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Perspectives

And it seemed as though in a little while the solution would be found, and then

a new and splendid life would begin; and it was clear to both of them that they

had still a long, long road before them, and that the most complicated and

difficult part was only just beginning.

– A. Chekhov, The lady with the dog

Conformal notions provide valuable tools for the analysis of global properties of

spacetimes. In Part IV of this book it has been shown how a conformal point of

view leads to proofs of the global existence and non-linear stability of de Sitter-

like spacetimes, of the semiglobal existence and non-linear stability of Minkowski-

like spacetimes, and how they provide a systematic procedure for the construction

of anti-de Sitter-like spacetimes. Moreover, conformal methods provide a robust

framework for the analysis of the gravitational field of isolated systems in a

neighbourhood of both null and spatial infinity.

The application of conformal methods in general relativity is a mature area of

research with a considerable number of open problems. Several of these have been

discussed in various places of this book. Unavoidably, there are other problems

and aspects of the subject which, for reasons of space, could not be covered in

the main text. This last chapter presents a list of ideas and problems which,

in the opinion of the author, may play a role in the future development of the

subject.

21.1 Stability of cosmological models

The global non-linear stability of the de Sitter spacetime was discussed in

Chapter 15. This exact solution can be regarded as a basic cosmological model.

The analysis of Chapter 15 can be extended to include a non-vacuum matter

content with good conformal properties: for example, the Maxwell, Yang-Mills

and conformally coupled scalar field; see Friedrich (1991) and Lübbe and Valiente
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Kroon (2012). More recently, the ideas behind these proofs have been adapted

in Lübbe and Valiente Kroon (2013b) to provide an analysis of the future

stability of Friedman-Robertson-Walker cosmological models with a perfect fluid

with the equation of state of radiation; see Section 9.4. A natural question is

whether conformal methods could be adapted to more general matter models,

that is, matter models with a non-vanishing trace. That this may be possible is

suggested by the analysis in Friedrich (2015b) where it is shown that massive

scalar fields for which the mass parameter is related to the cosmological constant

by the condition 3m2 = −2λ give rise to a set of regular conformal evolution

equations for the Einstein-massive scalar field system. A further indication

that conformal methods may be applicable to more general matter models is

provided by the observation that for a large class of equations of state, perfect

fluid Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmological models can be

smoothly conformally compactified – see, for example, Griffiths and Podolský

(2009), section 6.4 – this despite the fact that the “natural” conformal evolution

equations for these models are not conformally regular.

An important motivation behind the analysis of the future non-linear stability

of cosmological models is the so-called cosmic no-hair conjecture – the

expectation that for a large class of models the late-time evolution approximates,

in some sense, a de Sitter state; see, for example, Wald (1983). As the analysis

of Lübbe and Valiente Kroon (2013b) exemplifies, conformal methods provide a

convenient setting for this discussion – at least for some suitable matter models.

Conformal methods provide a natural tool for the analysis of so-called

isotropic cosmological singularities. These are singularities of the physical

spacetime that can be removed by means of a conformal rescaling of the metric.

The singularity of the rescaled metric is assumed to occur on a spacelike surface.

Accordingly, the conformal structure can be extended through the singularity

and one can study the Cauchy problem for the cosmological model with data at

the location of the singularity; see, for example, Tod (2002) for an introduction

into the subject and Anguige and Tod (1999a,b) and Tod (2003) for further

details. The Big Bang singularity in FLRW models provides the prototypical

example of this type of singularity: as these spacetimes are conformally flat, any

curvature singularity must be restricted to the (physical) Ricci tensor. In view

of the highly symmetric nature of FLRW spacetimes, the Ricci tensor has only

one essential component; combining this observation with the fact that under

conformal rescalings the Ricci tensor satisfies a transformation law which is non-

homogeneous, one can then see that in FLRW spacetimes the conformal factor

can be chosen so as to absorb the singular behaviour of the curvature.

In the analysis of isotropic singularities, the role of the conformal factor is

different from the one in the study of asymptotics: the conformal factor diverges

at the singularity rather than going to zero – thus, it “blows up” the shrinking

physical metric to make it finite. This type of behaviour is not expected to be

a general feature of cosmological solutions to the Einstein field equations. This
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observation is related to Penrose’s Weyl curvature hypothesis: the idea that

the early geometry of the universe should be such that the Weyl tensor vanishes,

singling out a state of low gravitational entropy ; see Penrose (1979).

In the discussion of isotropic cosmological singularities one pursues conformal

rescalings of the form g̃ = �2g where g̃ denotes the physical metric, while the

unphysical metric g extends the conformal structure through the singularity

characterised by the condition � → 0. Under these conventions the Einstein

field equations, written in a suitable gauge, lead to conformal evolution equations

having a well-understood singular behaviour at the Big Bang. These evolution

equations are an example of so-called Fuchsian differential equations – a

class of equations with a well-defined theory. Using this theory, a number of

statements concerning isotropic singularities can be obtained; see again Tod

(2002) and references within for further details. More recently, it has been shown

that a duality property of the conformally coupled scalar field equation allows

one to analyse isotropic singularities in a framework involving the conformal

Einstein field equations; see Lübbe (2014). It is of interest to see whether these

ideas can be pursued further and extended to more general contexts.

21.2 Stability of black hole spacetimes

One of the outstanding open problems in mathematical general relativity is the

question of the non-linear stability of the Kerr spacetime ; see, for example,

Dafermos and Rodnianski (2010) for an entry point into the literature of the

subject. The expectation associated with this question is that perturbations of

a Kerr metric should dynamically approach a member of the Kerr family of

solutions in the exterior of the black hole region. This problem involves both

an orbital and an asymptotic stability analysis; see the discussion in Section

14.4. The non-linear stability of the Kerr spacetime poses both technical and

conceptual challenges. On the technical side, it requires the development of

robust partial differential equation (PDE) techniques to control the behaviour

of the Einstein field equations in the strong gravitational field regime of a black

hole. Current efforts in this direction have involved a detailed analysis of linear

wave equations whose solutions propagate on the domain of outer communication

of a Kerr background. This analysis makes systematic use of so-called vector

field methods. The expectation is that these wave equations provide a suitable

model for the Einstein equations written, say, in harmonic coordinates; see

again Dafermos and Rodnianski (2010) for an account of this approach. On the

conceptual side, the problem needs a detailed specification, compatible with the

needs of PDE theory, of what is meant by the statement that a given spacetime is

close to the Kerr spacetime; some ideas on how to address this issue are discussed

in Bäckdahl and Valiente Kroon (2010a,b).

Given that conformal methods, as discussed in this book, provide a tool for the

analysis of the non-linear stability of asymptotically simple spacetimes – compare
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Chapters 15 and 16 – it is natural to wonder whether they could also provide

an avenue for the analysis of the non-linear stability of black hole spacetimes.

The stability proofs discussed in this book start from the premise that a detailed

understanding of the conformal geometry of a background solution is key to the

analysis. Once this has been achieved, the existence and stability results follow

by means of general results of the theory of PDEs – namely, the Cauchy stability

guaranteed by Theorem 12.2. From the perspective of conformal geometry, the

essential difference between the basic asymptotically simple spacetimes and the

exact solutions describing black hole spacetimes is that while the former are

conformally regular, the latter have a conformal structure with singular regions.

This observation rules out the possibility of directly using arguments based

solely on the notion of Cauchy stability to prove global existence and stability of

black hole spacetimes. In order to go any further, it seems necessary to analyse

the structure of the singularities in the conformal structure of the background

solutions so as to obtain, if possible, conformal representations of the black hole

spacetimes for which the conformal Einstein field equations acquire a form which

is amenable to a PDE analysis. An example of the regularisation of singularities

in the conformal structure is provided by the analysis of the problem of spatial

infinity in Section 20.3 where a detailed knowledge of the singular behaviour of

the various conformal fields led to the construction of a regular Cauchy problem

for the conformal field equations. It is possible that some singular regions in the

conformal structure of black hole spacetimes – such as neighbourhoods of i± in

the extreme Reissner-Nordström and extreme Kerr spacetimes – are amenable

to an analogous discussion; see, for example, Lübbe and Valiente Kroon (2014).

A systematic approach to the analysis of the conformal structure of black

holes is through the study of suitable congruences of conformal geodesics. In

Friedrich (2003a) it is shown that it is possible to construct a non-intersecting

congruence of conformal geodesics that covers the whole of the Kruskal extension

of the Schwarzschild spacetime. This congruence is prescribed by initial data on

the time symmetric hypersurface of the spacetime, and it provides a preferred

conformal representation of the spacetime as well as a global conformal Gaussian

gauge system from which, say, a global numerical evaluation of the spacetime

can be undertaken; see the discussion in the next section. In addition, this type

of construction sheds some light on the singular behaviour of the conformal

structure at the timelike infinity; see Friedrich (2002), section 1.4.4. A similar

analysis has been carried out in the Reissner-Nordström spacetime (including

the extremal case) using so-called conformal curves in Lübbe and Valiente

Kroon (2013a) and the Schwarzschild-de Sitter and Schwarzschild-anti de Sitter

spacetime with conformal geodesics in Garćıa-Parrado et al. (2014). It would be

of great interest extend this type of analysis to stationary black holes, that is,

the Kerr spacetime.

The expectation driving the constructions described in the previous paragraph

is that they will lead to a suitable conformal representation of the background
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black hole spacetimes which, in turn, lends itself to the formulation of an

initial value problem allowing the analysis of the non-linear stability of black

hole spacetimes. Nevertheless, the presence of singular points of the conformal

structure of the background solution will require considerations of asymptotic

stability – rather than just orbital stability as in the case of the proofs of stability

of the de Sitter and Minkowski spacetimes given in Chapters 15 and 16. The

development of methods that allow this type of analysis for the conformal field

equations is an interesting and challenging problem.

Finally, it should be mentioned that the notion of conformal compactification

of spacetimes, as introduced in Chapter 7, has been used as the starting point of

a programme to construct a theory of peeling and scattering of fields (including

gravity) on black hole spacetimes; see Nicolas (2015) and references within. It

would be of great interest to combine this approach to the asymptotic analysis of

spacetimes with the methods for the conformal Einstein field equations developed

in this book.

21.3 Conformal methods and numerics

Numerical relativity, the study of the Einstein field equations by means of

numerical methods, has undergone a great development in recent years. Extended

numerical simulations of coalescing black holes have become almost routine; see,

for example, Alcubierre (2008), Pretorious (2009) and Baumgarte and Shapiro

(2010). To a great extent, these numerical simulations have been concerned with

astrophysical aspects of black holes – most notably the extraction of gravitational

wave forms; see, for example, Lehner and Pretorious (2014). In addition to this

important application aimed at the detection of gravitational waves, numerical

relativity offers a powerful tool in mathematical investigations of the equations

of general relativity. Some promising areas for this type of interaction have been

described in, for example, Jaramillo et al. (2008); for an alternative perspective,

see Andersson (2006).

The conformal field equations suggest the possibility of performing global

numerical evaluations of spacetimes, that is, evaluations which are not limited

in their spatial and temporal dimensions by the finiteness of the computational

grids. In addition, one would expect such evaluations to be free, to some extent, of

the problems posed by the presence of unphysical boundary conditions required

to obtain a discretisation in a finite grid without periodic boundary conditions.

There have been a number of efforts geared towards the construction of global

numerical evaluations of spacetimes using the conformal Einstein field equations.

An early implementation of these ideas for the spherically symmetric Einstein-

conformally invariant scalar field system can be found in Hübner (1995). A

programme to construct a computer code for numerical simulations using the

metric vacuum conformal field equations has been reported in Hübner (1999a,b,

2001b) and culminated in Hübner (2001a) where a numerical demonstration of

the semi-global existence result for hyperboloidal data discussed in Chapter 16
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Figure 21.1 Focusing of the generators of null infinity in a numerical evaluation
of hyperboloidal initial data close to Minkowski initial data. From Figure
2 in P. Hübner (2001), From now to timelike infinity in a finite grid,
Class. Quantum Grav. 18, 1871–1884. © IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved.

has been provided. Remarkably, the numerical simulations obtained by means

of this code show how the generators of null infinity intersect, up to numerical

precision at a single point, future timelike infinity i+; see Figure 21.1. An alterna-

tive approach based on the frame version of the standard vacuum conformal field

equations has been described in Frauendiener (1998a,b, 2002) and implemented

in Frauendiener and Hein (2002); see also the review by Frauendiener (2004).

A critical discussion of the numerical implementation of the standard conformal

Einstein field equation can be found in Husa (2002).

Conformal Gaussian gauge systems provide an alternative approach to the

numerical implementation of the conformal Einstein field equations. As shown

in Chapter 13, the evolution equations implied by the extended conformal

Einstein equations in this type of gauge splits into a subsystem of transport

equations for the components of the frame, connection and Schouten tensor

and a symmetric hyperbolic system for the components of the rescaled Weyl

tensor. This remarkable structure, highlighting the special role of the Weyl

tensor as describing the free gravitational field, may facilitate the numerical

implementation of the system. An added advantage of this formulation of the

conformal field equations is, in the vacuum case, the a priori knowledge of the

conformal factor linking the unphysical spacetime with the physical spacetime

for which the Einstein equations hold.

A programme to analyse the global dynamics of cosmological spacetimes

by numerical methods using the extended conformal field equations has been

pursued in Beyer (2007, 2008, 2009a,b). This work has provided valuable insights

https://doi.org/10.1017/9781009291347.026 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.026


566 Perspectives

into the cosmic no-hair conjecture – see Section 21.1 – and the role of the so-

called Nariai solution. Cosmological spacetimes provide a convenient testbed for

the numerical implementation of the conformal field equations as they allow the

use of compact spatial domains – say, the 3-sphere S3, the 3-torus S × S × S or

the 3-handle S2 × S – so that no boundary conditions in the spatial domain are

required. In addition, compact spatial sections are naturally amenable to the use

of spectral methods; see, for example, Beyer (2009c).

A further application of the extended conformal Einstein field equations

is the global numerical evaluation of spherically symmetric static black hole

spacetimes. This idea was first investigated in Zenginoglu (2006, 2007) for the

Schwarzschild spacetime and later extended to the electrovacuum case (i.e. the

Reissner-Nordström spacetime) in Valiente Kroon (2012). The assumption of

spherical symmetry implies a great simplification in the equations so as to render

a reduced evolution system consisting of transport equations solely. Notice,

however, that the conformal gauge in terms of which the evolution equations

are expressed is not adapted to the orbits of the static Killing vectors, and, thus,

one has non-trivial gauge dynamics. An important property of these spherically

symmetric reduced equations is that their essential dynamics is governed by a

core system consisting of three equations in the vacuum case (for a component

of the connection, a component of the Schouten tensor and the non-vanishing

component of the rescaled Weyl tensor) and four equations in the electrovacuum

case (connection, Schouten tensor, rescaled Weyl tensor and the single non-

vanishing component of the Faraday tensor). These equations can be easily

implemented and numerically solved with present-day desktop computers and

allow the global computation of a privileged conformal representation of the

black hole spacetime from an initial hypersurface to either the singularity or null

infinity and beyond; see Figure 21.2. These small-scale numerical simulations

could be used, in the future, as the first step in the global numerical evaluation

of dynamic, non-spherically symmetric spacetimes.

More recently, there have been efforts aimed at the numerical implementation

of the construction of the cylinder at spatial infinity described in Section

20.3.2. The ultimate goal of this programme is the numerical computation of

hyperboloidal data from Cauchy data and to obtain insight into the numerical

consequences of the obstructions to the smoothness of null infinity discussed

in the later sections of Chapter 20. At the time of writing, the analysis has

been restricted to the analysis of the spin-2 field equation on a Minkowski

background – in the spirit of Section 20.3.4 – with the expectation that this

situation contains the essential difficulties in the implementation; see Beyer et al.

(2012) and Frauendiener and Hennig (2014).

Foliations of spacetimes by means of hyperboloidal hypersurfaces have been

used in numerical simulations aimed at analysing radiative processes in gravi-

tational collapse and perturbations of black hole spacetimes; see, for example,

Zenginoglu (2008, 2011a,b), Rinne (2010, 2014), Zenginoglu and Kidder (2010)
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Figure 21.2 The Schwarzschild spacetime in a conformal Gaussian gauge
system; see the discussion in the main text and compare also Section 20.3.3.
From Figure 3.3, page 57, of A. Zenginoglu, A conformal approach to numerical
computations of asymptotically simple spacetimes, PhD thesis, University of
Postdam (2006). Reproduced courtesy of the author.

and Rinne and Moncrief (2013). These numerical investigations make use of

formulations of the Einstein field equations alternative to the ones discussed

in this book. Finally, hyperboloidal foliations have also been used in the

implementation of fully spectral (i.e. in time and space) evolution schemes for

various fields; see Hennig and Ansorg (2009) and Macedo and Ansorg (2014).

21.4 Computer algebra

The analysis of hyperbolic reductions in Chapter 13 shows that despite their

elegance and appealing geometric nature, the study of the consequences of

the conformal field equations requires a considerable amount of algebraic

manipulations. Modern computer algebra systems provide a natural way of

performing these manipulations in an effective and efficient way. At the time

of writing, the suite of packages xAct for Mathematica provides a robust

and versatile framework for the type of tensorial and spinorial manipulations

discussed in this book; see Mart́ın-Garćıa (2014). The packages in the suite xAct

allow one to perform tensorial and spinorial abstract index computations on

generic tensors as well as explicit component computations for a given metric.

At the core of xAct is a canonicalisation routine which allows one to simplify

large tensorial and spinorial expressions by identifying “dummy” indices and

exploiting the symmetries of the various objects involved. In addition, xAct

allows one to carry out cumbersome operations such as the decomposition of

spinors into irreducible parts. An additional appeal of this system is that it
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provides its output in standard index notation. The system also provides facilities

to produce Latex output of the calculations

The capabilities of modern computers have reached the point that, for exam-

ple, using xAct, it is possible to perform certain types of analyses which would

have been impractically long otherwise. As an example, the study of asymptotic

expansions using the framework of the cylinder at spatial infinity described

in Chapter 20 and reported in Valiente Kroon (2004a,b,c, 2005) depended, in

a crucial manner, on computer algebra calculations. These calculations were

carried out with purpose-built routines in the computer algebra system Maple V.

21.5 Concluding remarks

This book has discussed a particular approach to the use of conformal methods in

mathematical general relativity. Clearly, the approach presented is not the only

one possible nor are the potential applications restricted to the ones discussed

in these pages. It constitutes a body of work extending over a period of more

than 30 years starting with the work of H. Friedrich in the early 1980s – or

50 years if one considers the seminal work by R. Penrose in the 1960s. This

extended period of time is proof of the vitality of the subject. Nevertheless,

a more exacting assessment of its vitality and relevance should come from its

influence in the whole of mathematical general relativity and its ability to foster

new ideas and research problems. Time will be the ultimate judge on this matter.

This book is an attempt to bring to the fore the relevance of conformal methods

in modern research in general relativity and to make the subject as accessible

as possible to those interested in using these ideas in their own research. The

reader is left to decide whether this goal has been achieved.
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