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We present direct numerical simulation (DNS) and modelling of incompressible, turbulent,
generalized Couette–Poiseuille flow. A particular example is specified by spherical
coordinates (Re, θ, φ), where Re = 6000 is a global Reynolds number, φ denotes the angle
between the moving plate, velocity-difference vector and the volume-flow vector and tan θ
specifies the ratio of the mean volume-flow speed to the plate speed. The limits φ → 0◦
and φ → 90◦ give alignment and orthogonality, respectively, while θ → 0◦, θ → 90◦
correspond respectively to pure Couette flow in the x direction and pure Poiseuille flow
at angle φ to the x axis. Competition between the Couette-flow shear and the forced
volume flow produces a mean-velocity profile with directional twist between the confining
walls. Resultant mean-speed profiles relative to each wall generally show a log-like region.
An empirical flow model is constructed based on component log and log-wake velocity
profiles relative to the two walls. This gives predictions of four independent components of
shear stress and also mean-velocity profiles as functions of (Re, θ, φ). The model captures
DNS results including the mean-flow twist. Premultiplied energy spectra are obtained for
symmetric flows with φ = 90◦. With increasing θ , the energy peak gradually moves in the
direction of increasing kx and decreasing kz. Rotation of the energy spectrum produced
by the faster moving velocity near the wall is also observed. Rapid weakening of a spike
maxima in the Couette-type flow regime indicates attenuation of large-scale roll structures,
which is also shown in the Q-criterion visualization of a three-dimensional time-averaged
flow.

Key words: turbulence simulation, turbulence modelling

1. Introduction

Turbulent flow between two parallel, plane walls of separation 2h and driven by either
an applied pressure gradient or moving boundaries, provides several canonical flow
configurations of interest in the study of wall-bounded turbulence. In pressure-gradient
driven, turbulent plane Poiseuille (PP) flow, coherent structures tend to show similar
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features to those observed in other natural wall-bounded flows (Lee & Moser 2015), such
as boundary layers (Jodai & Elsinga 2016) and pipe flows (Lee, Sung & Adrian 2019). In
contrast, plane-Couette (PC) flow turbulence (Lee & Moser 2018) generated by differential
top/bottom-wall motion displays the formation of coherent streamwise rolls with spanwise
spacing of order several h, with strong effects on mixing enhancement. The rolls persist to
large Reynolds numbers (Cheng, Pullin & Samtaney 2022).

Kim, Moin & Moser (1987) performed direct numerical simulation (DNS) of PP
flow, followed by further similar studies (del Álamo & Jiménez 2003; del Álamo et al.
2004; Hoyas & Jiménez 2006; Lozano-Durán & Jiménez 2014). An important feature
of PP flow is the existence of a log region in the wall-normal mean-velocity profile
at sufficiently large Reynolds number, first predicted by von Kármán (1930) and later
refined by Millikan (1938), and subsequently confirmed by both DNS and experiment,
for example, Moser, Kim & Mansour (1999) at wall-friction Reynolds number Reτ ≈ 590,
Bernardini, Pirozzoli & Orlandi (2014) with Reτ ≈ 4000 and Lee & Moser (2015) up to
Reτ = 5200. Mean-velocity scaling for PC flow shows features in common with PP flow
(Pirozzoli, Bernardini & Orlandi 2014), but perhaps with differences inferred from a mean
momentum analysis (Wei, Fife & Klewicki 2007).

Large-scale structures found in PC flow include streamwise streaks and rollers, roll
behaviour slightly above the turbulent transition state (Tillmark & Alfredsson 1998),
low-Reynolds-number effects (Kitoh, Nakabyashi & Nishimura 2005) and roll extension in
the streamwise direction (Lee & Moser 2018). Comparison of PP and PC flow features have
focused on streamwise turbulent intensities (Ostilla-Mónico et al. 2016), energy spectra
(Lee & Moser 2018) and the wall skin-friction coefficient, turbulent kinetic energy budget
and Reynolds stress components (Orlandi, Bernardini & Pirozzoli 2015).

A combination of shear produced by relative wall movement and an externally applied
pressure gradient generates so-called plane Couette–Poiseuille (PCP) flow. Competition
between the two mechanisms produces new flow characteristics. An early experimental
study by Telbany & Reynolds (1980) gave an empirical description of the viscous, log,
gradient layers and core regions. Improvements in our understanding of PCP flow physics
was provided by Thurlow & Klewicki (2000), who observed a locally negative production
of streamwise turbulence near the moving wall, and Nakabayashi, Kitoh & Katoh (2004),
who explored similarity laws in the mean-velocity profiles. Plane Couette–Poiseuille flow
with zero mean shear stress at one wall was investigated by Coleman et al. (2017),
Yang, Zhao & Andersson (2017) and Choi, Lee & Hwang (2021), with emphasis on
an extended log region for the mean-velocity profile. Pirozzoli, Bernardini & Orlandi
(2011) analysed the transition process from pure Couette to pure Poiseuille flow using
conditional eddy methodology while Gandía-Barberá et al. (2018) investigated the relation
between Reynolds stresses and roll disappearance. Direct numerical simulation and both
wall-resolved and wall-modelled large-eddy simulations (LES) of PCP flow was discussed
by Cheng et al. (2023) who also developed an empirical mean-flow model from which
the critical flow parameters signalling the transition from PC-dominated to PP-dominated
flow, where the mean shear stress on one wall vanishes, could be predicted as a function
of an overall Reynolds number.

In general, the flow between two plane, parallel walls forced by combined uniform wall
relative motion and a constant wall-parallel applied pressure gradient can be characterized
in a space of three parameters consisting of two independent Reynolds numbers and an
angle between the moving plates velocity-difference vector and the mean volume-flow
vector. We call this generalized Couette–Poiseuille (GCP) flow. Plane Couette–Poiseuille
flow is then the special case with two-vector alignment. Generalized Couette–Poiseuille
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flow is worthy of study first because it provides an interesting and unusual example
of a canonical wall-bounded turbulent flow that exhibits four independent skin-friction
components together with a wall-parallel mean-velocity profile that will exhibit directional
twist or rotation as a function of the normal distance from either wall. This flow
then has parallels with some aspects of three-dimensional boundary layers. Further, its
fluid-dynamical richness and relative simplicity for numerical simulation presents a useful
and challenging test flow for both the Reynolds-averaged Navier–Stokes equations and
also for wall-modelled LES owing to the need for two-component mean velocity and
skin-friction analysis in the near-wall region. It is therefore of interest to explore the
characteristics of GCP flow that include variation in both wall skin-friction vectors, the
behaviour of the mean-velocity profile including the possible existence of a log-like region
and the existence of large-scale flow structures in the presence of competition between the
non-aligned Couette-flow shear and the externally applied pressure gradient. This is the
subject of the present study.

In § 2 we define the independent flow parameters for GCP flow and describe briefly
the present DNS numerical method. The misalignment between the mean volume-flow
vector and the mean pressure-gradient vector is clarified. To help appreciate the
three-dimensional mean-flow character, we first focus in § 3 on the special and interesting
limit of orthogonality between the wall-relative-velocity and volume-flow vectors, referred
to as orthogonal Couette–Poiseuille (OCP) flow. This shows some basic features of the wall
skin-friction vectors and mean-flow properties. In § 4 we provide an empirical modelling
framework for GCP flow based on use of log-wake profiles for component, mean-flow
velocity components relative to both top and bottom walls. Comparison of mean-flow
diagnostics between DNS and modelling is developed in § 5. The three-dimensional
behaviour of mean-velocity profiles with emphasis on the mean-flow, twist angle
distributions is also studied. In § 6 the three-dimensional geometry of the premultiplied
energy spectra are studied in order to show the kinetic energy distribution at different
length scales in the transition from Couette flow to Poiseuille flow, but only for the
special case of OCP flow. Visualization of selected time-averaged three-dimensional flow
structures is also discussed. Concluding remarks are given in § 7.

2. Flow description, numerical method and simulations performed

2.1. Description of GCP flow
A sketch of GCP flow is shown in figure 1 in a right-handed Cartesian coordinate frame
(x, y, z) with corresponding velocity components (u, v,w). Here, x is the wall-moving
direction and y is the wall-normal direction. The distance between the top wall and
the bottom wall is Ly = 2h while Lx and Lz are domain sizes in the (x, z) directions,
respectively. The top and bottom walls move in the x direction with velocity components
(−Uc, 0, 0) and (Uc, 0, 0), respectively. Misalignment between the pressure-gradient
vector and the wall-velocity-difference vector results in volume flows in both the (x, z)
directions with characteristic velocities

UVx = 1
2h

∫ h

−h
U( y) dy, UVz = 1

2h

∫ h

−h
W( y) dy, (2.1a,b)

with U( y) and W( y) volume-time-averaged mean-velocity profiles corresponding to
velocity components u and w. Other useful velocities are the resultant bulk velocity
UV = (UVx

2 + UVz
2)1/2 and the general velocity scale U0 = (U2

c + UVx
2 + UVz

2)1/2.
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Figure 1. Sketch of generalized Couette–Poiseuille (GCP) flow. The separation distance between the top
wall and the bottom wall is Ly = 2h, while the domain sizes in x and z are Lx and Lz, respectively. The
wall-moving velocities of the top and bottom walls are −Uc and Uc, as denoted by blue arrows. The angle
φ = arctan(ReVz/ReVx) is the ratio of the volume flow in the x and z directions. The angle θ = arctan[(Re2

Vx +
Re2

Vz)
1/2/Rec]. Left and right blue lines show the projection of sketched velocity profiles in the z–y plane and

the x–y plane.

The three velocities (Uc ≥ 0, UVx ≥ 0, UVz ≥ 0) have associated Reynolds numbers

Rec = Uch
ν
, ReVx = UVxh

ν
, ReVz = UVzh

ν
, (2.2a–c)

with ν the kinematic viscosity of the fluid.
The parameter set (Rec ≥ 0, ReVx ≥ 0, ReVz ≥ 0) forms the all-positive octant of a

Cartesian space. It will be convenient to work with spherical coordinates (Re, θ, φ) where

Rec = Re cos θ, ReVx = Re sin θ cosφ, ReVz = Re sin θ sinφ, (2.3a–c)

with inversion

Re = U0h
ν
, ReV = UVh

ν
, (2.4a)

θ = arctan
(

ReV

Rec

)
, θ ∈ [0◦, 90◦], (2.4b)

φ = arctan
(

ReVz

ReVx

)
, φ ∈ [0◦, 90◦]. (2.4c)

Here ReV is a Reynolds number corresponding to the resultant bulk velocity UV and
Re is taken as the defining global Reynolds number based on the general velocity scale
U0, tan θ = UV/Uc can be interpreted as the relative weighting of Poiseuille-type to
Couette-type flow and φ denotes the angle made by the bulk velocity vector (UVx, 0,UVz)
with the plate velocity-difference vector (2Uc, 0, 0).

For θ = 0◦, ReVx = ReVz = ReV = 0 and the flow reduces to PC flow in the x direction.
When θ = 90◦, Rec = 0 and the flow becomes PP flow with net volume flow aligned
with φ. When φ = 0◦, both the plate velocity-difference vector and the volume-flow
vector are aligned in the x direction, as discussed by Cheng et al. (2023). This is
PCP flow. When φ = 90◦, the volume-flow vector is perpendicular to the moving plates
velocity-difference vector. This orthogonality results in a centrosymmetric ensemble-mean

997 A76-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.799


DNS of turbulent, generalized Couette–Poiseuille flow

flow with the centre of symmetry at the origin of (x, y, z) space, a property that exists only
for φ = 90◦.

Sketches of typical mean-velocity profiles in both the y–z plane and the x–y plane are
shown in figure 1. The flow along the z direction behaves somewhat like a Poiseuille
flow while the flow in x resembles a φ = 0◦ flow described in previous studies of PCP
flow. For the strictly laminar case, the flow degenerates to a linear combination of laminar
Couette–Poiseuille flow in x and Poiseuille flow in z. The exact solution and several typical
profiles are described in Appendix A to illustrate the genuine three-dimensional feature of
GCP flow.

Direct numerical simulations with specified (Re, θ, φ) are expected to result
in a statistically stationary turbulent flow with mean-velocity-profile vector Q =
(U( y), 0,W( y)). For θ at or near zero, streamwise rolls exist and mean-velocity profiles
can be defined that also depend on z, but this description is not considered presently. On the
top and bottom walls, the shear stresses will each have vector form in the (x, z) plane that
can be expressed in skin-friction coefficient form Cft = (Cft,x,Cft,z), Cfb = (Cfb,x,Cfb,z)
with components

Cft,x = 2ν
U2

0
ηt,x, Cfb,x = 2ν

U2
0
ηb,x, Cft,z = 2ν

U2
0
ηt,z, Cfb,z = 2ν

U2
0
ηb,z, (2.5a–d)

where

ηt,x = ∂U
∂y

∣∣∣∣
t
, ηb,x = ∂U

∂y

∣∣∣∣
b
, ηt,z = ∂W

∂y

∣∣∣∣
t
, ηb,z = ∂W

∂y

∣∣∣∣
b
, (2.6a–d)

and subscripts t and b refer to the top and bottom walls, respectively. These can also be
expressed in polar form with magnitude and angle

Cft =
√

C2
ft,x + C2

ft,z, ψt = arctan
(

Cft,z

Cft,x

)
, ψt ∈ [0◦, 180◦], (2.7a,b)

where ψt measures the angle between Cft and the positive x direction. Similarly, on the
bottom wall,

Cfb =
√

C2
fb,x + C2

fb,z, ψb = arctan
(

Cfb,z

Cfb,x

)
, ψb ∈ [0◦, 180◦]. (2.8a,b)

It is expected that when φ = 0◦, Cft and Cfb reduce to Cft,x and Cfb,x, respectively. Cheng
et al. (2023) define Cfb,x > 0 for Couette-type flow and Cfb,x < 0 for Poiseuille-type flow.
Here there exists a special case with zero velocity gradient on the bottom wall (Coleman
et al. 2017) so that Cfb = Cfb,x = 0 at a critical angle θ = θt(Re). It will be seen that
flows with Cbt,x = 0 can be realized for non-zero φ but a resultant Cfb = 0 exists only for
φ = 0◦, which is parallel Couette–Poiseuille flow. All present GCP flows have Cft > 0.

We describe the mean-flow velocity Q( y) by its magnitude Q( y) and angle ψq( y) with
respect to the x axis as

Q = (U2 + W2)1/2, ψq = arctan
(

W
U

)
, ψq ∈ [0◦, 180◦]. (2.9a,b)

The resultant velocity vectors in the top- and bottom-wall reference frames can
be defined as Qt( y) = Q( y)+ (Uc, 0, 0) and Qb( y) = Q( y)− (Uc, 0, 0), respectively.
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The corresponding magnitudes and angles are given by

Qt( y) =
√
(U( y)+ Uc)2 + W2( y), ψq,t( y) = arctan

W( y)
U( y)+ Uc

,

Qb( y) =
√
(U( y)− Uc)2 + W2( y), ψq,b( y) = arctan

W( y)
U( y)− Uc

.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

We note, for consistency, that in the respective wall-stationary reference frames
ψq,t(−h) = ψt and ψq,b(h) = ψb.

The present DNS is implemented in terms of specified (Re, θ, φ) corresponding to
a global Reynolds number and specified volume-flow Reynolds numbers. The mean
pressure-gradient vector is then a derived quantity. Its components in the (x, z) directions,
∂P/∂x and ∂P/∂z, can be obtained by time averages of the volume-integrated, wall-parallel
momentum equations. In particular, the magnitude dP/dr and the orientation of the mean
pressure-gradient vector φP with respect to the x axis are then given by

dP
dr

=
√(

∂P
∂x

)2

+
(
∂P
∂z

)2

, φP(Re, θ, φ) = arctan
(
∂P
∂z
/
∂P
∂x

)
= ηz,t + ηz,b

ηx,t + ηx,b
.

(2.11a,b)

For φ = 0◦, φ = 90◦, then φP = φ but generally φP /=φ.

2.2. Numerical methods and simulations performed
The DNS is performed by solving the incompressible Navier–Stokes equations

∂ui

∂xi
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j
, (2.12a,b)

within a box domain. Here p is the instantaneous pressure divided by the constant
fluid density. Boundary conditions in the x and z directions are spatially periodic,
while Dirichlet boundary conditions (u, v,w) = (Uc, 0, 0) at y = −h and (u, v,w) =
(−Uc, 0, 0) at y = h are used.

A third-order Runge–Kutta time marching technique is implemented combined with the
fractional-step method to solve the equations. Conservation of kinetic energy is guaranteed
using a staggered-grid strategy employing the skew-symmetric form of the convection
term. The Fourier expansions in the x and z directions simplify the pressure-Poisson
equation to a series of one-dimensional (1-D) linear Helmholtz equations while a
dynamically adjusted time step of δt satisfies the Courant–Friedrichs–Lewy condition. The
overall numerical method has been validated by Cheng et al. (2023). The spatial domain
Lx × Ly × Lz = 8π × 2 × 8π, with corresponding grid 1536 × 160 × 1536, is square in
the (x–z) plane owing to the presence of mean flow in both directions. A grid stretching
strategy is adopted in the wall-normal direction as proposed by Cheng et al. (2022).

Cases implemented are shown as symbols in figure 2(a) within the spherical coordinate
system (Re, θ, φ). All lie on the surface of the sphere Re = 6000 with uniform distribution
in (θ, φ) with an increment of 15◦ in the range of [0◦, 90◦]. When θ = 0◦, the total
volume-flow rate is zero and the flow degenerates to a pure turbulent Couette flow in
the x direction.
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�x+
max �y+

w,max

0°

15°

30°

45°

60°

75°

90°

349.85

Reτ,t,max

ReVx

ReVz

Re
c

Reτ,b,max

441.16 7.21 0.096

358.33 440.33 7.21 0.12

360.43 433.42 7.09 0.12

356.52 414.77 6.78 0.11

351.87 388.10 6.35 0.11

346.82 360.28 5.90 0.098

345.44 345.84 5.66 0.094

(b)(a)

Figure 2. (a) Cases in spherical coordinates, with radius Re, polar angle θ and azimuthal angle φ. All DNS
have Re = 6000. (b) Summary of simulation parameters. Here Reτ is the friction Reynolds number, 
x+
is the dimensionless spacing in the x direction and 
y+

w is the dimensionless spacing at both walls in the
y (wall-normal) direction. The subscripts t and b refer to the top and bottom walls, respectively, while the
subscript max refers to the maximum value across the range of θ cases at the particular φ.

We also list some skin-friction-scaled flow parameters for cases in the table denoted
figure 2(b). For every φ, the maximum values for the skin-friction Reynolds number
(defined below) are shown, and also the maximum dimensionless grid spacings, which
are based on the skin-friction velocities. The relevant skin-friction velocities are defined
by

uτ,t = sgn(−ηt,x)
√
ν|ηt,x|, uτ,b = sgn(ηb,x)

√
ν|ηb,x|,

wτ,t = sgn(−ηt,z)
√
ν|ηt,z|, wτ,b = sgn(ηb,z)

√
ν|ηb,z|.

}
(2.13)

Resultant skin-friction speeds can then be expressed as

qτ,t = sgn(uτ,t)
√
(u2
τ,t + w2

τ,t), qτ,b = sgn(uτ,b)
√
(u2
τ,b + w2

τ,b). (2.14a,b)

Skin-friction Reynolds numbers and the dimensionless grid spacings on the top wall can
be obtained as

Reτ,t = qτ,th
ν
, 
x+

t = 
xqτ,t
ν

, 
y+
w,t = 
ywqτ,t

ν
, 
z+

t = 
zqτ,t
ν

. (2.15a–d)

Quantities on the bottom wall, including Reτ,b,
x+
b ,
y+

w,b,
z+
b , can be similarly defined.

Tabulated values in figure 2(b) are for all cases with the particular φ shown. These indicate
that the present DNS generally meets accepted criteria for pointwise convergence with
respect to grid size. For example, the in-plane resolution is comparable to both Pirozzoli
et al. (2014) and Lee & Moser (2018).

3. Orthogonal Couette–Poiseuille flow: φ = 90◦

In Cheng et al. (2023), unsymmetric flow with φ = 0◦ shows three interesting flow
regimes, two of which comprise Couette-type flow in 0 ≤ θ < θc and Poiseuille-type
in θc < θ ≤ 90◦, where θc is the angle for which the shear stress on the bottom wall
vanishes. A third regime consists of all flows with varying Re for which the bottom-wall
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Figure 3. Components of the skin-friction vector on the top wall for OCP flow with φ = 90◦. (a) In Cartesian
coordinates (Cft,x, Cft,z). The black line is the skin-friction coefficient Cft,x in the x direction, while the blue
line is the skin-friction coefficient Cft,z in the z direction. (b) In polar coordinates (Cft, ψt). The black line is
the magnitude Cft calibrated by the left coordinate axis, while the blue line is the twist angle ψt calibrated by
the right axis.

shear stress vanishes. Orthogonal Couette–Poiseuille flow with φ = 90◦ shows a central
symmetry, and is another useful limit. Here the flow in the x direction is of Couette type
while the z direction flow is pressure-driven giving Poiseuille-type flow. Mean-velocity
profiles satisfy symmetries U( y) = −U(−y) and W( y) = W(−y). In the following
analysis we consider flow parameters in the top half-channel flow adjacent to the top
wall with subscript t. The corresponding bottom half-channel flow can be inferred using
symmetry.

3.1. Skin-friction components
Figure 3(a) shows the skin-friction coefficient components (Cft,x,Cft,z) while figure 3(b)
shows (Cft, ψt). Since the top wall moves in the negative x direction, both Cft,x and Cft,z
are positive. With increasing θ , Cft,x is reduced as Rec decreases, while Cft,z increases
with the increase of ReVz. The skin friction in PC flow θ = 0◦ is smaller than for PP flow
θ = 90◦ owing to the definition of Re.

In figure 3(b), Cft is the resultant skin friction and ψt = arccos(Cft,x/Cft) describes the
angle between the top-wall skin-friction vector and the x axis. As θ increases from 0◦ to
15◦, a small decrease of Cft is observed, which can be ascribed to the disappearance of
large-scale roll structures observed in pure Couette flow (θ = 0). Further evidence will be
discussed in § 6.2. When θ further increases from 15◦ → 90◦, Cft generally increases with
an increasing proportion or weighting of Poiseuille-type flow. It is interesting that the curve
of ψt-θ is convex with ψt > θ except at ψt = θ = 0◦ for PC flow and ψt = θ = 90◦ for
PP flow where ψt = θ . This indicates coupling of the wall surface force and the externally
applied pressure gradient for turbulent GCP flow, which is different to that for laminar
flow.

3.2. Velocity profiles
Mean component velocity profiles scaled in outer variables using U0 are shown in
figure 4. When θ = 0◦, the U/U0 mean-velocity profile conforms to pure Couette flow.
As θ increases, U( y)/U0 in figure 4(a) decreases with decreasing Rec eventually to zero
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Figure 4. Mean-velocity profiles, φ = 90◦: (a) U/U0. (b) W/U0. Key: �: θ = 0◦, �: θ = 15◦, �: θ = 30,
�: θ = 45◦, �: θ = 60◦, •: θ = 75◦, �: θ = 90◦. The black arrows indicate increasing θ .
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(b)(a)

Figure 5. Inner-scaled velocity magnitude for OCP flow, φ = 90◦. (a) Scaled mean resultant velocity
magnitude Q+

t . Red dashed lines: log law with κ = 0.41 and A = 5.1 for Couette flow; red dash-dotted lines:
κ = 0.384, A = 4.27 for Poiseuille flow. (b) Velocity gradient indicator functionΞt. Red dashed lines: reference
lines of 1/0.41; red dash-dotted lines: reference lines of 1/0.384. See figure 4 for symbol key.

for θ = 90◦. The mean spanwise velocity profile W( y)/U0 is always symmetric, and
approaches pure Poiseuille flow for θ = 90◦. As θ increases, the magnitude of W( y)
monotonically increases up to θ = 90◦, when ReV = ReVz.

3.2.1. Mean-flow velocity magnitude Q( y)
The mean-flow velocity always lies in the (x, z) plane but generally displays twist with
respect to (x, z) axes and with variation in the y direction. In figure 5(a) the velocity
magnitude is plotted as Q+

t vs d+
t with

Q+
t = Qt

qτ,t
, d+

t = (h − y)qτ,t
ν

, (3.1a,b)
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Figure 6. Comparison of mean-velocity profile and indicator function for PC flow (φ = 90◦, θ = 0◦) at Re =
6000 with Cheng et al. (2023). (a) Scaled mean resultant velocity magnitude Q+

t . Dashed line: logarithmic law
of Q+

t = ln d+
t /0.41 + 5.1. (b) Velocity gradient indicator function Ξt. Dashed line: reference line of 1/0.41.

Solid line: present DNS with Lx × Ly × Lz = (8π × 2 × 8π). Blue dotted symbols: Cheng et al. (2023) with
Lx × Ly × Lz = (20π × 2 × 6π).

for θ = 0◦–90◦(15◦), where qτ,t is defined by (2.14a,b). As θ increases from 0◦ to 90◦, the
flow undergoes a change from PC to PP flow, and this is accompanied by some variation
in the profiles in the nominal log region. According to some authors, parameters in the
standard log law can differ for different canonical flows (Nagib & Chauhan 2008). In
figure 5(a) the red dashed line is the log profile for PC flow, with κ = 0.41 and A = 5.1
obtained by Pirozzoli et al. (2014), while the red dash-dotted line is the component log
law for PP flow, with κ = 0.384 and A = 4.27 as found by Lee & Moser (2015). When
θ = 0◦ (pure Couette flow), Q+

t is in good agreement with the log law. When θ increases
from 0◦ to 15◦, Q+

t first decreases and then increases as θ increases from 15◦ to 90◦. When
θ = 90◦, the slope of the velocity profile is basically parallel to the reference line of a log
law for Poiseuille flow.

The velocity gradient indicator function Ξt can be defined as

Ξt = d+
t

dQ+
t

dd+
t
. (3.2)

This is shown in figure 5(b) where there is a broad minimum value of approximately 1/0.41
near d+

t ≈ 60 when θ = 0◦. This is interpreted presently as the onset of a log region. Our
present Re = 6000 is perhaps not sufficiently large to see this more fully developed. When
θ increases, this minimum first drops and then gradually rises.

The present computational domain is relatively shorter in the streamwise (x) direction
and wider in the spanwise (z) direction, compared with typical PC flow simulation
domains. To verify that the present domain provides accurate mean-velocity profiles, we
compare the PC profile with Lx × Ly × Lz = (8π × 2 × 8π) at the same Reynolds number
Re = 6000 with data from Cheng et al. (2023) who used a similar computational domain
to Lee & Moser (2018), Lx × Ly × Lz = (20π × 2 × 6π). As shown in figure 6, both the
scaled mean resultant velocity Q+

t and the velocity gradient indicator function Ξt agree
well, providing validity of one-point diagnostics for the present simulations.
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3.2.2. Component mean-flow profiles
The velocity components in the top-wall reference frame can be expressed in terms of Qt
and the twisting angle ψq,t as

U + Uc = Qt cosψq,t, W = Qt sinψq,t, (3.3a,b)

while skin-friction velocities are related by

u2
τ,t = q2

τ,t cosψt, w2
τ,t = q2

τ,t sinψt, (3.4a,b)

where it is recalled that ψt is the skin-friction angle at the wall. At the top wall ψq,t( y =
h) = ψt because the mean-flow streamlines are asymptotic to the skin-friction lines when
y → h.

We assume that a classical log region exists for Qt( y):

Qt

qτ,t
= 1
κ

ln
(

dtqτ,t
ν

)
+ A. (3.5)

We further make the approximation that the velocity-profile twist angle is constant and
equal to its value at the wall, ψq,t( y) = ψt. This will be discussed later. From (3.3a,b),
(3.4a,b) and (3.5) we can then obtain

U+
t =

√
cosψt

κ
ln d+

x,t +
√

cosψt

(
A − ln

√
cosψt

κ

)
, (3.6)

W+
t =

√
sinψt

κ
ln d+

z,t +
√

sinψt

(
A − ln

√
sinψt

κ

)
, (3.7)

where

U+
t = U + Uc

uτ,t
, W+

t = W
wτ,t

, d+
x,t = (h − y)uτ,t

ν
, d+

z,t = (h − y)wτ,t
ν

. (3.8a–d)

These are referred to as modified component log relations.
Figure 7 shows mean-velocity components U+

t and W+
t scaled with uτ,t and wτ,t,

respectively, obtained from the DNS, each for θ = 0◦–90◦(15◦). Also shown are red lines
representing (3.6) and (3.7). These each use (uτ,t,wτ,t) and ψq,t = ψt obtained from the
DNS for the various θ values. In figure 7(a) the red dashed lines are plotted with κ = 0.41
and A = 5.1 as discussed above for PC flow while in figure 7(b) the red dash-dotted lines
are plotted with κ = 0.384 and A = 4.27 for PP flow.

In summary, the velocity magnitude exhibits a log region albeit, for the present Re =
6000, with standard parameters that show a weak dependence on θ as the flow changes
from Couette-like to Poiseuille-like as θ increases. The component mean-velocity profiles
also exhibit log-like regimes with parameters that can be well estimated by approximating
the mean-velocity angle of twist as the shear-stress angle at the wall in the reference frame
where the wall is stationary.

4. Mean-flow modelling

The above analysis of the relation between the geometry of the resultant mean-flow
velocity and the component modified log relations for the OCP turbulent flows suggests an
approach to empirical modelling for GCP flows. This is now developed. For the purpose
of clarity, it will be convenient to work in terms of Reτ in lieu of Cf . These parameters
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Figure 7. Mean-velocity components in the top-wall reference frame scaled with uτ,t and wτ,t for OCP flow
with φ = 90◦. Plots of (a) U+

t vs d+
x,t and (b) W+

t vs d+
z,t. See figure 4 for symbol key. The black arrows indicate

increasing θ .

satisfy Cf = 2Re2
τ /Re2 for both walls. Cheng et al. (2023) developed mean-flow empirical

modelling of PCP flow (φ = 0◦) finding satisfactory agreement between calculated
top/bottom-wall skin-friction coefficients and values obtained from DNS up to Re =
6000, wall-resolved LES up to Re = 20 000 and wall-modelled LES to Re = 1010 over
0◦ ≤ θ ≤ 90◦. Furthermore, the model was able to accurately capture the transition from
PC-type flow to PP-type flow, when the bottom-wall skin friction changes sign at a
critical θ = θc(Re). The above suggests the extension of the PCP modelling approach
to GCP turbulent flows within the parameter space (Re, θ, φ). We thus seek to predict
the dependence of (Cft, ψt), (Cfb, ψb) on (Re, θ, φ). Since the z-direction flow always
shows Poiseuille-like behaviour while the x flow is of a mixed Couette–Poiseuille type, it
is necessary to discuss two different flow regimes. Following Cheng et al. (2023), the first
is Couette-type flow defined as Cfb,x < 0 that corresponds to 90◦ ≤ ψb ≤ 180◦. Here U( y)
is not expected to show an interior maximum, and use of simple log-type profiles, without
wake components (small for Couette flow) suffice. An interior maximum is expected for
the Poiseuille-type W( y) profile. This requires a more refined mean-flow model to be
described. The second regime is for Poiseuille-type flow defined as Cfb,x > 0, equivalent
to 0◦ ≤ ψb ≤ 90◦. Both U( y) and W( y) are then expected to have interior maxima.

The following model development employs empirical log profiles and is thus considered
a high-Re approximation. While our present Re = 6000 is perhaps not sufficiently large to
display a fully developed log region, the model will nonetheless be shown to reproduce
the variation of several flow diagnostics with (θ, φ). In numerical model calculations the
possible distinction between PP and PC flows is ignored and the nominal values κ = 0.4,
A = 5.0, Π = 0.2 are utilized where Π is the Coles wake parameter.

4.1. Couette-type flow 90◦ ≤ ψb ≤ 180◦

Uppercase U and W denote model mean-velocity profiles in the laboratory reference
frame. For Couette-type flow, we assume that the composite U( y) mean-velocity profile
comprises two pure log profiles relative to respective top and bottom walls, and then each
transformed to the laboratory frame. These then join at a location y = y0 to be determined.
In the laboratory framework, the bottom-adjacent and top-adjacent profiles can then be
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expressed as

I : −h < y ≤ y0 : U( y) = Uc − qτ,b cosψb

(
1
κ

ln
(
(h + y)|qτ,b|

ν

)
+ A

)
, (4.1)

II : y0 ≤ y < h : U( y) = −Uc + qτ,t cosψt

(
1
κ

ln
(
(h − y)qτ,t

ν

)
+ A

)
, (4.2)

where κ is the Kármán parameter and A the offset constant.
For W( y), we use the modelling profiles of Jones, Marusic & Perry (2001) that here

take the form

III : −h < y ≤ y1 : W( y) = −qτ,b sinψb

[
1
κ

ln
(
(h + y)|qτ,b|

ν

)
+ A

− 1
3κ

(
h + y
h + y1

)3

+ 2
Π

κ

(
h + y
h + y1

)2 (
3 − 2

h + y
h + y1

)]
, (4.3)

IV : y1 < y ≤ h : W( y) = qτ,t sinψt

[
1
κ

ln
(
(h − y)qτ,t

ν

)
+ A

− 1
3κ

(
h − y
h − y1

)3

+ 2
Π

κ

(
h − y
h − y1

)2 (
3 − 2

h − y
h − y1

)]
. (4.4)

In the interests of constructing a relatively simple model, refinements such as
pressure-gradient corrections in the wake function (Luchini 2018) have not been
implemented. The two profiles join at the interior maximum point y = y1, to be
determined, where both have zero slope by construction. Cheng et al. (2023) found that
this model profile worked well for φ = 0◦ except near θ − θc small but non-zero where
the flow near the bottom wall relaminarizes, before, as θ increases, transitioning back to
turbulence. Since this effect is expected to be limited to a small region of (θ − φ) space
near θ = θc and small φ, and to shrink with increasing Re, then this is presently neglected.

When expressed in terms of Reynolds numbers, with (Re, θ, φ) given, there are six
unknowns: Reτ,b, ψb, Reτ,t, ψt, y0/h and y1/h. Four equations are obtained from matching
U( y) and dU/dy at y = y0, W( y) and d2W/dy2 at y = y1 using the above profiles:

U( y → y−
0 ) = U( y → y+

0 ),
dU
dy

∣∣∣∣
y0→y−

0

= dU
dy

∣∣∣∣
y→y+

0

, (4.5a,b)

W( y → y−
1 ) = W( y → y+

1 ),
d2W

dy2

∣∣∣∣
y→y−

1

= d2W

dy2

∣∣∣∣
y→y+

1

. (4.6a,b)

These give, respectively, after some algebra,

2κRe cos θ − Aκ(Reτ,b cosψb + Reτ,t cosψt)− Reτ,b cosψb ln(|Reτ,b|(1 + Y0))

− Reτ,t cosψt ln(Reτ,t(1 − Y0)) = 0, (4.7)

Reτ,b sinψb[3AK + 6P + 3 ln(|Reτ,b|(Y1 + 1))− 1]

+ [3AK + 6P + 3 ln(Reτ,t(1 − Y1))− 1]Reτ,t sinψt = 0, (4.8)
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Y0 = Reτ,b cosψb − Reτ,t cosψt

Reτ,b cosψb + Reτ,t cosψt
, (4.9)

Y1 =
√|Reτ,b| sinψb − √

Reτ,t sinψt√|Reτ,b| sinψb + √
Reτ,t sinψt

, (4.10)

where Y0 = y0/h and Y1 = y1/h. Two further closing equations are obtained by
substituting (4.1), (4.2), (4.3) and (4.4) into (2.1a,b) to give ReVx ≡ Re sin θ cosφ and
ReVz ≡ Re sin θ sinφ. The mass-flux integration can be done and the resulting equations,
with Re, θ and φ given, are

2κRe(sin θ cosφ − Y0 cos θ)+ Reτ,b(Y0 + 1) cosψb(Aκ + ln(|Reτ,b|(1 + Y0))− 1)

+ Reτ,t(Y0 − 1) cosψt(Aκ + ln(Reτ,t(1 − Y0))− 1) = 0, (4.11)

24κRe sinφ sin θ + Reτ,b(Y1 + 1) sinψb(12Aκ + 12P + 12 ln(|Reτ,b|(Y1 + 1))− 13)

+ Reτ,t(Y1 − 1) sinψt(12Aκ + 12P + 12 ln(Reτ,t(1 − Y1))− 13) = 0. (4.12)

Equations (4.7)–(4.12) describe Couette-type flow with Reτ,x,b < 0. Near-wall viscous
sublayer regions can be included at the cost of additional complexity, but the effect is
negligibly small at values of Re presently considered, even for near-bottom-wall flow when
|Reτ,b| is small.

For θ = 0, these equations have the exact solution Reτ,b = −Reτ,t, Y0 = 0 and

Reτ,t = κRe
W(eAκκRe)

, (4.13)

corresponding to pure Couette flow, where W(Z) is the ProductLog function or Lambert
function, which is the solution of Z = W ln(W). For given Re, θ and φ, the six equations
must generally be solved numerically with validity extended to ψb = 90◦, which is the
limit of Couette-type flow in the streamwise direction.

4.2. Poiseuille-type flow 0◦ ≤ ψb ≤ 90◦

In this regime, all model profiles take the Jones et al. (2001) log-wake form

I : −h < y ≤ y0 : U( y) = Uc + qτ,b cosψb

[
1
κ

ln
(
(h + y)qτ,b

ν

)
+ A

− 1
3κ

(
h + y
h + y0

)3

+ 2
Π

κ

(
h + y
h + y0

)2 (
3 − 2

h + y
h + y0

)]
, (4.14)

II : y0 ≤ y < h : U( y) = −Uc + qτ,t cosψt

[
1
κ

ln
(
(h − y)qτ,t

ν

)
+ A

− 1
3κ

(
h − y
h − y0

)3

+ 2
Π

κ

(
h − y
h − y0

)2 (
3 − 2

h − y
h − y0

)]
, (4.15)
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III : −h < y ≤ y1 : W( y) = qτ,b sinψb

[
1
κ

ln
(
(h + y)qτ,b

ν

)
+ A

− 1
3κ

(
h + y
h + y1

)3

+ 2
Π

κ

(
h + y
h + y1

)2 (
3 − 2

h + y
h + y1

)]
, (4.16)

IV : y1 < y ≤ h : W( y) = qτ,t sinψt

[
1
κ

ln
(
(h − y)qτ,t

ν

)
+ A

− 1
3κ

(
h − y
h − y1

)3

+ 2
Π

κ

(
h − y
h − y1

)2 (
3 − 2

h − y
h − y1

)]
, (4.17)

and zero slope is automatic in both U( y) and W( y) profiles at Y = Y0, Y = Y1,
respectively.

The velocity matching conditions for U( y) and W( y) are still U( y → y−
0 ) =

U( y → y+
0 ) and W( y → y−

1 ) = W( y → y+
1 ), while the second-derivative matching

conditions are now

d2U
dy2

∣∣∣∣
y→y−

0

= d2U
dy2

∣∣∣∣
y→y+

0

,
d2W
dy2

∣∣∣∣
y→y−

1

= d2W
dy2

∣∣∣∣
y→y+

1

. (4.18a,b)

Closure equations are again obtained by substituting (4.14), (4.15), (4.16) and (4.17) into
(2.1a,b), and the mass flux integration can be done analytically. Details are omitted.
A Poiseuille-type flow model is then obtained with six unknowns and six equations.

Numerical calculations were performed by first fixing Re = 6000 (but any large value
can be used). For each φ, with θ = 0◦, the solution strategy begins using the Couette-type
model of (4.1). Solutions to the nonlinear equations were obtained numerically in a
symbolic environment powered by MATHEMATICA®. As θ increases, the solution angle
ψb decreases fromψb = 180◦ until, for some θ , a solution withψb > 90◦ cannot be found.
For this θ , there is then a switch to the Poiseuille-type model equations of this section
that are utilized until θ = 90◦. This process is repeated for all 0 ≤ φ ≤ 90◦ with 2.5◦
increments. Numerical solutions were found without difficulty for all (φ, θ) in the stated
ranges. A quite small discontinuity in solution quantities exists in the change from the
Couette-type to the Poiseuille-type equations as ψb passes through ψb = 90◦, but since
this is expected to be smaller than the general accuracy of the model, it is ignored.

For θ = 90◦, the equations have Reτ,b = Reτ,t, Y0 = Y1 = 0 and

Reτ,t = κRe
W(exp(−13/12 +Π + Aκ)κRe)

, (4.19)

corresponding to pure Poiseuille flow.

5. Generalized Couette–Poiseuille flow

5.1. Skin-friction components
Modelling results are calculated as described above, and then converted to skin-friction
coefficients. Figure 8 shows the distributions of Cfb,x, Cfb,z, Cft,x and Cft,z. Each red point
denotes a DNS result while the blue surface is fitted to the model calculations. When
θ = 0◦, the seven points contract to a single PC flow. Figure 8(a) shows Cfb,x on the
bottom wall. With θ = 0◦, Cfb,x < 0 for PC flow. When θ increases, Cfb,x crosses zero
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Figure 8. Components of skin-friction coefficients in Cartesian coordinates. Red spherical points are from
DNS at Re = 6000. The blue is a surface fitted to model calculations with fine resolution in (θ − φ) variables.
Results are shown for (a) Cfb,x, (b) Cfb,z, (c) Cft,x, (d) Cft,z.

at a critical angle θ = θc(φ) ≈ 37.5◦. For θ > θc, Cfb,x > 0 and increases with increasing
θ . Following Cheng et al. (2023), we define flow with Cfb,x < 0 as Couette type and the
flow with Cfb,x > 0 as Poiseuille type. Figure 8(c) shows Cft,x > 0. When φ /= 90◦, the x
flow is driven by both moving walls and the x component of the pressure gradient. With
increasing θ , Cft,x first increases and then decreases, consistent with the results of Reτ,t in
Cheng et al. (2023). This is not the case for φ = 90◦, which shows a monotonic decrease
in figure 3. Figure 8(b,d) shows z skin-friction components. When either φ or θ gradually
increase, both Cfb,z and Cft,z increase with increasing volume flow in the z direction. The
modelling generally well predicts the trend of all these skin-friction components in the
(φ, θ) plane.

Figure 9 shows the skin friction at both walls in polar coordinates (Cfb, ψb) and (Cft, ψt).
Symbols are DNS at discrete (φ, θ), while the dashed lines are the corresponding model
predictions. Figure 9(a) shows the skin-friction coefficient Cfb on the bottom wall. For
flows with small φ, when θ is increased, Cfb first decreases from the value for PC flow to a
minimum, as a result of flow laminarization on the bottom wall near θ = θc (Cheng et al.
2023), and then increases to the PP limit. In contrast, on the top wall in figure 9(c), Cft first
increases from the pure Couette–Poiseuille flow value to a maximum, and then decreases
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Figure 9. Skin friction in polar coordinates for both walls versus θ for different φ. Filled symbols are from
DNS and the dashed lines are the model results. Results are shown for (a) Cfb, (b) ψb, (c) Cft, (d) ψt. Note
that for θ = 90◦, both ψb, ψt → φ. Key: (�, blue): φ = 0◦, (�, blue): φ = 15◦, (�, blue): φ = 30, (�, blue):
φ = 45◦, (�, blue): φ = 60◦, (•, blue): φ = 75◦, (�, blue): φ = 90◦. The black arrows indicate increasing φ.

to pure Poiseuille flow as θ is increased, which is also consistent with the behaviour of
Reτ,t in Cheng et al. (2023). The limit θ → 90◦ corresponds to pure Poiseuille flow in
the direction defined by φ. Here ψb, ψt → φ, which is captured by both the DNS and the
mean-flow model. There are quantitative discrepancies between the modelling and DNS
for some components of Cf over parts of (θ, φ) space, which are attributable both to flow
relaminarization near θ = θc, φ = 0 (not included in the model but implemented in Cheng
et al. 2023), and also to the fact that the model is a large-Reynolds-number approximation.
But overall the modelling well captures the general trend of the DNS. The orientation
angles (ψb, ψt) are shown in figure 9(b,d), respectively. When φ = 0◦, we have PCP flow,
where on the bottom wall at θ = θc, ψb changes discontinuously from 180◦ to 0◦. When
φ /= 0◦, the flow changes from PC-type flow to PP-type flow smoothly when ψb = 90◦ at
an angle θ that depends on φ and that can be determined from figure 9(b).

The DNS method fixes the volume-flow vector and not the mean pressure-gradient
vector. Volume–time integration of (2.11a,b) shows that the resultant skin-friction forces
are balanced by the mean pressure gradient. Figure 10 shows both the magnitude and
direction φp of the mean pressure gradient, where the latter can be calculated using
(2.11a,b). In pure Couette flow with θ = 0◦, there is a zero pressure gradient. When θ
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Figure 10. Magnitude and angle φP of the mean pressure-gradient vector. Filled symbols for DNS and dashed
lines for model calculations. (a) Plot of dP/dr vs θ ; see figure 9 for symbol key. (b) Plot of φP vs θ ; see figure 4
for symbol key.

increases, dP/dr increases with the growing proportion of Poiseuille flow, and reaches a
maximum value at θ = 90◦. Except for relaminarization near θ = θc, the model captures
the general trend of the DNS results. If Couette flow and Poiseuille flow are decoupled, as
for laminar flow, the pressure-gradient vector is parallel to the mass-flow direction defined
by φ. But, as shown in figure 10(b), when φ /= 90◦, there is a small angle between φ and
ψp, a result of (x–z) turbulent flow coupling.

5.2. Velocity profiles
Mean-velocity components scaled with uτ and wτ are shown in figure 11 for φ = 45◦.
The plots are in inner scaling relative to the respective top and bottom walls as defined by
(3.8a–d). Also shown are modified log laws as red dashed and dash-dotted lines calculated
with (3.6)–(3.7) using (ψb, ψt) values obtained from modelling and again assumingψq,t =
ψt and ψq,b = ψb. The empirical log lines agree well with the DNS for the pure Couette
flows and pure Poiseuille limits. Mean velocities U+

b and U+
t are shown in figure 11(a,c).

When θ gradually increases from 0◦ to 90◦, the DNS deviates from the log line for Couette
flow and then returns to that for Poiseuille flow, which is consistent with the PCP flow
DNS of Cheng et al. (2023). The z mean-velocity profile W+

b is shown in figure 11(b),
which first increases and then decreases with increasing θ . Figure 11(d) shows W+

t , which
gradually increases with increasing θ , and the log law fits well with all cases from θ = 15◦
to θ = 90◦.

Figure 12 shows the resultant velocity magnitude scaled with qτ and the velocity
gradient indicator function for both walls. The log law is calculated in the same way as
for figure 5. Figure 12(a,b) shows Q+

b and Q+
t . Similar to the results of figure 11, deviation

first from and then back to the empirical log law can be observed. The indicator functions
Ξb and Ξt are plotted in figure 12(c,d). An incipient plateau near 1/0.41 can be seen in
pure Couette flow, while when θ = 90◦, the velocity gradient is around 1/0.384, but the
plateau is not well developed owing to the relatively low Reynolds number.

5.3. Mean-flow velocity vector twist
Twist behaviour of the resultant mean-velocity vector is a salient feature of GCP flow. The
variation of the mean-velocity twist angle as a function of y depends on the chosen frame
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Figure 11. Mean-velocity components for top and bottom walls scaled with uτ and wτ , respectively, for φ =
45◦. The modified log laws shown as red dash and dash-dotted lines are as calculated from (3.6), (3.7) usingψb,
ψt from the mean-flow modelling. Results are shown for (a) U+

b , (b) W+
b , (c) U+

t , (d) W+
t . Key: �: θ = 0◦, �:

θ = 15◦, �: θ = 30, �: θ = 45◦, �: θ = 60◦, •: θ = 75◦, �: θ = 90◦. The black arrows indicate increasing θ .

of reference. For clarity, we denote twist angles by ψq for the laboratory reference frame,
ψq,t for the reference frame with the top wall stationary and ψq,b for the reference frame
with the bottom wall stationary. In contrast, the shear-stress angles at each wall (ψb, ψt)
are frame independent. Owing to the boundary conditions at each wall, in the laboratory
reference frame the twist angle limits are ψq( y → −h) → 0◦ while ψq( y → h) → 180◦
for almost all flows with the exception θ = 90◦ where ψq( y) = φ.

5.3.1. Laboratory reference frame
For laminar flow, analysis ofψq is straightforward and results are given in Appendix A. For
turbulent flow, predictions ofψq( y) in the laboratory reference frame can be obtained from
the mean-flow modelling of § 4 by direct evaluation of the second equation of (2.5a–d),
following numerical solution of the model equations for each (φ, θ). Figure 13 shows the
twist angle displayed asψq( y) for different θ at fixed φ. Symbols are DNS values while the
dashed lines show model results. Additional model results with θ = 1◦, 2.5◦, 5◦ are also
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Figure 12. Resultant velocity magnitude scaled with qτ and velocity gradient indicator function for φ = 45◦.
The log relation is as for figure 5. Results are shown for (a) Q+

b , (b) Q+
t , (c) Ξb, (d) Ξt. See figures 4 or 11 for

symbol key.

included outside the range of the DNS. Theψq( y) plots show similar qualitative features to
their equivalents for laminar flow as shown in figure 22 in Appendix A, but with different
profile shapes.

Results for antisymmetric flow in the x direction (u(−y) = −u( y)) with φ = 90◦ are
shown in figure 13(a) while figure 13(b) shows φ = 45◦ where the antisymmetry in u( y)
and symmetry in w( y) are broken, In pure PC flow with θ = 0◦, then ψq = 0◦ for −1 ≤
y < 0 and ψq = 180◦ in 0 < y ≤ 1, while for pure PP flows with θ = 90◦, ψq = φ. On the
centreline at y = 0, ψq = φ can be observed for all flows. On the top channel half, at fixed
y > 0, ψq reduces rapidly as θ is increased, a trend that is much stronger than for laminar
flow at the same φ. In the range 15◦ ≤ θ ≤ 75◦, the strong variation in ψq( y) at fixed θ
is apparent. The modelling predictions fit quite well with DNS results with discrepancies
mainly attributable to approximating ψq by the top- and bottom-wall shear-stress vectors
in the respective reference frames. This is now discussed.

5.3.2. Reference frame with wall stationary
Since, for φ = 90◦, the wall-moving velocity-difference vector is perpendicular to the
volume-flow vector and the mean velocity shows symmetries, we consider only the top
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Figure 13. Mean-flow velocity twist angle ψq as defined in (2.5a–d): (a) φ = 90◦, (b) φ = 45◦. Symbols,
DNS results; see figures 4 or 11 for symbol key. Dashed lines, modelling results. Also shown are additional
modelling results for θ = 1◦, 2.5◦ and 5◦ (from top to bottom with y > 0). The black arrows indicate increasing
θ .

half-channel in the reference frame where the top wall is stationary. In this reference frame
ψq,t( y → h) → ψt. In order to visually appreciate the twist behaviour, figure 14 illustrates
the resultant mean-velocity vectors in (U,W, y) space for φ = 90◦.

In figure 14(a–g) three-dimensional velocity vectors Qt( y) are shown as bundles of red
arrows. These are interpolated with a red-coloured surface to show the twist behaviour,
while the blue plane is a reference surface parallel to the wall skin-friction coefficient
vector at angle ψt on the top wall. When θ increases from the PC flow of figure 14(a), the
surface deviates from the x–y plane and finally approaches the y–z plane at θ = 90◦, which
is PP flow in the z direction. The reference skin-friction plane and the velocity plane are
generally not parallel.

To quantify the twisting behaviour with wall distance, a twist angle deviation 
ψq,t
is defined as |ψq,t( y)− ψt|, the absolute angle difference between the velocity vector at
y and the wall skin vector. In figure 14(h) the red dots are the DNS results of 
ψq,t( y)
for φ = 90◦ and Re = 6000, while the blue surface is the reference surface for laminar
flow. The general trends of turbulent and laminar flows are similar, where 
ψq,t gradually
increases off from the wall. When θ increases from 0◦, generally 
ψq,t first increases and
then decreases with increasing θ , although the maximum value of
ψq,t in turbulent flows
are much smaller compared with the laminar equivalents.

Figure 15 shows the three-dimensional resultant mean-velocity vector and deviation
in the top-wall and bottom-wall reference frames for φ = 45◦. As in figure 14, the flow
gradually changes from PC flow in the x direction to pure PP flow at an angle of 45◦. In
figure 15(a,b) we plot only the mean-velocity vectors at θ = 45◦, which corresponds to the
maximum deviation among cases with different θ .

Figure 15(c,d) shows the deviation 
ψq,t and 
ψq,b for θ = 0◦ ∼ 90◦. In the top-wall
reference frame (right), the rotation of mean-flow velocity vectors is substantially smaller
and hard to recognize. In the bottom-wall reference frame (left), similarly as in figure 14,
the deviation 
ψq,b also first increases and then decreases with increasing θ , while the
maximum value is larger than that for φ = 90◦ flows.
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Figure 14. (a–g) Mean-velocity vectors in the top-wall reference frame, (U + Uc,W), for φ = 90◦ (OCP),
with θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦. The red arrows denote DNS results, expanding an interpolating
surface coloured red. The vertical blue plane aligns with ψt. (h) Twisting angle deviation 
ψq,t( y) =
|ψq,t( y)− ψt|. Red dots are for numerical results and the blue surface for laminar flow.

6. Spectra and flow visualization

6.1. Premultiplied one- and two-dimensional spectra
One-dimensional velocity spectra expressed in log-wavenumber coordinates have proven
a powerful tool in the diagnostic analysis of canonical wall-bounded turbulent flows,
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Figure 15. Twist behaviour for GCP flow with φ = 45◦. (a) Mean-velocity vector (U + Uc,W) in top-wall
reference frame, (b) (U − Uc,W) in bottom-wall reference frame, (c) twist angle deviation
ψq,t( y) in top-wall
reference frame, (d) 
ψq,b( y) in bottom-wall reference frame. See figure 14 for symbol key.

suggesting the existence of k−1 (Perry, Henbest & Chong 1986; del Álamo et al. 2004;
Lee & Moser 2015) and k−5/3 Kolmogorov-like regimes (see Perry et al. 1986). The
premultiplied energy spectrum kΦ(k) has the property that its integral with respect to
the log-transformed wavenumber log10 k gives the turbulent kinetic energy. Premultiplied
spectra are then useful in analysing the distribution of turbulent energy at different length
scales. A striking example is the identification of very-large-scale, longitudinal structures
at sufficiently large Reτ , as observed from their footprint in the wall-normal variation of
the kx premultiplied spectrum of the streamwise velocity Φuu(kx) (Hutchins & Marusic
2007).

Although our Re = 6000 is perhaps too low to produce the proposed k−1 scaling range,
we nonetheless explore premultiplied spectra for OCP flow with φ = 90◦ in order to
investigate the scale distribution of kinetic energy and its changes with θ for this class
of flows. For all cases, the centreline where d+

t = h+ = Reτ is on top of each coloured
graph boundary. Figure 16 shows the kx-premultiplied 1-D spectra as a colour-contour
plot in (log10 d+

t , log10(kxh)) coordinates for different θ . Three columns show spectra of
(u, v,w) and the fourth shows the cross-spectrum of u and w computed as the magnitude
of û(k)ŵ∗(k)+ û∗(k)ŵ(k), where the hat denotes the Fourier coefficient and the asterisk
is the complex conjugate. The kx-premultiplied 1-D spectra for PC flow with θ = 0◦ and
PP flow with θ = 90◦ show similar features to the corresponding results of Lozano-Durán
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Figure 16. Contours of kx-premultiplied 1-D spectra for OCP flow (φ = 90◦): (a) kxhΦuu/q2
τ , (b) kxhΦvv/q2

τ ,
(c) kxhΦww/q2

τ , (d) kxhΦuw/q2
τ . From top to bottom: θ from 0◦ to θ = 90◦ with increments of 15◦.
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& Jiménez (2014) and Lee & Moser (2018). As θ increases from 0◦ → 90◦ in figure 16,
spectra depict the transition from PC flow in the x direction to PP flow in the z direction.
The kxΦuu spectrum shows a peak near y+ ≈ 15 that moves in the increasing kx direction
as θ increases, signalling the tendency towards smaller length scales as the x axis changes
from the effective longitudinal to the transverse direction. In figure 16(a,b) the width of the
spectral humps for both kxΦuu and kxΦvv gradually decrease with increasing θ , indicating
that the distribution of energy is more concentrated over a narrower range of scales. The
cross-spectrum kxΦuw shows a strong peak at θ = 45◦.

The narrow low-wavenumber spike or band in kxΦuu that can be seen near kxh ≈ 0.5
for θ = 0◦ corresponds to a length scale of about 12.5h. Direct numerical simulations at
Reτ = 500 by Lee & Moser (2018) show three similar low-wavenumber peaks with the
strongest occurring at kxh ≈ 0.4. This agreement shows that the present computational
domain, although relatively short in the x direction, can nonetheless capture the principal
features of streamwise flow structures.

One-dimensional kz-premultiplied spectra are shown in figure 17. All spectra for pure
Couette flow at θ = 0◦ show a narrow spike or band centred around small positive
log10(kzh), which can be interpreted as the spectral signature of coherent streamwise rolls
(Tsukahara, Kawamura & Shingai 2006) whose mean spacing is of the order of several
channel half-heights in the transverse (for θ = 0◦) z direction, independent of the size of
the computational domain (Cheng et al. 2022). This spike persists slightly at θ = 15◦ but
is not present at larger θ , indicating the attenuation of roll structures with increasing θ .

Premultiplied spectra kzΦuu, kzΦvv and kzΦww display a low-wavenumber peak. For
kzΦuu and kzΦvv , in pure PC flow with θ = 0◦, two peaks are visible. The greater peak
in the narrow spike reaches a maximum value at the centreline, while for kxΦww, it
reaches a maximum value at about d+

t = 100 and decreases to a smaller value at the
flow centreline. When θ gradually increases from 0◦, the peak in the narrow spike of
all four spectra quickly disappears and can no longer be observed, which indicates the
disappearance of the large-scale, streamwise oriented roll structures. In addition, it can also
be observed that the shape of the energy spectrum changes from the Couette-type flow in
the x direction to the Poiseuille-type flow in the z direction. For kzΦuu in figure 17(a), as θ
increases, the flow in the x direction gradually weakens, so the energy spectrum decreases
correspondingly. In figure 17(b,c) showing kzΦvv , kzΦww, as θ increases, the respective
peaks near the wall gradually move in the direction of decreasing kz, that is, towards of
larger length scales, which accompanies a structural change in the spectra shape.

In the Φv−v spectra portraits in both the x and z directions, for Couette-type flow at low
θ , the contours extend across the channel centreline, while in Poiseuille-type flow with
large θ , closed contours are observed. Similar phenomena have been shown by Lee &
Moser (2018). These effects can be attributed to lower–upper half-channel flow symmetry
changes and breaking that accompanies θ variations in the range 0◦ < θ < 90◦, as the flow
transitions from PC to PP flow with corresponding changes to flow structure. For pure PP
flow (θ = 90◦), the mean-velocity profile is symmetric, resulting in zero turbulent shear
stress at the channel centre and corresponding decreased wall-normal turbulent intensities.
In contrast, for PC flow (θ = 0◦), the mean-x velocity profile is antisymmetric about the
flow centre plane. As a result, as shown in corresponding plots by Pirozzoli et al. (2014)
in their DNS up to Reτ = 986, the turbulent shear stress is finite at the centreline and
the wall-normal turbulent intensity generally shows a plateau. For φ = 90◦, for all θ ,
the x-mean-velocity profile is antisymmetric while the mean z profile is symmetric. For
all other (θ, φ), component mean-velocity profiles display no symmetry/anti-symmetry
properties.
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Figure 17. Contours of kz-premultiplied 1-D spectra for OCP flows (φ = 90◦): (a) kzhΦuu/q2
τ ,

(b) kzhΦvv/q2
τ , (c) kzhΦww/q2

τ , (d) kzhΦuw/q2
τ . From top to bottom: θ = 0◦–90◦ with increments of 15◦.
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The kx- and kz-premultiplied two-dimensional (2-D) spectra at approximately d+
t = 30

are shown in figure 18. The peaks of both kxkzΦuu and kxkzΦvv reach respective maxima
with respect to θ variation at θ ≈ 30◦, kxkzΦuw achieves a maximum value at θ = 45◦,
while kxkzΦww maximizes at θ = 60◦. With an increase in θ , rotation of spectra footprints
in the (log10(kxh)− log10(kzh)) plane can be clearly observed. For example, as θ increases,
the elongated kxkzΦvv hump rotates from near alignment with the log10(kzh) axis towards
alignment with the log10(kzh). At θ = 45◦, the spectrum shape is almost symmetric about
log10(kzh) = log10(kxh). This demonstrates the reorientation of energetic structures during
the transition from Couette to orthogonal Poiseuille flow.

Centreline (y = 0) kx- and kz-premultiplied, 2-D spectra are shown in figure 19. The
peaks of both kxkzΦuu and kxkzΦvv reach a maxima at θ = 15◦, while both kxkzΦuw and
kxkzΦww reach a maxima at θ = 30◦. The low-wavenumber peak of kxkzΦuu can be clearly
observed in figure 19(a,d), which is consistent with the result in figure 17. Compared with
figure 18, the rotation of overall premultiplied spectra can still be observed, but the rotation
angle is smaller.

6.2. Large-scale features in GCP flows
To observe the large-scale flows more clearly, visualization of time-averaged Q fields
coloured by vertical velocity v are shown in figure 20 for OCP flows with φ = 90◦. Here,

Q = −1
2

[(
∂u
∂x

)2

+
(
∂v

∂y

)2

+
(
∂w
∂z

)2
]

− ∂u
∂y
∂v

∂x
− ∂v

∂z
∂w
∂y

− ∂w
∂x
∂u
∂z
, (6.1)

which is commonly used for vortex identification. The images are a time average of the
instantaneous flow field. Four flows are illustrated, each viewed from above the top plate
with θ = 0◦, 15◦, 30◦, 45◦. Each figure displays the whole computational domain with
the same scale in the three coordinate directions. Isosurfaces with Q = 0.01 are plotted
and coloured by the wall-normal velocity over ranges tailored for each specific flow.

In figure 20(a) with θ = 0◦, which is pure Couette flow in the x direction, large-scale
roll structures, each of which extends to both walls, meander along the x direction. In the
8π domain in the z direction, five roll pairs are captured, which is consistent with the DNS
of Pirozzoli et al. (2014). Since the view is from above the upper wall, which is moving
in the negative x direction, then the mean-flow velocity angle for y > 0 is ψq = 180◦.
When θ increases to θ = 15◦ in figure 20(b), the rolls are obliterated and very-large-scale
structures are not visible. Figure 13 shows a very rapid change (decrease) in ψq from 180◦
at a y > 0 level in the upper half-channel (where structures are most visible in the view
shown), when θ increases in the range 0◦–45◦. This can be seen in figure 20(b) where
visible isosurfaces in y > 0 are oriented at ψq ≈ 135◦–140◦, which is largely towards the
viewpoint.

Further increase of θ implies increased volume flow in the z direction. In figure 20(c),
ψq in the upper half-channel has rotated further towards the z axis, which continues
at θ = 45◦ in figure 20(d). Here, owing to enhanced transparency within the view, an
averaged orientation difference between Q isosurfaces in the upper and lower half-channel
subdomains can be perceived. Still further increases in θ show Q-isosurface fields (not
shown) that, from the chosen viewpoint, resemble those obtained for pure PP flow.

Visualizations of GCP flows with φ /= 90◦ and varying θ show similar structural
changes to those seen in figure 20 but with differing fine details. Their novel,
salient features not seen in parallel wall-bounded flows is the wall-normal rotation in
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Figure 18. Contours of kx- and kz-premultiplied two-dimensional (2-D) spectra at around d+
t = 30:

(a) kxkzh2Φuu/q2
τ , (b) kxkzh2Φvv/q2

τ , (c) kxkzh2Φww/q2
τ , (d) kxkzh2Φuw/q2

τ . From top to bottom: θ from 0◦
to θ = 90◦ with increments of 15◦.
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Figure 19. Contours of the kx- and kz-premultiplied 2-D spectra on the centre line y = 0: (a) kxkzh2Φuu/q2
τ ,

(b) kxkzh2Φvv/q2
τ , (c) kxkzh2Φww/q2

τ , (d) kxkzh2Φuw/q2
τ . From top to bottom: θ from 0◦ to θ = 90◦ with

increments of 15◦.
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Figure 20. Visualization of time-averaged Q fields coloured by vertical velocity v for OCP flow with
φ = 90◦. Here Q = 0.01 for all cases. Results are shown for (a) θ = 0◦, (b) θ = 15◦, (c) θ = 30◦,
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structure orientation. A detailed study of the physics underlying cross-flow interactions in
the presence of wall-normal, mean-velocity twist would seem of interest to understanding
the physics of three-dimensional, wall-bounded turbulent flows. This would require
new diagnostic and interpretive techniques, which is beyond the scope of the present
investigation.

7. Conclusion

We have described DNS and modelling of GCP flow, which can be characterized by
a global Reynolds number Re and two angles (θ, φ) that characterize respectively the
weighting of Poiseuille to Couette flow (tan θ) and the inclination of the volume flow to
the plate relative-velocity vectors. Simulations have fixed Re = 6000 with θ and φ evenly
distributed in [0, 90◦] with increments of 15◦.

Orthogonal Couette–Poiseuille flow corresponds to φ = 90◦ where the volume flow is
normal to the plate velocity-difference vector for all θ . For these flows, the mean velocity
satisfies symmetry (U(−y),W(−y)) = (−U( y),W( y)), so that it is sufficient to focus on
either half-channel. With inner scaling using the full skin-friction velocity, the magnitude
of the mean velocity displays a log-like region with, for Re = 6000, a Kármán parameter
that may be different for Couette- and Poiseuille-type flows. The (x, z) component mean
velocities show modified log-like regions in inner scaling based on component friction
velocities and with parameters that are well predicted by a coordinate mapping from the
fitted mean-flow log relation.

Mean-flow modelling in several channel regions is developed based on the use of
empirical log and log-wake relations together with the approximation that the local
mean-velocity twist angle in each subregion is aligned with the orientation of the
skin-friction vector at the wall, in the wall reference frame. This is considered a high Re
approach. The model provides predictions of four skin-friction coefficients comprising
(x, z) components of the skin-friction vector at each wall as functions of (Re, θ, φ)
and also mean-velocity profiles from which wall-normal, velocity twist distributions can
be obtained. These all show general agreement with DNS results at Re = 6000 with
differences attributable both to the relatively low present Re and also to possible flow
relaminarization in a small region of (θ, φ) space that is not included in the model. In
the top-wall reference frame, the velocity twist angle distributions show deviations from a
plane defined by the corresponding shear-stress vector at the wall. Predictions of the offset
between the pressure-gradient and bulk volume-flow vectors also show broad agreement
with the DNS.

Owing to the three-dimensional character of the mean-flow velocity field,
turbulent-intensity profiles have proved difficult to characterize. Premultiplied 1-D and
2-D spectra can be constructed and show interesting features and changes in the
scale distribution of turbulent kinetic energy during the transition from Couette-type to
Poiseuille-type flow. At φ = 90◦ with mean-velocity symmetries, as θ increases from 0◦
to 90◦, the peak in the kx premultiplied spectrum gradually moves towards the direction
of increasing kx, that is, towards smaller scales. Rotation of the energy spectrum in
the ( y+ − log10(kxh) plane is observed. For the kz-premultiplied spectra, when θ = 0◦
for pure Couette flow, there exists low-wavenumber spikes in all spectra, indicating the
presence of large-scale, streamwise rolls with approximate spatial periodicity in the z
direction. At θ = 15◦, the spike has disappeared. As θ increases from 15◦ to 90◦, the
spectral peak gradually moves in the direction of decreasing kz, that is, towards larger
scales. Similarly, owing to faster velocity near the moving wall in the laboratory frame,
rotation of the spectral-hump footprint is observed.
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Figure 21. Three-dimensional velocity vectors for laminar flow: (a) φ = 90◦, (b) φ = 45◦. Blue: θ = 0◦, red:
θ = 45◦, green: θ = 90◦. The grey is the reference surface parallel to the y–w plane.
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Appendix A. Laminar GCP flow

Laminar GCP flow is a linear combination of PC flow in the x direction and PP flow in the
φ direction. Its solution can be written as

u( y)/U0 = −Y cos θ + 3
2 (1 − Y2) sin θ cosφ,

w( y)/U0 = 3
2(1 − Y2) sin θ sinφ,

}
(A1)

with Y = y/h. The three velocity components are

Uc = U0 cos θ, UVx = U0 sin θ cosφ, UVz = U0 sin θ sinφ. (A2a–c)

Laminar-flow skin-friction coefficients can then be obtained as

Cft,x = (6 sin θ cosφ + 2 cos θ)/Re,Cfb,x = (6 sin θ cosφ − 2 cos θ)/Re,

Cft,z = Cfb,z = 6 sin θ sinφ/Re.

}
(A3)

The streamwise component Cfb,x = 0 corresponds to θc = arctan[(3 cosφ)−1].
Visualizations of the three-dimensional velocity vector variation across the channel are

shown in figure 21(a) for φ = 90◦ and in figure 21(b) for φ = 45◦. Each plot shows the
magnitude and twist angle variation with the wall-normal coordinate y for three values of
θ = 0◦, 45◦ and 90◦. When θ = 0◦, u( y) is the linear-Couette profile in the x direction
with w = 0. When θ = 90◦, u( y) and w( y) combine into a pure Poiseuille profile in the φ
direction. For θ = 45◦, the mean flow is twisted along the y direction.
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Figure 22. Mean-flow velocity twist ψq as defined in (2.5a–d) for laminar flows: (a) φ = 90◦, (b) φ = 45◦.
The black, red and blue lines represent, from top to bottom, θ = 0◦, 1◦, 2.5◦, 5◦, 15◦, 30◦, 45◦, 60◦, 75◦, 89◦,
90◦, respectively. The black arrows indicate increasing θ .

Figure 22 shows mean-flow velocity twist angle ψq in the laboratory frame of reference
as defined in (2.9a,b) for laminar flows with φ = 90◦ and φ = 45◦. For each flow, ψq
varies from 0◦ to 180◦ from the bottom to the top wall. On the centreline ψq = φ for
all cases. The position of an inflection point in ψq(Y) generally depends on both φ and
θ . For φ = 90◦, this reduces to 9 cot2 θ = 4(Y2 + 3)(1 − Y2), implying a corresponding
θ ≈ 21.1◦ for the inflection point to be located at Y = 0, which agrees with figure 22(a).
Between θ = 15◦ and θ = 30◦ the change from a convex to concave curve shape can be
seen.
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