x

2

∫ x

−1

q−(t)dt
∣∣∣∣+
∣∣∣∣x+ 1

2

∫ 1

x

q−(t)dt
∣∣∣∣ �

√
p(x)
2

(C0 + C1) = α
√
p(x).
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The lower bounds of non-real eigenvalues for singular indefinite 5

As a result, this together with (3.4) and Cauchy–Schwarz inequality yields that∫ 1

−1

q−|φ|2 =
∫ 1

−1

(
Q′ +

1
2

∫ 1

−1

q−

)
|φ|2

�
∫ 1

−1

q− − 2Re
(∫ 1

−1

Qφ′φ
)

�
∫ 1

−1

q− +
1
2

∫ 1

−1

p|φ′|2 + 4α2. (3.5)

It follows from (3.4), (3.5) and q = q+ − q−, q± = max{0, ±q} that∫ 1

−1

p|φ′|2 = −
∫ 1

−1

q|φ|2 �
∫ 1

−1

q−|φ|2 �
∫ 1

−1

q− +
1
2

∫ 1

−1

p|φ′|2 + 4α2.

So the inequalities in (3.2) holds immediately. �

Similarly with the argument of lemma 3.1, we give the estimates of ‖√pψ′
n‖2,

where ψn is the eigenfunction that satisfies max{|ψn(x)| : x ∈ [−1, 1]} = 1 corre-
sponding to the nth eigenvalue μn of (2.4).

Lemma 3.2. Suppose that μn and ψn are defined as above. Then
∫ 1

−1
p|ψ′

n|2 � Δn,
where Δn is given by (2.6).

Proof. Let μn and ψn be defined as above, then

− (pψ′
n)′ + qψn = μn|w|ψn, Bψn = 0. (3.6)

From Bψn = 0 and lemma 2.1 that ψn is bounded and satisfies (pψ′
nψn)(x) → 0,

x→ −1 or 1. Multiplying both sides of (3.6) by ψn and integrating over the interval
(−1, 1), we have ∫ 1

−1

p|ψ′
n|2 +

∫ 1

−1

q|ψn|2 = μn

∫ 1

−1

|w||ψn|2. (3.7)

With the similar argument in (3.5), one can prove that∫ 1

−1

q−|ψn|2 �
∫ 1

−1

q− +
1
2

∫ 1

−1

p|ψ′
n|2 + 4α2.

This together with (3.7) and q = q+ − q− yields that∫ 1

−1

p|ψ′
n|2 �

∫ 1

−1

q−|ψn|2 + μn

∫ 1

−1

|w||ψn|2

�
∫ 1

−1

q− +
1
2

∫ 1

−1

p|ψ′
n|2 + 4α2 + |μn|‖w‖1.

And hence ∫ 1

−1

p|ψ′
n|2 � 2

∫ 1

−1

q− + 8α2 + 2|μn|‖w‖1.

This completes the proof of lemma 3.2. �
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For any ε > 0, let

δ = sup
{

min
{
δ̃,

1
2

}
:
∫

I

1
p

� 1
4Δ

, for any I ⊂ [−1/2, 1/2] with length δ̃
}

(3.8)

δn = sup
{

min
{
δ̃,

1
2

}
:
∫

I

1
p

� 1
4Δn

, for any I ⊂ [−1/2, 1/2] with length δ̃
}
(3.9)

From the definition of δ in (3.8), one sees that δ ∈ (0, 1/2] and
∫

I
1
p � 1

4Δ for any
interval I ⊂ [−1/2, 1/2] with length δ. The conclusion holds for δn.

Lemma 3.3. Let λ and φ be defined as above. Then there exists an interval Ĩ ⊂
(−1, 1) with δ in length, such that |φ(·)| � 1/2 on Ĩ.

Proof. For any interval I ⊂ [−1/2, 1/2] with length δ, it follows from
Cauchy–Schwarz inequality and lemma 3.1 that

(∫
I

|φ′|
)2

�
∫

I

1
p

∫ 1

−1

p|φ′|2 � 1
4
. (3.10)

Since max{|φ(x)| : x ∈ [−1, 1]} = 1, there exists x0 ∈ [−1/2, 1/2] such that
|φ(x0)| � 1. Hence, for x ∈ (−1, 1) and |x− x0| � δ,

∣∣∣|φ(x)| − 1
∣∣∣ � ∣∣∣|φ(x)| − |φ(x0)|

∣∣∣ � |φ(x) − φ(x0)| =
∣∣∣∣
∫ x

x0

φ′(t) dt
∣∣∣∣ � 1

2

by (3.10), and hence

|φ(x)| � 1
2

on Ĩ = [−δ + x0, x0] or [x0, x0 + δ].

From δ ∈ (0, 1/2] one sees that (−1, 1) contains at least one such interval Ĩ. �

Similar with lemma 3.3 we have

Lemma 3.4. Assume that μn is an eigenvalue of (2.4) and ψn is the corresponding
eigenfunction. Then there exists an interval Ĩn ⊂ (−1, 1) with δn in length, such
that |ψn(·)| � 1/2 on Ĩn.

Applying the above lemmas we now prove the main results of theorems 2.2
and 2.3.

The proof of theorem 2.2. Let μn be the nth eigenvalue of right-definite problem
(2.4) and ψn the corresponding eigenfunction. From ψn ∈ D(S) is linearly inde-
pendent, one sees that {ψn : n � 1} forms an orthonormal system. Let φ be an
eigenfunction of T associated with eigenvalue λ such that

∫ 1

−1
|w||φ|2 = 1. Since S
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is a self-adjoint operator and S−1 is compact, we can expand φ via the orthonormal

system ψn, i.e. φ =
∞∑

n=1
(φ, ψn)|w|ψn. Then from

∫ 1

−1
|w||φ|2 = 1, we have

∞∑
n=1

|(φ, ψn)|w||2 = 1,
∞∑

n=1

|(φ, ψn)|w||2μ2
n = |λ|2. (3.11)

It follows from μ+ = min σ(S) ∩ (0, ∞) and μ− = min {|λ| : λ ∈ σ(S) ∩ (−∞, 0)}
that |μn| � min {μ+, μ−} for n � 1. This together with (3.11) yields that

|λ| � min {μ+, μ−}.

If λ corresponds to an eigenvector φ of T with [φ, φ]w = 0, then it follows from
(3.11) that

∞∑
n=1

∣∣(φ, ψn)|w|
∣∣2(μn − 1

2
(μ++μ−)

)2

= |λ|2 +
1
4
(μ++μ−)2. (3.12)

From |μn| � min {μ+, μ−}, one sees that

(
μn − 1

2
(μ++μ−)

)2

− 1
4
(μ+−μ−)2 = (μn − μ+)(μn − μ−) � 0. (3.13)

From (3.11), (3.12) and (3.13), we have that

|λ|2 =
(
μn − 1

2
(μ++μ−)

)2

− 1
4
(μ++μ−)2

=
(
μn − 1

2
(μ++μ−)

)2

− 1
4
(μ+−μ−)2 − μ+μ− � −μ+μ−,

which completes the proof of theorem 2.2. �

The proof of theorem 2.3. Let μn be the nth eigenvalue of (2.4) and ψn the corre-
sponding eigenfunction such that max{|ψn(x)| : x ∈ [−1, 1]} = 1, n � 1. It follows
from lemmas 3.3, 3.4 and the definition of γt in (2.6) that

‖φ‖2
|w| =

∫ 1

−1

|w||φ|2 �
∫

I

|w||φ|2 �
∫

I

|w|
4

� γδ

4
, (3.14)

‖ψn‖2
|w| =

∫ 1

−1

|w||ψn|2 �
∫

In

|w||ψn|2 �
∫

In

|w|
4

� γδn

4
, n � 1. (3.15)

From the definition of W (x) =
∫ x

−1
w(t)dt, one sees that

[φ, ψn]w =
∫ 1

−1

wφψn =
∫ 1

−1

W ′φψn = φ(1)ψn(1)
∫ 1

−1

w −
∫ 1

−1

W (φ′ψn + φψ′
n).

https://doi.org/10.1017/prm.2023.126 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.126


8 F. Sun

This together with (2.5) and lemmas 3.1 and 3.2 that

∣∣∣[φ, ψn]w
∣∣∣ � ∫ 1

−1

|w| +
∣∣∣∣
∫ 1

−1

W (φ′ψn + φψ′
n)
∣∣∣∣

� ‖w‖1 +
∣∣∣∣
∫ 1

−1

W√
p

√
pφ′ψn +

∫ 1

−1

W√
p
φ
√
pψ′

n

∣∣∣∣
� ‖w‖1 + C2

(∫ 1

−1

|√pφ′ψn| +
∫ 1

−1

|φ√pψ′
n|
)

� ‖w‖1 + C
(√

Δ +
√

Δn

)
= Δw,1,n.

Furthermore, for n � 1 we get

λ[φ, ψn]w = [Tφ, ψn]w = (Sφ, ψn)|w| = (φ, Sψn)|w| = μn(φ, ψn)|w|. (3.16)

If we set

Λn = (φ, ψn)|w| =
(φ, ψn)|w|

‖φ‖|w|‖ψn‖|w|
,

then (3.14)–(3.16) give that

|Λn| �
4|λ|

∣∣∣[φ, ψn]w
∣∣∣

|μn|√γδγδn

� 4|λ|Δw,1,n

|μn|√γδγδn

. (3.17)

From
∞∑

n=1
|(φ, ψn)|w||2μn = λ[φ, φ]w and [φ, φ]w =

∫ 1

−1
w|φ|2 = 0 in lemma 3.1, we

have

0 = λ[φ, φ]w =
∞∑

n=1

∣∣(φ, ψn)|w|
∣∣2 μn =

∞∑
n=1

|Λn|2μn =
h−1∑
n=1

|Λn|2μn +
∞∑

n=h

|Λn|2μn,

and hence −
h−1∑
n=1

|Λn|2μn =
∞∑

n=h

|Λn|2μn. Thus, by (3.11) and μh−1 < 0 < μh, h � 2,

h−1∑
n=1

|Λn|2(μh − μn) =
h−1∑
n=1

|Λn|2μh +
∞∑

n=h

|Λn|2μn

=
h∑

n=1

|Λn|2μh +
∞∑

n=h+1

|Λn|2μn �
h∑

n=1

|Λn|2μh +
∞∑

n=h+1

|Λn|2μh

=
∞∑

n=1

|Λn|2μh = μh. (3.18)

By μh > 0, μn � μh−1 < 0, 1 � n � h− 1, we have

1
μ2

n

� 1
μ2

h−1

,
μh

μ2
n

� μh

μ2
h−1

,
−1
μn

� −1
μh−1

=
−μh−1

μ2
h−1

.
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The lower bounds of non-real eigenvalues for singular indefinite 9

This together with the assumption that μ1 � · · · � μh−1 < 0 < μh, h � 2 yields
that

μh − μn

μ2
n

=
μh

μ2
n

− 1
μn

� μh

μ2
h−1

− μh−1

μ2
h−1

=
μh − μh−1

μ2
h−1

, 1 � n � h− 1. (3.19)

Hence, by (3.17)–(3.19) we have

μh =
h−1∑
n=1

|Λn|2(μh−μn) �
h−1∑
n=1

16|λ|2Δ2
w,1,n(μh−μn)

|μn|2γδγδn

=
16|λ|2
γδ

h−1∑
n=1

μh − μn

|μn|2γδn

Δ2
w,1,n

� 16|λ|2
γδ

h−1∑
n=1

μh − μh−1

μ2
h−1γδn

Δ2
w,1,n =

16|λ|2(μh − μh−1)
μ2

h−1γδ

h−1∑
n=1

Δ2
w,1,n

γδn

.

Therefore,

|λ|2 �
μhμ

2
h−1γδ

16(μh − μh−1)

(
h−1∑
n=1

Δ2
w,1,n

γδn

)−1

.

This completes the proof of theorem 2.3. �
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