
Euro. Jnl of Applied Mathematics (2023), vol. 34, pp. 913–935 c© The Author(s), 2022. Published by
Cambridge University Press.
doi:10.1017/S0956792522000092

913

On the Lie symmetries of characteristic function
hierarchy in compressible turbulence

D. S. P R A T U R I1, D. P L Ü M A C H E R1, and M. O B E R L A C K1, 2

1Chair of Fluid Dynamics, TU Darmstadt, 64287 Darmstadt, Germany
emails: dspraturi@gmail.com; pluemacher@fdy.tu-darmstadt.de

2Center for Computational Engineering, TU Darmstadt, 64293 Darmstadt, Germany
email: oberlack@fdy.tu-darmstadt.de

(Received 7 September 2021; revised 31 January 2022; accepted 15 March 2022; first published online 11 April 2022)

We compute the Lie symmetries of characteristic function (CF) hierarchy of compressible turbulence,
ignoring the effects of viscosity and heat conductivity. In the probability density function (PDF) hier-
archy, a typical non-local nature is observed, which is naturally eliminated in the CF hierarchy. We
observe that the CF hierarchy retains all the symmetries satisfied by compressible Euler equations.
Broadly speaking, four types of symmetries can be discerned in the CF hierarchy: (i) symmetries cor-
responding to coordinate system invariance, (ii) scaling/dilation groups, (iii) projective groups and
(iv) statistical symmetries, where the latter define measures of intermittency and non-gaussianity.
As the multi-point CFs need to satisfy additional constraints such as the reduction condition, the
projective symmetries are only valid for monatomic gases, that is, the specific heat ratio, γ = 5/3.
The linearity of the CF hierarchy results in the statistical symmetries due to the superposition prin-
ciple. For all of the symmetries, the global transformations of the CF and various key compressible
statistics are also presented.

Keywords: Characteristic function hierarchy, compressible turbulence, symmetry analysis

2020 Mathematics Subject Classification: 76M60 (Primary); 76F50 (Secondary)

1 Introduction

Compressible flows constitute a majority of the naturally occurring fluid flows in the universe
and exhibit intricate physics. In the incompressible regime, pressure acts as a Lagrange mul-
tiplier that enforces the velocity field to be solenoidal. The role of pressure is significantly
altered in the compressible regime, where pressure is governed by internal energy dynam-
ics. The non-zero dilatation in compressible turbulence facilitates the internal kinetic energy
exchange across the scales, which is interspersed with nonlinear energy transfer between scales.
Consequently, the thermodynamic quantities such as density, pressure and temperature exhibit
significant fluctuations and necessitate statistical treatment, in addition to the velocity field.

To investigate compressible turbulence statistics, we utilise the following governing equations
of the compressible fluid, assuming an ideal gas:

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

∂uj

∂xj
, (1.1a)
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∂ui

∂t
+ uj

∂ui

∂xj
= − 1

γ M2

1

ρ

∂p

∂xi
+ 1

Re

1

ρ

∂τij

∂xj
, (1.1b)

∂T

∂t
+ uj

∂T

∂xj
= −(γ − 1)T

∂uk

∂xk
+ γ

RePr

1

ρ

∂

∂xj

(
κ

∂T

∂xj

)
+ γ (γ − 1)M2

Re

τij

ρ

∂ui

∂xj
, (1.1c)

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μδij

∂uk

∂xk
, (1.1d)

p = ρT . (1.1e)

Here, ρ, u, p, T and τ denote density, velocity, pressure, temperature and viscous stress tensor,
respectively. Einstein summation convention is followed. The coefficient of viscosity is denoted
by μ and bulk viscosity is taken to be zero. The ratio of specific heats (Cp/Cv) is denoted by
γ . The equations are normalised with respect to the reference quantities (represented with a
subscript 0), leading to three dimensionless parameters: (i) Reynolds number (Re), (ii) Mach
number (M) and (iii) Prandtl number (Pr), defined as:

Re ≡ ρ0u0l0
μ0

, M ≡ u0√
γ RT0

, Pr ≡ μ0Cp

κ0
. (1.2a)

A straightforward way to obtain the statistics would be to analyse governing equations (1.1),
upon averaging. However, a quick examination would reveal the closure problem, with each
term in the continuity, momentum and energy equations requiring its own infinite hierarchy of
equations. As a result, the moment hierarchy in compressible turbulence is more involved than
its incompressible counterpart. Probability density function (PDF) approach has been utilised
to examine statistics of compressible non-reacting and reacting flows [5, 4, 7, 16]. The PDF
approach circumvents the issue of multiple hierarchies and gives rise to a single hierarchy of
multi-point PDF equations [16]. In a similar manner, characteristic function (CF), the Fourier
transform of the PDF, gives rise to an alternate hierarchy of infinite multi-point CF equations
[16]. Characteristic functional can also be utilized for the examination of statistics, and the
resulting equation is a functional differential equation [7].

Lie group theory has been successfully applied to several areas of physics, including turbu-
lence. In the incompressible regime, symmetry methods have been applied to glean insights in (i)
the multi-point moment [12] and (ii) the PDF approaches [20]. In the symmetry analysis of the
statistical approaches, it is seen that the symmetries of the instantaneous equations are retained;
and two additional symmetries, namely the ‘shape’ and ‘intermittency’ symmetries, are admitted.
All of the symmetry groups derived have been instrumental in obtaining scaling laws for various
canonical flows and have been verified against direct numerical simulations and/or experimen-
tal data [1, 17, 18, 19, 11]. The goal of this study is to investigate the behaviour of statistics in
compressible turbulence, by performing Lie symmetry analysis on the CF hierarchy. The advan-
tages of performing the analysis on CF hierarchy will be discussed in the next section, where the
governing CF equations are introduced.

This paper is organised as follows. We introduce the governing equations of the CF hierar-
chy and the additional conditions/constraints imposed on CFs in Section 2. In Section 3, the
symmetries of CF hierarchy are derived. The global form of each of the symmetry transforma-
tions and their physical significance are presented in Section 4. The resulting global moment
transformations are discussed in Section 5. The key findings of this study are summarised in
Section 6.
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2 CF hierarchy in compressible turbulence

For a random variable, ‘U’, its CF (ϕ) is defined as follows [15, 8]:

ϕ(s) ≡
∫ ∞

−∞
exp (isV )f (V )dV ≡ 〈exp (isU)〉 , (2.1)

where s is the spectral parameter and f (U) is the PDF of U . In other words, CF represents
the expectation of exp (isU) and is complex in nature. Like the PDF, CF contains all of the
information about the statistics of the random variable, U . The moments of U can be evaluated
from the CF by computing its derivatives, that is,

〈U〉 = 1

i

∂ϕ

∂s

∣∣∣∣
s=0

,
〈
U2
〉= 1

i2
∂2ϕ

∂s2

∣∣∣∣
s=0

, ..., 〈Un〉 = 1

in
∂nϕ

∂sn

∣∣∣∣
s=0

. (2.2)

Compared to the PDF approach, the reconstruction of the CF from the moments is also more
straightforward. Let us consider the Taylor series expansion of CF about s = 0 [21]:

ϕ(s) = 1 + ∂ϕ

∂s

∣∣∣∣
s=0

s + · · · + 1

n!
∂nϕ

∂sn

∣∣∣∣
s=0

sn + · · · = 1 + i 〈U〉 s + · · · + in
1

n! 〈Un〉 sn + · · · .

(2.3)
This implies that all the moments of U can be pieced together to form the CF.

In compressible turbulence, as it is critical to examine density, pressure and temperature
statistics in addition to velocity, we utilise the following definition for the multi-point CF [16]:

ϕn

(
(1)	, (1)v, (1)θ , (2)	, (2)v, (2)θ , ..., (n)	, (n)v, (n)θ ; t, x(1), x(2), ..., x(n)

)
=

〈
exp

[
i

n∑
k=1

(
(k)	ρ(x(k), t) + (k)viui(x

(k), t) + (k)θT(x(k), t)
)]〉

.
(2.4)

where ϕn represents the n-point CF. (k)	, (k)v and (k)θ are the spectral parameters of density,
velocity and temperature, respectively, at point x(k) and k takes values from 1 to n. Going forward,
we simplify the notation for spectral parameters by dropping the underline and represent them as
(k)	, (k)v and (k)θ . The governing equation for ϕn, derived in [16], is given below:[

∂

∂t
+ 1

i

n∑
k=1

∂2

∂x(k)
j ∂ (k)vj

]
n∏

l=1

∂

∂ (l)	
ϕn

= −
n∑

k=1

(k)	

i

⎡
⎣ ∂

∂x(n+1)
j

n∏
l=1

∂

∂ (l)	

∂2ϕn+1

∂ (n+1)vj ∂ (k)	

∣∣∣∣∣
(n+1)	,(n+1)v,(n+1)θ=0

⎤
⎦

xn+1=x(k)

−
n∑

k=1

(k)vi

γ M2

⎡
⎣ ∂

∂x(n+1)
i

n∏
l=1,l �=k

∂

∂ (l)	

∂2ϕn+1

∂ (n+1)	 ∂ (n+1)θ

∣∣∣∣∣∣
(n+1)	,(n+1)v,(n+1)θ=0

⎤
⎦

x(n+1)=x(k)

−
n∑

k=1

γ − 1

i
(k)θ

⎡
⎣ ∂

∂x(n+1)
j

n∏
l=1

∂

∂ (l)	

∂2ϕn+1

∂ (k)θ∂ (n+1)vj

∣∣∣∣∣
(n+1)	,(n+1)v,(n+1)θ=0

⎤
⎦

x(n+1)=x(k)

. (2.5)
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In the above multi-point CF equation, we ignore the terms arising due to viscosity and heat
conductivity. As the viscous and heat conductivity terms are symmetry breaking, these terms are
not considered in this study. For the complete equation, the reader is referred to [16]. As the CF
is a probability measure, additional conditions also need to be imposed [9]. These restrictions,
called the ‘side conditions’, are listed below:

(1) Reduction: The order of the CF is reduced, when we set the spectral parameters to zero,
that is,

ϕn+1
(

(1)	, (1)v, (1)θ , .., (n)	, (n)v, (n)θ , 0, 0, 0; t, x(1), .., x(n), x(n+1)
)=

ϕn

(
(1)	, (1)v, (1)θ , .., (n)	, (n)v, (n)θ ; t, x(1), .., x(n)

)
.

(2.6a)

In the above equation, we demonstrate that the (n + 1)−point CF reduces to n−point CF,
when the spectral parameters corresponding to x(n+1), that is, (n+1)	, (n+1)v and (n+1)θ , are set
to be zero. For the case of a single-point CF, reduction condition implies that:

ϕ1
(

(1)	 = 0, (1)v = 0, (1)θ = 0; t, x(1)
)= 1. (2.6b)

(2) Coincidence: When two points considered in the CF are infinitesimally closer to one
another,

lim
|x(n+1)−x(n)|→0

ϕn+1
(
.., (n)	, (n)v, (n)θ , (n+1)	, (n+1)v, (n+1)θ ; t, x(1), .., x(n), x(n+1)

)
= ϕn

(
.., (n)	 + (n+1)	, (n)v + (n+1)v, (n)θ + (n+1)θ ; t, x(1), .., x(n)

)
,

(2.7)

the order of CF is effectively reduced and the spectral parameters at those points are added
to one another.

(3) Permutation: The order in which the points in the multi-point CF are considered has no
effect on the value of ϕn. This is expressed as:

ϕn

(
..., (l)	, (l)v, (l)θ , ..., (k)	, (k)v, (k)θ ; t, ..., x(l), ..., x(k), ...

)
= ϕn

(
..., (k)	, (k)v, (k)θ , ..., (l)	, (l)v, (l)θ ; t, ..., x(k), ..., x(l), ...

)
.

(2.8)

(4) Separation: When one of the points is infinitely separated from all other points considered
in the multi-point CF, then,

lim
|x(n+1)−x(k)|→∞

ϕn+1 = ϕ1
(

(n+1)	, (n+1)v, (n+1)θ ; t, x(n+1)
)
ϕn, ∀k = 1 − n (2.9)

the statistics at the infinitely separated point are independent from all other points, and as a
result, multiplication ensues.

All of the above ‘side conditions’ will also be included as a part of the symmetry analysis, in the
subsequent sections, in addition to the governing equation (2.5).

3 Symmetry analysis

In this section, we first demonstrate the symmetry groups exhibited by the compressible Euler
equations. Then, we perform Lie group analysis on the compressible multi-point CF hierarchy.
To this end, we first compute the symmetry groups of single- and two-point CF equations, while
imposing the side conditions. The resulting infinitesimals are generalised for a multi-point CF.
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3.1 Lie groups of the compressible Euler equation

Euler equations can be obtained from the set of equations (1.1) upon neglecting the effects of
viscosity and heat conductivity, that is, by setting μ = κ = 0:

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

∂uj

∂xj
, (3.1a)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

γ M2

1

ρ

∂p

∂xi
, (3.1b)

∂T

∂t
+ uj

∂T

∂xj
= −(γ − 1)T

∂uk

∂xk
, (3.1c)

p = ρT . (3.1d)

For an arbitrary value of the specific heat ratio (γ ), the following are the symmetry transforma-
tions of Euler equations [6, 14]:

(1) Time translation symmetry
(
Tat

)
: The equations (3.1) are invariant, when time is translated

by an arbitrary constant, at ∈R. The global form of symmetry transformation, Tat , is

Tat : t∗ = t + at, x∗ = x, ρ∗ = ρ, u∗ = u, T∗ = T , p∗ = p (3.2a)

with the symmetry operator:

X = ∂

∂t
. (3.2b)

(2) Spatial translation symmetry
(
Tax,i

)
: The three symmetry groups represented by Tax,i ,

i = 1, 2, 3 indicate the invariance of the system (3.1) with respect to arbitrary spatial
translation by ax,i ∈R, i = 1, 2, 3. The global transformation is

Tax,i : t∗ = t, x∗
i = xi + ax,i, ρ∗ = ρ, u∗ = u, T∗ = T , p∗ = p, (3.2c)

and the symmetry operator is

X = ∂

∂x1
, X = ∂

∂x2
, X = ∂

∂x3
, (3.2d)

for ax,1, ax,2 and ax,3, respectively.

(3) Galilean symmetry
(
Tag,i

)
: The Euler equations are invariant in a coordinate frame that is

moving at constant velocity, ag,i ∈R, i = 1, 2, 3:

Tag,i : t∗ = t, x∗
i = xi + ag,it, ρ∗ = ρ, u∗

i = ui + ag,i, T∗ = T , p∗ = p, (3.2e)

with the symmetry operators given by:

X = t
∂

∂x1
+ ∂

∂u1
, X = t

∂

∂x2
+ ∂

∂u2
, X = X = t

∂

∂x3
+ ∂

∂u3
, (3.2f)

for ag,1, ag,2 and ag,3, respectively.

(4) Rotational symmetry
(
Tar,i

)
: This symmetry signifies the invariance of Euler equations (3.1)

under rotation, represented by three symmetry groups, ar,i ∈R, i = 1, 2, 3. For example,
rotation about x1 axis, written in terms of the group parameter, ar,1, is given by:
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Tar,1 : t∗ = t, x∗
2 = (

cos ar,1
)

x2 − (
sin ar,1

)
x3, x∗

3 = (
sin ar,1

)
x2 + (

cos ar,1
)

x3,

ρ∗ = ρ, u∗
2 = (

cos ar,1
)

u2 − (
sin ar,1

)
u3, u∗

3 = (
sin ar,1

)
u2 + (

cos ar,1
)

u3,

x∗
1 = x1, u∗

1 = u1, T∗ = T , p∗ = p,

(3.2g)

with

X = x2
∂

∂x3
− x3

∂

∂x2
+ u2

∂

∂u3
− u3

∂

∂u2
. (3.2h)

Similarly, the rotation about x2 axis, represented by ar,2, is given by:

Tar,2 : t∗ = t, x∗
1 = (

cos ar,2
)

x1 − (
sin ar,2

)
x3, x∗

3 = (
sin ar,2

)
x1 + (

cos ar,2
)

x3,

ρ∗ = ρ, u∗
1 = (

cos ar,2
)

u1 − (
sin ar,2

)
u3, u∗

3 = (
sin ar,2

)
u1 + (

cos ar,2
)

u3,

x∗
2 = x2, u∗

2 = u2, T∗ = T , p∗ = p,

(3.2i)

with

X = −x3
∂

∂x1
+ x1

∂

∂x3
− u3

∂

∂u1
+ u1

∂

∂u3
. (3.2j)

Finally, rotation about x3 axis can be written, using the group parameter ar,3, as:

Tar,3 : t∗ = t, x∗
1 = (

cos ar,3
)

x1 − (
sin ar,3

)
x2, x∗

2 = (
sin ar,3

)
x1 + (

cos ar,3
)

x2,

ρ∗ = ρ, u∗
1 = (

cos ar,3
)

u1 − (
sin ar,3

)
u2, u∗

2 = (
sin ar,3

)
u1 + (

cos ar,3
)

u2,

x∗
3 = x3, u∗

3 = u3, T∗ = T , p∗ = p,

(3.2k)

and the symmetry operator is

X = −x2
∂

∂x1
+ x1

∂

∂x2
− u2

∂

∂u1
+ u1

∂

∂u2
. (3.2l)

Consequently, the Euler equations are invariant under any linear combination of the above
three rotation groups, leaving the equations invariant under arbitrary rotation.

(5) Scaling of time (Tas,t ): When time, velocity, temperature and pressure are scaled as shown
below, the Euler equations are invariant:

Tas,t : t∗ = eas,t t, x∗
i = xi, ρ

∗ = ρ, u∗
i = e−as,t ui, T∗ = e−2as,t T , p∗ = e−2as,t p, (3.2m)

where, the group parameter, as,t ∈R, and the corresponding symmetry operator is

X = t
∂

∂t
− ui

∂

∂ui
− 2T

∂

∂T
− 2p

∂

∂p
. (3.2n)

(6) Scaling of space (Tas,x ): Similarly, the following scaling transformation of space and
dependent variables leaves the Euler equations invariant:

Tas,x : t∗ = t, x∗
i = eas,x xi, ρ

∗ = ρ, u∗
i = eas,x ui, T∗ = e2as,x T , p∗ = e2as,x p, (3.2o)

with as,x ∈R. The symmetry operator is given by:

X = xi
∂

∂xi
+ ui

∂

∂ui
+ 2T

∂

∂T
+ 2p

∂

∂p
. (3.2p)
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(7) Scaling of density
(
Tas,ρ

)
: The scaling symmetry that is unique to compressible flows is the

scaling of density and pressure, represented by the group parameter, as,ρ ∈R:

Tas,ρ : t∗ = t, x∗
i = xi, ρ

∗ = eas,ρ ρ, u∗
i = ui, T∗ = T , p∗ = eas,ρ p (3.2q)

whose symmetry operator is

X = ρ
∂

∂ρ
+ p

∂

∂p
. (3.2r)

In addition to the above symmetry groups, monatomic gases, that is, gases with specific heat ratio
γ = 5/3, satisfy an additional ‘projective’ symmetry transformation

(
Tapr

)
:

Tapr : t∗ = t

1 − aprt
, x∗

i = xi

1 − aprt
, ρ∗ = ρ

(
1 − aprt

)3
, T∗ = T

(
1 − aprt

)2

p∗ = p
(
1 − aprt

)5
, u∗

i = aprxi + ui

(
1 − aprt

)
,

(3.3a)

where, apr ∈R, and the resulting symmetry operator is

X = t2 ∂

∂t
+ xit

∂

∂xi
− 3ρt

∂

∂ρ
− 2Tt

∂

∂T
− 5pt

∂

∂p
+ (xi − tui)

∂

∂ui
. (3.3b)

The projective group is demonstrative of the power of Lie group analysis in identifying the
relevant physics exhibited by the differential equations. For more discussion on this group, the
reader is referred to Chapter 12 of [3].

When viscosity and heat conductivity are considered, the scaling of space and time groups
merge into a single scaling group. As a result, in compressible flows with constant viscosity
and heat conductivity, there are two scaling groups, as opposed to Euler equations with three
scaling groups. In compressible flows, μ and κ are functions of temperature, leading to more
symmetry breaking. Therefore, in this paper, we perform symmetry analysis of CF hierarchy
upon neglecting the viscosity and heat conduction terms. In turbulent flows, in the limit of zero
viscosity (μ → 0), the assumption is not too restrictive. When μ → 0, the action of viscosity
is limited to the smallest scales, thus justifying inviscid consideration for the rest of the scales.
Furthermore, viscosity and heat conductivity also break projection symmetry.

3.2 Lie group analysis of the CF hierarchy

Let us begin our investigation of the CF hierarchy by looking at the single-point CF equation.
The equation for single-point CF, obtained from equation (2.5) by substituting n = 1, is given
below:[

i
∂

∂t
+ ∂2

∂x(1)
j ∂ (1)vj

]
∂

∂ (1)	
ϕ1 = − (1)	

[
∂

∂x(2)
j

∂3ϕ2

∂ (2)vj ∂ (1)	2

∣∣∣∣
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

− i
(1)vi

γ M2

[
∂

∂x(2)
i

∂2ϕ2

∂ (2)	 ∂ (2)θ

∣∣∣∣
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

− (γ − 1)(k)θ

[
∂

∂x(2)
j

∂3ϕ2

∂ (1)	 ∂ (1)θ ∂ (2)vj

∣∣∣∣
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

.

(3.4)
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The advantage of using the CF formulation, over the conventional PDF formulation [16], can
easily be seen in the above equation. The equation (3.4) is local, where as the PDF hierarchy is
non-local as it includes integral terms. In equation (3.4), ϕ1 and ϕ2 are the dependent variables
and t, x(1), x(2), (1)	, (2)	, (1)v, (2)v, (1)θ and (2)θ are the independent variables.

To compute the symmetries, we make use of one of the infinite classes of the ‘generalised form
of the symmetry operators’ that are equivalent to Lie point groups [13]. We specifically consider
the ‘evolutionary’ form of the generalised symmetry operators in which the infinitesimals for
the independent variables are zero. This precludes us from considering the transformation of
independent variables explicitly. Specifically, the infinitesimal transformation of the CFs, ϕ∗

1 and
ϕ∗

2 , are represented as:

ϕ∗
1 = ϕ1 + aη̃ϕ1 +O(a2

)
, ϕ∗

2 = ϕ2 + aη̃ϕ2 +O(a2
)

, (3.5a)

where, a is the group parameter and,

η̃ϕ1 = ηϕ1 − ξ t ∂ϕ1

∂t
− ξ x

(1)
1

∂ϕ1

∂x(1)
1

− ξ x
(1)
2

∂ϕ1

∂x(1)
2

− ξ x
(1)
3

∂ϕ1

∂x(1)
3

− ξ
(1)	 ∂ϕ1

∂ (1)	

− ξ
(1)v1

∂ϕ1

∂ (1)v1
− ξ

(1)v2
∂ϕ1

∂ (1)v2
− ξ

(1)v3
∂ϕ1

∂ (1)v3
− ξ

(1)θ ∂ϕ1

∂ (1)θ
,

(3.5b)

and

η̃ϕ2 = ηϕ2 − ξ t ∂ϕ2

∂t
− ξ x

(1)
1

∂ϕ2

∂x(1)
1

− ξ x
(1)
2

∂ϕ2

∂x(1)
2

− ξ x
(1)
3

∂ϕ2

∂x(1)
3

− ξ
(1)	 ∂ϕ2

∂ (1)	

− ξ
(1)v1

∂ϕ2

∂ (1)v1
− ξ

(1)v2
∂ϕ2

∂ (1)v2
− ξ

(1)v3
∂ϕ2

∂ (1)v3
− ξ

(1)θ ∂ϕ2

∂ (1)θ

− ξ x
(2)
1

∂ϕ2

∂x(2)
1

− ξ x
(2)
2

∂ϕ2

∂x(2)
2

− ξ x
(2)
3

∂ϕ2

∂x(2)
3

− ξ
(2)	 ∂ϕ2

∂ (2)	

− ξ
(2)v1

∂ϕ2

∂ (2)v1
− ξ

(2)v2
∂ϕ2

∂ (2)v2
− ξ

(2)v3
∂ϕ2

∂ (2)v3
− ξ

(2)θ ∂ϕ2

∂ (2)θ

(3.5c)

are the characteristics of the symmetry transformation [13]. Here, ηϕ1 and ηϕ2 are the infinitesi-

mals for ϕ1, ϕ2; and ξ t, ξ x
(k)
i , ξ

(k)	, ξ
(k)vi and ξ

(k)θ are the infinitesimals for time, space and spectral
parameters for density, velocity and temperature, respectively; and i = 1 − 3, k = 1, 2. It should

be noted that all of the infinitesimals, ηϕ1 , ηϕ2 , ξ t, ξ x
(k)
i , ξ

(k)	, ξ
(k)vi and ξ

(k)θ are explicit functions
of t, xi and the dependent variables. This implies that we do not consider the infinitesimals to
depend on the derivatives of the dependent variables, ϕn, for all n. In the evolutionary form of
generalised symmetries, the derivatives of ϕ1 and ϕ2 transform as:

∂ϕ1

∂t

∣∣∣∣
∗
= ∂ϕ1

∂t
+ a

D

Dt
η̃ϕ1 +O(a2

)
, (3.6a)

and

∂2ϕ1

∂ (1)	∂t

∣∣∣∣
∗
= ∂2ϕ1

∂ (1)	 ∂t
+ a

D

Dt

D

D(1)	
η̃ϕ1 +O(a2

)
, (3.6b)

etc. This implies that the infinitesimals for the derivatives of the dependent variables (say time
derivative of ϕ1) in the evolutionary form of the generalised symmetry formulation can be
obtained by taking the total derivatives (here, with respect to time) of the infinitesimal of the
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dependent variable (η̃ϕ1 ). As the CF equations contain high-order derivatives (the order of the
highest derivative increases as the order of CF is increased), the handling of derivatives is simpli-
fied in the evolutionary form of symmetry operators. This operator has also been used to derive
the symmetries of integro-differential equations [20], as the limits on the integral do not undergo
any transformation.

To compute the symmetries of CF equation (3.4), we apply the evolutionary form of the sym-
metry operator with the infinitesimals as defined above. Thus, the obtained determining equation
is of the form:

i
D2η̃ϕ1

DtD (1)	
+ D3η̃ϕ1

D (1)vjDx(1)
j D (1)	

= −(1)	

[
D

Dx(2)
j

(
D3η̃ϕ2

D (2)vjD (1)	2

)
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

− i
(1)vi

γ M2

[
D

Dx(2)
i

(
D2η̃ϕ2

D (2)	D (2)θ

)
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

− (1)θ (γ − 1)

[
D

Dx(2)
j

(
D3η̃ϕ2

D (2)vjD (1)	D (1)θ

)
(2)	,(2)v,(2)θ=0

]
x(2)=x(1)

.

(3.7)

The point evaluations such as (2)	, (2)v, (2)θ = 0 and x(2) = x(1) do not need to be transformed as
we utilise the evolutionary form of the symmetry operator. Similarly, the determining equation
for the governing equation of two-point CF can also be derived.

Finally, upon utilising the computer algebra system, Maple [10], for part of the symmetry
calculations, the following are the infinitesimals of the symmetries admitted by the single-point
CF equation (3.4):

ξ t = apr

2
t2 + as,tt + at, (3.8a)

ξ x
(1)
1 = apr

2
x(1)

1 t + as,xx(1)
1 + ag,1t − ar,3x(1)

2 − ar,2x(1)
3 + ax,1, (3.8b)

ξ x
(1)
2 = apr

2
x(1)

2 t + as,xx(1)
2 + ag,2t − ar,1x(1)

3 + ar,3x(1)
1 + ax,2, (3.8c)

ξ x
(1)
3 = apr

2
x(1)

3 t + as,xx(1)
3 + ag,3t + ar,2x(1)

1 + ar,1x(1)
2 + ax,3, (3.8d)

ξ
(1)	 = apr

γ − 1
(1)	t − as,ρ

(1)	, (3.8e)

ξ
(1)v1 = apr

2
(1)v1t − as,x

(1)v1 + as,t
(1)v1 − ar,3

(1)v2 − ar,2
(1)v3, (3.8f)

ξ
(1)v2 = apr

2
(1)v2t − as,x

(1)v2 + as,t
(1)v2 − ar,1

(1)v3 + ar,3
(1)v1, (3.8g)

ξ
(1)v3 = apr

2
(1)v3t − as,x

(1)v3 + as,t
(1)v3 + ar,2

(1)v1 + ar,1
(1)v2, (3.8h)

ξ
(1)θ = apr

(1)θ t + 2(as,t − as,x)(1)θ , (3.8i)
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and

ηϕ1 =F1
(
t, x(1), (1)	, (1)v, (1)θ

)+ iϕ1

[
apr

2
(1)vix

(1)
i + ag,1

(1)v1 + ag,2
(1)v2

+ag,3
(1)v3 + aϕ

i
+ 5 − 3γ

2i(γ − 1)
aprt

]
.

(3.9)

In the above infinitesimals for independent (3.8) and dependent (3.9) variables, it can be seen that
the Euler equation symmetries are replicated. These are represented by the same group param-
eters as Section 3.1, that is, at for time translation, ax,i for space translation, ag,i for Galilean
symmetry, as,t for scaling of time, as,x for scaling of space and as,ρ for scaling of density and
apr for projective symmetries. We also notice two additional groups, denoted by F1 and aϕ , that
appear in the statistical CF equations. These are as a result named, ‘statistical symmetries’, a con-
vention that is adopted in incompressible turbulence as well [12, 21]. The function F1 appears
in the infinitesimal, ηϕ1 due to principle of superposition, as single-point CF equation (3.4) is a
linear differential equation. F1 is an arbitrary function of the independent variables (in the CF
formulation), which could lead to a translation type of symmetry in the single-point CF, ϕ1. On
the other hand, aϕ is a dilation/scaling symmetry group, which will lead to the scaling of ϕ1.

It is interesting to note that the single-point CF equation (3.4) admits the projection symmetry
group for all values of γ . However, as seen in the previous section, the CFs, including the trans-
formed ones (ϕ∗

1 ), need to satisfy additional constraints (2.6a)–(2.9). In the following section,
the side conditions are enforced on the transformed CFs (ϕ∗

n ) by imposing restrictions on their
infinitesimals (ηϕn ).

3.2.1 Imposing side conditions on the infinitesimals

Let us now consider the restrictions on the infinitesimals that are imposed as a result of side con-
ditions. We apply the evolutionary form of the generalised symmetry operator on the reduction
side condition (2.6b). This results in:

η̃ϕ1 |(1)	=0,(1)v=0,(1)θ=0 = 0, (3.10a)

implying,[
ηϕ1 − ξ t ∂ϕ1

∂t
− ξ x

(1)
1

∂ϕ1

∂x(1)
1

− ξ x
(1)
2

∂ϕ1

∂x(1)
2

− ξ x
(1)
3

∂ϕ1

∂x(1)
3

− ξ
(1)	 ∂ϕ1

∂ (1)	

−ξ
(1)v1

∂ϕ1

∂ (1)v1
− ξ

(1)v2
∂ϕ1

∂ (1)v2
− ξ

(1)v3
∂ϕ1

∂ (1)v3
− ξ

(1)θ ∂ϕ1

∂ (1)θ

]
(1)	=0,(1)v=0,(1)θ=0

= 0

(3.10b)

that is,[
ηϕ1 − i

(
〈ρ〉 ξ

(1)	 + 〈u1〉 ξ
(1)v1 + 〈u2〉 ξ

(1)v2 + 〈u3〉 ξ
(1)v3 + 〈T〉 ξ

(1)θ
)]

(1)	=0,(1)v=0,(1)θ=0
= 0.

(3.10c)
As ηϕ1 , ξ

(1)	, ξ
(1)vi and ξ

(1)θ do not depend on 〈ρ〉, 〈u〉 and 〈T〉, this implies

ηϕ1 |(1)	=(1)v=(1)θ=0 = 0, ξ
(1)	
∣∣∣

(1)	=0,(1)v=0,(1)θ=0
= 0,

ξ
(1)vi

∣∣∣
(1)	=0,(1)v=0,(1)θ=0

= 0, ξ
(1)θ
∣∣∣

(1)	=0,(1)v=0,(1)θ=0
= 0, i = 1 − 3.

(3.11)
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Applying similar techniques on the coincidence condition (2.7), we obtain

lim
|x(n+1)−x(n)|→0

η̃ϕn+1 = η̃ϕn
(
.., (n+1)	 + (n)	, (n+1)v + (n)v, (n+1)θ + (n)θ , ...

)
. (3.12)

Substituting the expressions for η̃ϕn and η̃ϕn+1 in the above equation (2.7) in terms of

ηϕn , ξ t, ξ x
(k)
i , ξ

(k)	, ξ
(k)vi and ξ

(k)θ , we obtain:

lim
|x(n+1)−x(n)|→0

ηϕn+1
(
t, x(1), (1)	, (1)v, (1)θ , ..., x(n+1), (n+1)	, (n+1)v, (n+1)θ , ...

)
= ηϕn

(
.., (n+1)	 + (n)	, (n+1)v + (n)v, (n+1)θ + (n)θ , ...

)
.

(3.13)

The permutation side condition (2.8) results in:

η̃ϕn
(
..., (l)	, (l)v, (l)θ , ..., (k)	, (k)v, (k)θ , ...

)= η̃ϕn
(
..., (k)	, (k)v, (k)θ , ..., (l)	, (l)v, (l)θ , ...

)
, (3.14)

implying that η̃ϕn does not change regardless of order in which spatial locations and their
corresponding spectral parameters are considered. The above equation, upon simplification,
results in:

ηϕn
(
..., (l)	, (l)v, (l)θ , ..., (k)	, (k)v, (k)θ , ...

)= ηϕn
(
..., (k)	, (k)v, (k)θ , ..., (l)	, (l)v, (l)θ , ...

)
. (3.15)

The separation side condition (2.9) leads to the following restrictions on the infinitesimals:

lim
|x(n+1)−x(k)|→∞

η̃ϕn+1 = ϕ1η̃
ϕn + ϕnη̃

ϕ1 . (3.16)

The separation side condition is not applied in the previous studies on incompressible turbulence
[12, 21], and the current study. We consider a arbitrarily large domain that is not infinite in
extent, in this study. As a result, the above separation condition does not need to be strictly
enforced. In addition, in most practical turbulence applications, where scaling laws are derived
using symmetry principles, infinite domains are not considered.

Let us now impose the reduction side condition (3.11) on the infinitesimals in (3.8) and (3.9).
It is seen that the infinitesimals ξ

(1)	, ξ
(1)vi and ξ

(1)θ automatically satisfy the reduction side con-
dition (3.11), as ξ

(1)	 = ξ
(1)vi = ξ

(1)θ = 0 when (1)	 = (1)v = (1)θ = 0. Hence, we turn our attention
to ηϕ1 :

ηϕ1 |(1)	=0,(1)v=0,(1)θ=0 = 0 ⇒ F1
(
t, x(1), 0, 0, 0

)+ i

[
aϕ

i
+ 5 − 3γ

2i(γ − 1)
aprt

]
= 0. (3.17)

It can be seen that the only symmetry groups that remain after imposing (1)	 = (1)vi = (1)θ = 0
are the projection (apr) group, superposition group (F1) and the dilation group (aϕ). In the
above equation, we consider one group at a time, as they are single-parameter symmetry
transformations. We begin with the projective group, apr:

ηϕ1 |(1)	=0,(1)v=0,(1)θ=0 = 0 ⇒ i

[
5 − 3γ

2i(γ − 1)
aprt

]
= 0 ⇒ γ = 5

3
, (3.18)

implying that the reduction side condition is satisfied by the projective group only for the case of
monatomic gases. This is consistent with what is seen in the Euler equations. In CF formulation,
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however, the restriction to monatomic gases is imposed by the reduction side condition. The
imposition of reduction side condition on the F1 group results in

F1
(
t, x(1), (1)	 = 0, (1)v = 0, (1)θ = 0

)= 0, (3.19)

implying that F1 must reduce to zero, when spectral parameters are zero. This also implies that
F1 cannot be a constant (other than zero), as it would violate reduction condition. Finally, the
reduction condition on the dilation group, aϕ , leads to the restriction that aϕ = 0. However, one
could conceive the following transformation for ϕ1, by combining F1 and aϕ groups:

ηϕ1 = −aϕ + ϕ1aϕ . (3.20)

In this case, we consider F1 = −aϕ and as a result, the reduction condition is automatically satis-
fied. The groups, aϕ and F1 = −aϕ (as seen above, that F1 cannot be a constant), each considered
separately do not satisfy the reduction side condition. However, when considered together as
shown in equation (3.20), the reduction constraint is upheld. The final form for the single-point
CF infinitesimal is

ηϕ1 = F1
(
t, x(1), (1)	, (1)v, (1)θ

)− aϕ + iϕ1

[apr

2
(1)vix

(1)
i + ag,1

(1)v1 + ag,2
(1)v2 + ag,3

(1)v3 + aϕ

i

]
,

(3.21)

Similarly, utilising MAPLE [10] for part of the analysis of the two-point CF (upon imposing the
reduction side condition) results in:

ηϕ2 = F2
(
t, x(1), x(2), (1)	, (1)v, (1)θ , (2)	, (2)v, (2)θ

)− aϕ

+ iϕ2

[aϕ

i
+ apr

2

(
(1)vix

(1)
i + (2)vix

(2
i

)
+ ag,1

(
(1)v1 + (2)v1

)
(3.22)

+ ag,2
(

(1)v2 + (2)v2
)+ ag,3

(
(1)v3 + (2)v3

) ]
.

Finally, using one- and two-point CF infinitesimals, we generalise the expression for an n−point
CF infinitesimal, which is given by:

ηϕn = Fn

(
t, x(1), ..., x(n), (1)	, (1)v, (1)θ , ..., (n)	, (n)v, (n)θ

)− aϕ

+ iϕn

[
aϕ

i
+ apr

2

n∑
k=1

(k)vix
(k)
i + ag,1

n∑
k=1

(k)v1 + ag,2

n∑
k=1

(k)v2 + ag,3

n∑
k=1

(k)v3

]
.

(3.23)

In the above equations (3.22) and (3.23), the functions F2 and Fn appear as a result of the super-
position principle. It is important to note that in equations (3.8), (3.21), (3.22) and (3.23), apr is
non-zero only for monatomic gases, that is, when γ �= 5/3, apr = 0. All the other Euler symmetry
groups uphold the side conditions without any restrictions. We impose the coincidence (2.7) and
permutation (2.8) side conditions on statistical groups in the next section.
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4 Physics represented by each of the groups

In this section, we will derive the global forms each of the symmetry transformations and discuss
their relevant physics. The kinematic symmetries – namely space translation (ax,i), time transla-
tion (at) and rotation groups (ar,i) – which pertain to coordinate system independence are not
discussed in this section.

4.1 Projective group

We begin with the projective transformation represented by the group parameter, apr. This trans-
formation is a symmetry of CF hierarchy only for monatomic gases, γ = 5/3. Under this group,
the infinitesimals for the dependent and independent variables are given by:

ξ t = t2, ξ x
(1)
1 = x(1)

1 t, ξ x
(1)
2 = x(1)

2 t, ξ x
(1)
3 = x(1)

3 t, ξ
(1)	 = 3(1)	t,

ξ
(1)v1 = (1)v1t, ξ

(1)v2 = (1)v2t, ξ
(1)v3 = (1)v3t, ξ

(1)θ = 2 (1)θ t

ηϕ1 = ϕ1

[
ix(1)

i
(1)vi

]
.

(4.1)

Below is the global transformation, that is obtained utilising Lie’s first theorem [2]:

t∗ = t

1 − aprt
, x(1)∗

i = x(1)
i

1 − aprt
, (4.2a)

(1)	∗ =
(1)	(

1 − aprt
)3

, (1)θ∗ =
(1)θ(

1 − aprt
)2

, (1)v∗
i =

(1)vi

1 − aprt
(4.2b)

ϕ∗
1 = ϕ1 exp

(
iapr

(1)vix
(1)
i

1 − aprt

)
. (4.2c)

For a general multi-point CF, the infinitesimal and the global transformation take the form:

ηϕn = iϕn

[
x(1)

i
(1)vi + .. + x(n)

i
(n)vi

]
, ϕ∗

n = ϕn exp

(
iapr

(1)vix
(1)
i + ... + (n)vix

(n)
i

1 − aprt

)
. (4.3)

4.2 Dilation groups

Let us now investigate the dilation group, as,t, also known as ‘scaling in time’. The non-trivial
infinitesimals resulting from this symmetry transformation are

ξ t = t, ξ
(1)vi = (1)vi, ξ

(1)θ = 2 (1)θ . (4.4a)

All other dependent and independent variables do not transform under this symmetry group. The
global form of the transformation is given by:

t∗ = eas,t t, (1)v∗
i = eas,t (1)vi,

(1)θ∗ = e2as,t (1)θ . (4.4b)
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For ‘scaling in space’ group, as,x, the infinitesimals and global form of the symmetry
transformation are given below:

ξ x(1)

i = x(1)
i , ξ

(1)vi = −(1)vi, ξ
(1)θ = −2 (1)θ . (4.5a)

x(1)∗
i = eas,x x(1)

i , (1)v∗
i = e−as,x (1)vi,

(1)θ∗ = e−2as,x (1)θ . (4.5b)

The third dilation group that exists only in compressible fluids is ‘scaling of density’, rep-
resented by the parameter, as,ρ . The only non-trivial infinitesimal in the CF formulation is

that of density spectral parameter, that is, ξ
(1)	. The expressions for the infinitesimal and the

corresponding global transformation are given below:

ξ
(1)	 = −(1)	, (1)	∗ = e−as,ρ (1)	. (4.6)

4.3 Galilean invariance

For the case of the Galilean invariance groups, ag,α , where α = 1 − 3, the non-zero infinitesimals
are

ξ x
(1)
α = t, ηϕ1 = i(1)vαϕ1. (4.7)

The global transformation takes the form:

x(1)∗
α = x(1)

α + ag,αt, ϕ∗
1 = ei (1)vαag,α ϕ1. (4.8)

In the above equation, repeated α indices do not imply summation.

4.4 Statistical groups

We now turn our attention to the new symmetry groups in the CF formulation that are not seen
in the Euler equations. We begin with the function, F1, seen in the ηϕ1 equation (3.21):

ηϕ1 = F1
(
t, x(1), (1)	, (1)v, (1)θ

)
, (4.9)

and all other infinitesimals are trivial in nature. As a result, the global form of this symmetry
takes the form:

ϕ∗
1 = ϕ1 + aF1

(
t, x(1), (1)	, (1)v, (1)θ

)
. (4.10)

For the multi-point CF, the global transformation due to superposition principle (from equation
(3.23)), takes the form:

ϕ∗
n = ϕn + aFn

(
t, x(1), (1)	, (1)v, (1)θ , ..., x(n), (n)	, (n)v, (n)θ

)
. (4.11)

To establish how the infinite hierarchy of functions F1, ..., Fn are related to one another, we
impose the reduction side condition, that is, we set the spectral parameters at x(n) to zero. The
equation then becomes

ϕ∗
n−1 = ϕn−1 + aFn

(
t, x(1), (1)	, (1)v, (1)θ , ..., x(n), 0, 0, 0

)
. (4.12)
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As the dependence on x(n) is not exhibited by ϕ∗
n−1 and ϕn−1, the reduction condition implies

that Fn at (n)	 = (n)v = (n)θ = 0 does not depend on x(n) too. In addition Fn(...(n)	 = (n)v = (n)θ =
0) should also identically satisfy the governing equation for (n − 1)−point CF. Therefore,
Fn(...(n)	 = (n)v = (n)θ = 0) reduces to the same family of functions that are represented by Fn−1.
The set of functions, Fn, to satisfy the permutation side condition (2.8), when:

Fn

(
..., (l)	, (l)v, (l)θ , ..., (k)	, (k)v, (k)θ , ...

)= Fn

(
..., (k)	, (k)v, (k)θ , ..., (l)	, (l)v, (l)θ , ...

)
, (4.13)

that is, the function value remains unchanged regardless of the order in which the spatial points
are considered. Coincidence side condition (2.7) is upheld when:

lim
|x(n+1)−x(n)|→0

Fn+1 = Fn

(
.., (n+1)	 + (n)	, (n+1)v + (n)v, (n+1)θ + (n)θ , ...

)
. (4.14)

In the case of separation side condition (2.9),

lim
|x(n+1)−x(k)|→∞

Fn+1 = ϕ1
(

(n+1)	, (n+1)v, (n+1)θ ; t, x(n+1)
)

Fn

+ ϕnF1
(
t, x(n+1), (n+1)	, (n+1)v, (n+1)θ

) (4.15)

needs to be satisfied. As discussed previously, the separation side condition (2.9) is not imposed
in this study.

As an example, let us consider a set of functions Fn that do not have any spatial and temporal
dependence, that is,

ηϕn = Fn

(
(1)	, (1)v, (1)θ , ..., (n)	, (n)v, (n)θ

)
. (4.16)

The transformed CFs, ϕ∗
n , given by:

ϕ∗
n = ϕn + aFn

(
(1)	, (1)v, (1)θ , ..., (n)	, (n)v, (n)θ

)
. (4.17)

automatically satisfy the CF hierarchy. This symmetry is a more general compressible ana-
logue of the ‘shape’ symmetry demonstrated in [21]. As established in the previous section,
the functions Fn cannot be constants as they would then violate the reduction side condition.
As evidenced in the case of shape symmetry in incompressible flows [21], the separation side
condition is not satisfied. The discussion pertinent to not strictly enforcing this side condition is
presented in Section 3.2.1.

Finally, we investigate the symmetry group aϕ . The resulting infinitesimals and the global
transformation are

ηϕ1 = ϕ1 − 1, ϕ∗
1 = 1 + eaϕ (ϕ1 − 1), (4.18a)

ηϕn = ϕn − 1, ϕ∗
n = 1 + eaϕ (ϕn − 1). (4.18b)

The above global form of the transformation satisfies all the required conditions, except for the
separation side condition (2.9). This symmetry is the compressible counterpart of the ‘inter-
mittency’ symmetry, representing the external intermittency seen in turbulent flows [21]. The
implications of the both of the above statistical symmetries is investigated in detail in the next
section.
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5 Global symmetry transformations of compressible turbulence moments

One of the major advantages of computing the symmetries of the CF hierarchy is the ease with
which these symmetries could be translated to any velocity and thermodynamics moments. In
this section, we explore the symmetry transformations of various key statistics in compressible
turbulence, such as kinetic and internal energies, various order moments of velocity, density, tem-
perature and pressure. The advantage of utilising the CF formulation for symmetry investigation
becomes clearly evident in this section. Eventually, this will also have important implications on
the development of statistical turbulence models for compressible flows.

5.1 Averaged kinetic energy

We begin our investigation with averaged kinetic energy (k), which in compressible turbulence
is defined as:

k ≡
〈

1

2
ρuiui

〉
. (5.1)

As discussed in the introduction, the moments can be obtained from the CF, upon taking
derivatives. In the case of kinetic energy, this would imply that we compute

〈
1

2
ρuiui

〉
= i

2

∂3ϕ1

∂ (1)	∂ (1)vi∂ (1)vi

∣∣∣∣
(1)	=(1)vi=(1)θ=0

. (5.2)

Computing the transformation of k in equation (5.1) under the projective group (4.2) is a bit
involved. We first look at the above triple derivative of CF in transformed variables, that is,

∂3ϕ∗
1

∂ (1)	∗∂ (1)v∗
i ∂

(1)v∗
i

= ∂3

∂ (1)	∗∂ (1)v∗
i ∂

(1)v∗
i

[
ϕ1 exp

(
iapr

(1)vix
(1)
i

1 − aprt

)]
. (5.3)

We now obtain the expressions for each of the derivatives with respect to the transformed
variables in terms of original variables:

∂

∂ (1)	∗ = ∂t

∂ (1)	∗
∂

∂t
+ ∂x(1)

i

∂ (1)	∗
∂

∂x(i)
i

+ ∂ (1)	

∂ (1)	∗
∂

∂ (1)	
+ ∂ (1)vi

∂ (1)	∗
∂

∂ (1)vi
+ ∂ (1)θ

∂ (1)	∗
∂

∂ (1)θ

= 1(
1 + aprt∗

)3

∂

∂ (1)	
= (

1 − aprt
)3 ∂

∂ (1)	

(5.4a)

and

∂

∂ (1)v∗
j

= ∂t

∂ (1)v∗
j

∂

∂t
+ ∂x(1)

i

∂ (1)v∗
j

∂

∂x(i)
i

+ ∂ (1)	

∂ (1)v∗
j

∂

∂ (1)	
+ ∂ (1)vi

∂ (1)v∗
j

∂

∂ (1)vi
+ ∂ (1)θ

∂ (1)v∗
j

∂

∂ (1)θ

= 1

1 + aprt∗
∂

∂ (1)vj
= (

1 − aprt
) ∂

∂ (1)vj
.

(5.4b)
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As a result, we obtain

∂3ϕ∗
1

∂ (1)	∗∂ (1)v∗
i ∂

(1)v∗
i

= (
1 − aprt

)5 ∂3ϕ∗
1

∂ (1)	∂ (1)vi∂ (1)vi

= (
1 − aprt

)5 ∂3

∂ (1)	∂ (1)vi∂ (1)vi

[
ϕ1 exp

(
iapr

(1)vix
(1)
i

1 − aprt

)]

= (
1 − aprt

)5

[
∂3ϕ1

∂ (1)	∂ (1)vi∂ (1)vi
+ 2iapr x(1)

i

1 − aprt

∂2ϕ1

∂ (1)	∂ (1)vi

− x(1)
i x(1)

i a2
pr(

1 − aprt
)2

∂ϕ1

∂ (1)	

]
exp

(
iapr

(1)vix
(1)
i

1 − aprt

)
.

(5.4c)

Finally, the transformed kinetic energy under the projective group is given by:〈
1

2
ρuiui

〉∗
= (

1 − aprt
)5
〈

1

2
ρuiui

〉
+ aprx

(1)
i

(
1 − aprt

)4 〈ρui〉 + a2
pr

2
x(1)

i x(1)
i

(
1 − aprt

)3 〈ρ〉.
(5.4d)

In all of the scaling groups, the global transformation for k is straightforward, as these groups
lead to the scaling of kinetic energy. For ‘scaling of time’ group (4.4), the global symmetry
transformation of k looks like: 〈

1

2
ρuiui

〉∗
= e−2as,t

〈
1

2
ρuiui

〉
. (5.5)

For the ‘scaling of space’ group (4.5):〈
1

2
ρuiui

〉∗
= e2as,x

〈
1

2
ρuiui

〉
. (5.6)

Finally, the ‘scaling of density’ group (4.6):〈
1

2
ρuiui

〉∗
= eas,ρ

〈
1

2
ρuiui

〉
. (5.7)

We now shift our focus to two statistical symmetries that are present specifically in the case of
CF hierarchy and not seen in Euler equations: shape and intermittency groups ((4.17) and (4.18)).
For the shape symmetry (4.17), the global transformation of k, takes the form:〈

1

2
ρuiui

〉∗
=
〈

1

2
ρuiui

〉
+ i

2
a

∂3F1

∂ (1)	∂ (1)vi∂ (1)vi

∣∣∣∣
(1)	=(1)vi=(1)θ=0

=
〈

1

2
ρuiui

〉
+ ak ,

(5.8)

where ak is a constant. Therefore, the addition of a constant to averaged kinetic energy in com-
pressible turbulence leaves its governing equation invariant. In the case of the intermittency
group (4.18), the kinetic energy transforms as:〈

1

2
ρuiui

〉∗
= eaϕ

〈
1

2
ρuiui

〉
. (5.9)
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5.2 Averaged internal energy

The second measure of considerable importance in compressible turbulence is the averaged
internal energy (e), defined as:

e = 〈p〉
γ − 1

. (5.10)

As the ratio, 1/(γ − 1) remains a constant for a given gas, we focus on the average pressure,
〈p〉 in the remainder of the paper, when we are investigating averaged internal energy. Based on
our definition of CF, 〈p〉 can be obtained by:

〈p〉 = − ∂2ϕ1

∂ (1)	∂ (1)θ

∣∣∣∣
(1)	=(1)vi=(1)θ=0

, (5.11)

where, we have used ideal gas law, p = ρT , in its non-dimensional form. As a result, 〈p〉 is
obtained by taking derivatives of ϕ1 with respect to (1)	 and (1)θ .

Let us now begin our investigation of transformation of internal energy under symmetries of
CF. For the projective group (4.2), we obtain

〈p〉∗ = − ∂2ϕ∗
1

∂ (1)	∗∂ (1)θ∗

∣∣∣∣
(1)	∗=(1)v∗

i =(1)θ∗=0

. (5.12)

We perform similar calculations as shown for k in the previous Subsection 5.1, to obtain the
transformed e:

∂

∂ (1)θ∗ = ∂t

∂ (1)θ∗
∂

∂t
+ ∂x(1)

i

∂ (1)θ∗
∂

∂x(1)
i

+ ∂ (1)	

∂ (1)θ∗
∂

∂ (1)	
+ ∂ (1)vi

∂ (1)θ∗
∂

∂ (1)vi
+ ∂ (1)θ

∂ (1)θ∗
∂

∂ (1)θ

= (
1 − aprt

)2 ∂

∂ (1)θ
,

(5.13a)

leading to,

∂2ϕ∗
1

∂ (1)	∗∂ (1)θ∗ = (
1 − aprt

)5 ∂2

∂ (1)	∂ (1)θ

[
ϕ1 exp

(
iapr

(1)vix
(1)
i

1 − aprt

)]

= (
1 − aprt

)5 ∂2ϕ1

∂ (1)	∂ (1)θ
exp

(
iapr

(1)vix
(1)
i

1 − aprt

)
,

(5.13b)

and finally,

〈p〉∗ = (
1 − aprt

)5 〈p〉. (5.13c)

In the case of ‘scaling of time’ symmetry (4.4), the global transformation of averaged internal
energy is

〈p〉∗ = e−2as,t 〈p〉. (5.14)

In ‘scaling of space’ (4.5),

〈p〉∗ = e2as,x〈p〉. (5.15)
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‘Scaling of density’ (4.6) leads to:

〈p〉∗ = eas,ρ 〈p〉. (5.16)

The global transformation of e, in the case of shape symmetry (4.17), is given by:

〈p〉∗ = 〈p〉 − a
∂2F1

∂ (1)	∂ (1)θ

∣∣∣∣
(1)	=(1)vi=(1)θ=0

= 〈p〉 + ae. (5.17)

Finally, the intermittency group (4.18) leads to:

〈p〉∗ = eaϕ 〈p〉. (5.18)

5.3 Higher-order velocity and thermodynamic moments

We now investigate the higher-order moments of density, temperature, pressure and velocity.
Since we are interested in multi-point moments, we need to consider the derivatives of the
multi-point CF. For example, the multi-point density moments are obtained from the CF as
follows: 〈

n∏
l=1

ρ(x(l), t)

〉
= 1

in

[
n∏

l=1

∂

∂ (l)	
ϕn

]
(1)	=(1)vi=(1)θ=...(n)	=(n)vi=(n)θ=0

(5.19)

We now write down the global transformations of each of the higher-order moments with
respect to the symmetry transformations of the CF hierarchy given in Section 3.2, starting with
the nth-order moment of density:

apr :

〈
n∏

l=1

ρ(x(l), t)

〉∗
= (

1 − aprt
)3n

〈
n∏

l=1

ρ(x(l), t)

〉
(5.20a)

as,ρ :

〈
n∏

l=1

ρ(x(l), t)

〉∗
= enas,ρ

〈
n∏

l=1

ρ(x(l), t)

〉
(5.20b)

Fn :

〈
n∏

l=1

ρ(x(l), t)

〉∗
=
〈

n∏
l=1

ρ(x(l), t)

〉
+ aρ,n (5.20c)

aϕ :

〈
n∏

l=1

ρ(x(l), t)

〉∗
= eaϕ

〈
n∏

l=1

ρ(x(l), t)

〉
(5.20d)

Now the multi-point temperature moments transform as:

apr :

〈
n∏

l=1

T(x(l), t)

〉∗
= (

1 − aprt
)2n

〈
n∏

l=1

T(x(l), t)

〉
(5.21a)

as,t :

〈
n∏

l=1

T(x(l), t)

〉∗
= e−2nas,t

〈
n∏

l=1

T(x(l), t)

〉
(5.21b)

as,x :

〈
n∏

l=1

T(x(l), t)

〉∗
= e2nas,x

〈
n∏

l=1

T(x(l), t)

〉
(5.21c)
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Fn :

〈
n∏

l=1

T(x(l), t)

〉∗
=
〈

n∏
l=1

T(x(l), t)

〉
+ aT ,n (5.21d)

aϕ :

〈
n∏

l=1

T(x(l), t)

〉∗
= eaϕ

〈
n∏

l=1

T(x(l), t)

〉
(5.21e)

In the case of pressure,

apr :

〈
n∏

l=1

p(x(l), t)

〉∗
= (

1 − aprt
)5n

〈
n∏

l=1

p(x(l), t)

〉
(5.22a)

as,t :

〈
n∏

l=1

p(x(l), t)

〉∗
= e−2nas,t

〈
n∏

l=1

p(x(l), t)

〉
(5.22b)

as,x :

〈
n∏

l=1

p(x(l), t)

〉∗
= e2nas,x

〈
n∏

l=1

p(x(l), t)

〉
(5.22c)

as,ρ :

〈
n∏

l=1

p(x(l), t)

〉∗
= enas,ρ

〈
n∏

l=1

p(x(l), t)

〉
(5.22d)

Fn :

〈
n∏

l=1

p(x(l), t)

〉∗
=
〈

n∏
l=1

p(x(l), t)

〉
+ ap,n (5.22e)

aϕ :

〈
n∏

l=1

p(x(l), t)

〉∗
= eaϕ

〈
n∏

l=1

p(x(l), t)

〉
(5.22f)

The multi-point velocity moments constitute an nth-order tensor that can be obtained from the
CF as:

〈
ui1

(
x(1), t

)
ui2

(
x(2), t

)
...uin

(
x(n), t

)〉= 1

in
∂nϕn

∂ (1)vi1 ∂ (2)vi2 ...∂ (n)vin

∣∣∣∣
(1)	=..=(n)θ=0

, (5.23)

where i1, i2, ..., in are indices of the multi-point velocity moment tensor taking values from 1 to 3.
The global transformations of the multi-point velocity moment tensor under the CF symmetries
are given below:

apr :

〈
n∏

l=1

uil

(
x(l), t

)〉∗
= (

1 − aprt
)n

〈
n∏

l=1

uil

(
x(l), t

)〉

+ (
1 − aprt

)n−1
n∑

k=1

⎡
⎣apr x(k)

ik

〈
n∏

l=1,l �=k

uil

(
x(l), t

)〉⎤⎦

+ · · · + (
1 − aprt

) n∑
k=1

⎡
⎣an−1

pr

〈
uik

(
x(k), t

)〉 n∏
l=1,l �=k

x(l)
il

⎤
⎦

+ an
prx

(1)
i1

x(2)
i2

...x(n)
in

(5.24a)
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as,t :

〈
n∏

l=1

uil (x
(l), t)

〉∗
= e−nas,t

〈
n∏

l=1

uil (x
(l), t)

〉
(5.24b)

as,x :

〈
n∏

l=1

uil (x
(l), t)

〉∗
= enas,x

〈
n∏

l=1

uil (x
(l), t)

〉
(5.24c)

Fn :

〈
n∏

l=1

uil (x
(l), t)

〉∗
=
〈

n∏
l=1

uil (x
(l), t)

〉
+ ai1i2..in (5.24d)

aϕ :

〈
n∏

l=1

uil (x
(l), t)

〉∗
= eaϕ

〈
n∏

l=1

uil (x
(l), t)

〉
. (5.24e)

Thus, all the flow and thermodynamics moments can be obtained from the CF hierarchy and
as a result, the process of finding scaling laws via Lie group analysis is considerably simplified.

6 Conclusions

We derive the symmetries of the CF hierarchy of compressible turbulence. As the infinite set of
CF equations encompasses all the flow and thermodynamic moment hierarchies, it is an effective
framework, in the next step, for obtaining scaling laws for compressible statistics. The effects of
viscosity and heat conductivity are neglected, as they lead to symmetry breaking in the instan-
taneous equations. The symmetry groups of the CF hierarchy obtained can be broadly classified
into two groups:

(1) Euler symmetries: The symmetries exhibited by the compressible Euler equations are repli-
cated in the CF framework, as anticipated. These include (i) the three dilation groups: scaling
in time, space and density; (ii) groups corresponding to invariance with respect to coordinate
system; and (iii) projective group which is solely restricted to monatomic gases (γ = 5/3),
that is, gases with only translational degrees of freedom, due to the imposition of reduction
side condition.

(2) Statistical symmetries: In additional to the Euler symmetries that are replicated in the CF
hierarchy, additional symmetries – the so called ‘statistical’ symmetries – manifest, mainly
as a result of the linearity of the governing equations. Due to the principle of superposition, a
general infinite set of functions, Fn, could be added to the CF hierarchy, subject to additional
constraints. Depending on the form of Fn, two types of statistical symmetry groups emerge
that are also evident in the moment and PDF hierarchies in incompressible turbulence:

(a) Shape symmetry: When the functions, Fn, do not exhibit any spatial and temporal
dependence, then the symmetry analogous to that of the ‘shape’ symmetry in incom-
pressible turbulence results. Just like its incompressible counterpart, shape symmetry in
the compressible CF hierarchy implies the invariance of the moments to translation.

(b) Intermittency symmetry: Like its counterpart in incompressible turbulence, this symme-
try indicates the external intermittency seen in turbulent flows. This symmetry group
results in the scaling of compressible moments by an arbitrary constant.
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The findings of this paper will be helpful in deriving scaling laws for compressible turbulence
statistics in various canonical flows. They are also useful in invariant modelling of compressible
turbulence.
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