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ON THE EQUIVARIANT FORMALITY 
OF KÀHLER MANIFOLDS WITH FINITE GROUP ACTION 

BENJAMIN L. FINE AND GEORGIA TRIANTAFILLOU 

ABSTRACT. An appropriate definition of equivariant formality for spaces equipped 
with the action of a finite group G, and for equivariant maps between such spaces, 
is given. Kàhler manifolds with holomorphic G-actions, and equivariant holomorphic 
maps between such Kàhler manifolds, are proven to be equivariantly formal, general­
izing results of Deligne, Griffiths, Morgan, and Sullivan. 

Introduction. In this note we study the question of formality for spaces equipped 
with an action by a finite group G and we prove that G-Kàhler manifolds are equivariantly 
formal. This generalizes a result by Deligne, Griffiths, Morgan and Sullivan in the non-
equivariant case [DGMS]. 

Recall that a space X is formal if its rational homotopy type is determined by its 
cohomology, i.e. there is a cohomology isomorphism 

p\M—>H*(X\Q\ 

where fW is the minimal model of X as in [S]. There are large classes of spaces which are 
formal, e.g., Lie groups, classifying spaces [S], (r— l)-connected manifolds of dimension 
< 4r — 1 [M], 1-connected Kàhler manifolds [DGMS]. An algorithmic method to decide 
when a space is formal is given in [HS]. 

Now let X be a G-CW complex such that XH is nonempty and simply-connected for all 
H Ç G. The notion of homotopy we consider in this context is equivariant homotopy of 
G-maps. We recall a result of [B] which characterizes G-homotopy equivalences for G-
CW complexes, namely a G-map/: X —> y is a G-homotopy equivalence if and only if it 
induces isomorphisms (fH)*: TT*(XH) —> ix*(YH) for all subgroups H of G. An appropriate 
notion of rational G-homotopy type was developed in [T] where all fixed point sets are 
rationalized at the same time. Also for any space X as above an equivariant minimal 
model was constructed which determines the equivariant rational homotopy type of X. 

We want to investigate the question when the G-homotopy type of a G-space X is 
determined rationally by the cohomology algebras H*(XH; Q) of the fixed point sets of 
the subgroups H Ç G. In order to make this precise we recall the following: Let OQ be 
the category of canonical orbits; its objects are the quotients G/H, / / Ç G , and the mor-
phisms are the equivariant maps. A system ofDGA's is a contravariant functor from 0G 

into the category of graded-commutative differential graded algebras over the rational s. 
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Examples of systems of DGA's associated to a G-complex X are the system H*(X\ Q) of 
the cohomology of the fixed point sets and the system £ x of de Rham algebras of the 
fixed point sets defined by 

H\X; Q)(G/H) = H\XH\ Q) 

and 

£x(G/H) = <LXH 

respectively for H Ç G. The equivariant minimal model fW of X constructed in [T] is 
also a system of DGA's and there is a map from M into £ x which is a cohomology 
isomorphism. It has the analogous properties in the equivariant category as Sullivan's 
minimal model in the non-equivariant one. 

It seems that the right definition for equivariant formality would be to require that 
there is a cohomology isomorphism from the equivariant minimal model of a G-space 
X to the system of cohomology algebras of the fixed point sets H*(X\ Q). However, not 
all systems of DGA's admit an equivariant minimal model. The crucial property needed 
is injectivity in the sense of category theory. A system of DGA's can be considered as 
an object of a certain abelian category namely the category of functors from OQ into the 
category of vector spaces (by neglect of structure). A system of DGA's is injective if it 
is an injective object in this abelian category. 

As shown in [T] the system %x of the de Rham algebras of the fixed point sets of X is 
always injective and equivariant minimal models for G-spaces with nonempty nilpotent 
fixed point sets can be constructed. However the system H*(X\ Q) is almost never injec­
tive. Therefore the definition of formality does not generalize in a straightforward way 
to the equivariant context. 

We solve this problem by constructing injective envelopes for arbitrary systems of 
DGA's as follows: 

THEOREM 1. For any system of DGA's A over a finite group G there is an injective 
system of DGA's I and an inclusion i: A —• / which is a cohomology isomorphism. 

This / satisfies a certain uniqueness property. A construction of injective envelopes 
for arbitrary systems of vector spaces was given in [T]. The novel feature in the above 
result is that one has to take into account the algebra structure as well. This makes the 
construction more involved. 

All G-spaces considered in this paper are G-CW-complexes X such that all fixed-
point sets XH are nonempty connected and nilpotent. The first-named author is presently 
working to extend the theory to the case of non-connected fixed-point sets. For G-spaces 
which satisfy our assumptions we give the following definition: 

DEFINITION 2. A G-space X is said to be equivariantly formal if there is a cohomol­
ogy isomorphism from the equivariant minimal model 9A. of X into the injective envelope 
7of/f(X;Q). 
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This means that the system of the rational cohomology algebras of the fixed point sets 
of X determines the equivariant rational homotopy type of X. The existence of the infec­
tive envelope for systems of DGA's is the crucial step towards attacking the formality 
problem for various classes of G-spaces. For instance, having the injective envelope one 
can prove the following: 

THEOREM 3. Let G be a finite group and let X be a Kâhler manifold which admits a 
holomorphic G-action with nonempty connected and simply-connected fixed-point sets. 
Then X is equivariantly formal Moreover, equivariant holomorphic maps between G-
Kàhler manifolds are formal, i.e. they are determined rationally by the maps induced on 
cohomology. 

We note that all the fixed-point sets of the spaces of the theorem are Kâhler manifolds 
and therefore they are formal by [DGMS]. Formality of the fixed-point sets is not suf­
ficient for equivariant formality, however. The second-named author has constructed in 
[T3] an infinite set of Zp x Zq-spaces which belong to distinct rational equivariant homo­
topy types but which have formal fixed-point sets and the same system of cohomology 
algebras of fixed point sets. 

REMARK. In the dual category of systems of differential graded Lie algebras one 
can construct equivariant minimal models for arbitrary—not necessarily projective— 
systems. Therefore, the definition of equivariant formality is straightforward in this dual 
sense. This is the context in which [RT] proved that the equivariant classifying space 
BO(a) is equivariantly formal when G is abelian. The space BO(a) classifies certain G-
vector bundles modeled by a given representation a\ G —> 0(n). Theorem 3 above is 
applied in [RT2] to prove that the equivariant classifying space BU(a) is equivariantly 
formal for an arbitrary finite group G, where BU(a) classifies complex vector bundles 
modeled by a representation a: G —> U(n). 

Several other attempts have been made to determine the G-homotopy type rationally 
from the cohomology of the fixed point sets. In [T3] it is shown that //-spaces with 
compatible Tpk -action are equivariantly formal (in fact they split rationally into products 
of equivariant Eilenberg-Mac Lane spaces) and that this is not in general the case for 
more complicated groups. An alternative definition of equivariant formality is given in 
[L] for the case of Zpk -actions. It is also shown in [L] that a Zp-space X is equivariantly 
formal if and only if the inclusion map XZp —> X is formal. The latter result can not be 
generalized to arbitrary G-actions as the above mentioned examples of Zp x Zq-actions 
of [T3] show. Although all inclusion maps of the fixed point sets are formal the spaces 
themselves are not equivariantly formal. 

As in the non-equivariantcase we show first that G-Kâhler manifolds are equivariantly 
formal over the complex numbers C and then we apply the following result. 

THEOREM 4. A system of DGA's A over Q is formal iff A (g) C is formal over C. 
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Proofs. In order to prove Theorem 1 we need the following constructions. 
Let G be a finite group and let OQ be the category of canonical orbits of G defined 

above. We fix a field F of characteristic 0 and we define a (contravariant) coefficient 
system for G to be a contravariant functor from OG to the category of vector spaces over 
F. Let Vecc denote the category of such coefficient systems. A functor from OG to the 
category of DGA's is called a system o/DGA!y. 

The injective objects of the abelian category Vecc play a crucial role in the construc­
tion of the equivariant minimal model of a G-space in [T]. A description of the injectives 
of Vecc is given in [T] as follows: An injective system S can be written as 

where the direct sum is over the congugacy classes of the subgroups of G. Here each W_H 

is determined by an F(N(H)/H^) -module WH by the formula 

WH(G/K)= Horn (F((G/H)K),WH\ 
¥(N(H)/H)\ V y / ¥(N(H)/H) 

for K Ç G. 

DEFINITION 5. Let J^/ be a DGA over F such that N(H)/H acts on it by DGA auto­
morphisms. The associated system A_H °f %H *S a system of DGA's defined as follows: 
Let VH be a copy of !An considered as a graded F (N(H)/H) -module by neglect of struc­
ture and let VH be the induced injective system of vector spaces as above. Let sV_H be a 
copy of VH with a shift of degree by +1. We denote by A// the system of acyclic DGA's 
generated by VH 0 sVH, where d(VH) = sVH. Now we define the associated system AH 

by 
AH(GjK) = AH(G/Kl 

for (K) = (//) and 
AH(G/K)= Horn UG/H)K,AH\ 

¥(N(H)/H)y / 

for (K) ^ (//), where (H) is the conjugacy class of H in G. The value of this functor on 
morphisms is the obvious one. 

PROPOSITION 6. Let <B be an injective system <?/DGA's and let f be an N(H)/H-
equivariant algebra map from !AH as above into the subalgebra CIH'DH^1 PH,H' 

of (BiG/H), where (3H,H': &(G/H) —> (BiG/H') is the morphism induced by the pro­
jection G JH —> G/H'. Thenf extends to a map of systems of DGA's from AH to (B. 

PROOF. Because each DGA AH(G/K) is free and acyclic for any subgroup K of G 
not conjugate to //, it suffices to extend the map/ to a map of systems of vector spaces 
from VH into (B. Since *B is injective it can be written as a direct sum *B = ®(H)WH 

as we mentioned above. By assumption the map/ takes values in WH = WH(G/H). 
Now a map/ between two F(N(H)/H)-modules VH and WH extends uniquely to a map 
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between the induced injective systems V_H and WH. This is an immediate consequence 
of the definition of the induced injective systems of vector spaces. This completes the 
proof. 

DEFINITION 7. Let A be a system of DGA's and let AH be the subalgebra of A(G/H) 
which is equal to C\H'DH ker ocHHi, where ocHHi is the morphism induced by the projection 

G/H —> G/Hf. Let AH be the associated system to AH. The enlargement of A at H is 
the system of DGA's IH(A) defined by 

IH(A)(G/K) = A(G/K)®AH(G/K), 

for K<H, and 
IH(A)(G/K) = A(G/K) 

otherwise, where K < H means that K is a proper subgroup of a conjugate of H. The 
value of the functor IH(A) on morphisms is the obvious one, namely, they are equal to 
the old morphisms when restricted to the subsystems A and AH respectively. 

PROPOSITION 8. Let [l'.A^'Bbea map of systems 6>/DGA \ where *B is injective. 
Then /i can be extended to the enlargement IH(A) of A at H. 

PROOF. This is an easy consequence of Proposition 6. 

PROOF OF THEOREM 1. The construction of / is done inductively by taking suc­
cessive enlargements at the subgroups of G, where we consider one subgroup for each 
conjugacy class of subgroups. Consider first A(GjG), its associated system A(G/G), 
and the enlargement IG(A) of A at G. Note that by construction there is an inclusion of 
A into its enlargement at any H and this map is a cohomology isomorphism. Next we 
choose a maximal subgroup K of G and we construct the enlargement of IG(A) at K. 
We pick only one subgroup of G in a given conjugacy class in this process of successive 
enlargements. Now let (H) be an arbitrary conjugacy class of subgroups of G and as­
sume inductively that the system of DGA's I>H(A) has been constructed by successive 
enlargements at the subgroups H' of G which properly contain H or a conjugate of it. 
We construct the enlargement of IyniA) at H and we continue this process until H is 
the trivial subgroup. We denote the resulting system /. It remains to be shown that / is 
injective, i.e. that it can be written additively as a direct sum of V^'s. Again the argu­
ment goes inductively over the subgroups of G. The first enlargement IG(A) contains by 
construction the injective system of vector spaces V^ and therefore it splits 

where %j(G/G) — 0. Assume inductively that 

I>H= © Yw®*H, 
(H'),H'>H 

where !J^(G/Hf) — 0 for all subgroups Hf > H . The next enlargement at H contains 
the injective subsystem of vector spaces V_H, where VH is the intersection of kernels of 
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maps emanating from 7>//(J?)(G///). This intersection is exactly %j(G/H). Moreover, 
V_H does not intersect any of the VH,. Therefore, there is a splitting 

H'>H 

where %,(G/H') = 0 for all subgroups H' > H. This completes the inductive step and 
the proof of Theorem 1. 

Following [S], we shall prove that a minimal system is formal over C iff it is formal 
over Q. Henceforward, if !A is a system of DGA's we denote by A its injective envelope 
in the sense of Theorem 1. 

DEFINITION 9. Let H be the cohomology system associated to a system of DGA's 
A defined over a field F of characteristic 0. Given a G F, a ^ 0, we define the grading 
automorphism (f)a of H_ by (f>a(x) = adegx • x on homogeneous elements. 

Note that cj>a extends to H_, and the extension denoted again <j>a is diagonal with eigen­
values equal to powers of a. This follows from the definition of enlargement and Propo­
sition 6. 

Let 9\f be the minimal model of !A. 

PROPOSITION 10. The following are equivalent: 
(1) Si is formal; 
(2) All automorphisms ofH_ lift to automorphisms of0\{; and 
(3) All grading automorphisms ofH_ lift to !M. 

Before we proceed with the proof we will prove the following lemma and its corollary. 

LEMMA 11. If there is a liftf: £W —> 9\f of <j>a then there is a diagonalizable lift. 
Moreover the eigenvalues of any lift are equal to natural powers of a. 

PROOF OF LEMMA. We recall from [T2] that Aut(lW) is a linear algebraic group 
and specifically it is an algebraic subgroup of G L ( 0 / / Ç G fW(G///)), where we consider 
9\{(G/H) as a vector space by neglect of structure. We recall that a linear algebraic group 
over F is a subgroup of some GL(V) defined by polynomial equations on the entries of 
its elements considered as matrices. Here V is a vector space over F. Also it is shown in 
[T2] that the map A: Aut(fW) —» Aut(H) is a map of algebraic groups. 

By a basic fact in the theory of algebraic groups any element of an algebraic group 
over an algebraically closed field of characteristic 0 can be written uniquely as a product 
of its semisimple and its unipotent part. Moreover this splitting is canonical with respect 
to algebraic homomorphisms (cf. [H] p. 99). This is the Jordan-Chevalley multiplicative 
decomposition. By the exact same argument this result holds for any field F of charac­
teristic 0 provided that all eigenvalues of the given element lie in F. We will show below 
that the eigenvalues in our case satisfy this property. 

Granted the latter fact, any automorphism of 9\f which is a lift of <j>a can be written 
as a composition of a diagonalizable automorphism (diagonalizable at every G/H in a 
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compatible way) and a unipotent automorphism. Furthermore its unipotent part induces 
the identity on cohomology because the identity is the unipotent part of </>a. Hence the 
diagonalizable part of any lift of <j>a is also a lift. 

It remains to show that the eigenvalues of any lift of <j>a are natural powers of a. There 
are two approaches in showing this. We can either work with an arbitrary lift / itself over 
the field F or we can go to the algebraic closure F of F and consider the diagonalizable 
part off ® F. There is no essential difference in the inductive procedure in either case 
and we choose the second approach. 

So from now on let O a be a diagonal lift of <j>a. We proceed by induction on the natural 
filtration 

•••Ç M(n-l)Ç fW(n)---Ç M 

of fM, where fW(w) is characterized by the properties that it is a minimal subsystem of 
fW and the inclusion induces an isomorphism on cohomology in degrees < n and an 
injection on degree n +1. Assume inductively that the eigenvalues of O a when restricted 
to ft{(n — 1) are natural powers of a. We know from [T] that fW(n) is constructed from 
9d(n — 1) by adjoining Wn and W'n and their minimal injective resolutions. Here 

Wn ^ cokerfif (fWfa - 1)) -> Hn(M)\ 

and 

0 — Wn -> Wn,0 -+ W„.i -> > Wn,k -^ 0 

is a minimal injective resolution of Wn. Similarly { Wnj} is a minimal injective resolution 
of 

W'n ^ ker(Hn+l(M(n - 1)) - • Hn+\M)\ 

In degree n we have 

The splitting can be chosen so that all summands are invariant under the map Oa . This 
can be seen from the fact that any injective system V splits naturally V = 0(//> V//, 
where VH = f}H,DHker(V(G/H) —> V(G/Hf)). In our case each fWJ which is cer-

tainly invariant under O a splits further into fW(n — 1)^ 0 W// 0 W^, where the dif­
ferential is equal to 0 on WH and it is decomposable on W'H mapping into nontrivial 
cocycles of 9A. (n — \){G/H). This splitting can obviously be done so as to be compati­
ble with O a and equivariant with respect to the action of N(H)/H. Taking sums we have 
Wn,0 = ®(H)W.H> ^n,o — ®(H)W!H

 a n c* s o on- This gives the desired splitting of <Mn which 
is compatible with Oa . 

In order to complete the inductive step it suffices to show that the eigenvalues of the re­
strictions of O a to WH and W'H are natural powers of a since these restrictions uniquely 
determine the map on the entire minimal injective resolutions of Wn and W'n respec­
tively and this map has the same eigenvalues. By the properties of the differential when 
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restricted to WH and W'H these spaces inject into the cohomology of the indécompos­
ables Hn(QM(G/H)), where the latter is the dual homotopy of the differential algebra 
M{G/H). Moreover WH injects into the spherical homotopy whereas W'H injects into a 
complement of it. By the nonequivariant argument O a acts on the spherical part of dual 
homotopy by multiplication by otn and on the complement by multiplication by powers 
aP where p > n. Therefore: 

CLAIM. The restriction of O a on {Wn5/} is given by multiplication by an, and its 
restriction on {W^ •} is given by multiplication by powers aP for/? > n. 

This completes the proof of the lemma. 

COROLLARY 12. The kernel of the map A: Aut(fW) —* Aut(//(#f)) is a unipotent 
subgroup. 

PROOF. AS before any lift of the identity on cohomology can be written as a product 
of a diagonalizable and a unipotent element. Applying the argument of Lemma 11 for 
a — 1 yields that the diagonalizable part is the identity. 

PROOF OF PROPOSITION 10. (1) => (2) => (3) is clear. To show (3) => (1), we use 
Lemma 11 to construct a map p: fW —• / / which induces an isomorphism on cohomology. 
As in Lemma 11 we proceed by induction on the natural filtration • • • Ç fy({n — 1) Ç 
M(n) • • Ç fW of M. 

Assume there is a map p: M(n—\) —> H such that po<f>a — Q>a°p, i-e. p is compatible 
with the splitting into eigenspaces of powers of a. We also assume that p induces the same 
map on cohomology as the inclusion M(n — 1) —-> M. 

We will extend p to M{ri). We know that M(n) is constructed from ï\{(n — 1) by 
adjoining Wn 0 W'n and their minimal injective resolutions. We only need to define p 
on WH and Wf

H because then the map is automatically defined on Wn and W'n and their 
resolutions and by product building on the entire M(ri). Here we need the injectivity of 
the range H of the map in order to be able to extend it from Wn and W'n to their injec­
tive resolutions respectively. We define p on the elements of WH to be their cohomology 
classes and on the elements of WH to be 0. By the claim in the proof of Lemma 11 this 
map is compatible with multiplication with powers of a. Moreover it has the right coho-
mological properties as can be shown by looking at each G JH separately and employing 
the non-equivariant case. 

THEOREM 4. A system A over Q is formal iff 'JÎ(8)C is formal over C. 

PROOF. The map A: Aut(fW(Jl)) —* Aut(>/(.#)) is, by [T2], a map of Q-algebraic 
groups. By Corollary 12 the kernel of this map is unipotent. By a result in [Se], any Q-
point in Aut(//(•#)) m a t is m e image of a C-point in Aut(^(J3)) is already the image 
of a Q-point. Thus, if all the C-grading automorphisms lift to the C-minimal model, all 
the Q-grading automorphisms lift to the Q-minimal model. This proves Theorem 4. 

Before we prove Theorem 3 we recall the definition of a Kahler manifold. 

https://doi.org/10.4153/CJM-1993-067-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-067-4


1208 B. L. FINE AND G. TRIANTAFILLOU 

DEFINITION 13. A Kâhler manifold is a complex manifold M admitting a positive 
definite Hermitian metric 

H(x, y) = S(x, y) + V^TA(A:, y\ for x, y G T{M\ 

which satisfies the following property: The imaginary part A of the metric, which is a 
(l,l)-form, is a closed form, i.e. dA = 0. 

We can immediately observe the following: Let X be a compact Kâhler manifold, and 
suppose a finite group G acts holomorphically on X. Then if H is a subgroup of G, XH is 
a compact Kâhler manifold. 

We establish the following notation. For X any complex manifold, let -#(X) denote the 
PL de Rham algebra on X, *£(X) the complex de Rham algebra on X, *£C(X) the subalgebra 
of £(X) consisting of dc-closed forms, where dc = i(d — 3), HC(X) the cohomology of 
^ (X) with respect to the coboundary map dc, and 17" (X) the piece wise smooth forms 
on X with complex coefficients. Now define the following systems of DGA's on X: let 

HX(G/H) = HC(XHX), 

T%(G/H) = ŒfiX*1), 

<EX(G/H) = £(**), 

T%{G/H) = TP\XH\ and 

AX(G/H) = A(XH). 

If A is a system of DGA's we denote by À its injective envelope in the sense of Theo­
rem 1. 

PROOF OF THEOREM 3. We have the following commutative diagram: 

ÂX®C —^ Œ% ^- tx ^~ (£x,d) -^ (gx,d) 

AX®C —+ <£% — £x ^~ (^d) —> (Hx,d). 

The lower horizontal maps are induced from the nonequivariant ones given in 
[DGMS] which are functorial. They are all cohomology isomorphisms. Moreover, the 
differential induced on Hc

x by the ordinary differential d is identically 0, so Hx = H_x-
These maps lift to the injective envelopes by Theorem 1 and they are cohomology iso­
morphisms as well. Applying the construction of equivariant minimal models for the 
injective systems of the diagram we show that the system of de Rham algebras of the 
fixed-point sets of X and the system of the cohomology algebras with complex coef­
ficients have isomorphic minimal models. This means that the space is equivariantly 
formal over the complex numbers. By Theorem 4, formality over the complex numbers 
is equivalent to formality over the rationals. This proves the first part of Theorem 3. 

In order to prove the second part about the formality of equi variant holomorphic maps 
we first give the following definition. 
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DEFINITION 14. Let X and Y be compact formal G-spaces with non-empty connected 
/ 

and simply connected fixed-point sets, and let X —> Y be an equi variant map. We say that 
/ is formal over F if the map between the equivariant minimal models over F induced by 
/ is homotopic to the map between the models induced by/*: H(Y; F) —• H(X\ F). 

PROPOSITION 15. Suppose X and Y are compact G-Kàhler manifolds with non-
f 

empty connected and simply connected fixed-point sets, and letX —> Y be an equivariant 
holomorphic map. Thenf is formal over C. 

PROOF. AS above, we have the following commutative diagram: 

£x <— 2£ — H{X;C) 

î î Î 
% < %Y > S ( ^ C ) -

Consider now the map/ induced on the minimal models by 2£ —* *E£ such that the 
following diagram commutes up to homotopy: 

<MX 0 c —• 2% 

î 1 
MY ® C —> Tty. 

Composing this diagram with the previous one proves the proposition. 

PROPOSITION 16. A map is formal over C iff it is formal over Q. 

PROOF. Formality over Q clearly implies formality over C. Conversely, fWy = 
(J^o ^y(w)> where 0\fy(n) is an elementary extension of !My(n — 1) by some Vn. By 
[T], two maps between minimal systems are homotopic iff a well-defined sequence of 
obstructions to extending the homotopy from fMy(n — 1) (g) C to 9A.y(n) (8) C vanishes for 
each n, namely, that a certain morphism Vn <S) C -—> Zn+l((Mx) (8) C be a coboundary. 
But if an is a coboundary after tensoring with C, it must already have been a coboundary 
over Q. Thus, formality of the map over Q follows. 

Hence we have the following corollary, which establishes the second part of Theo­
rem 3: 

/ 
COROLLARY 17. Let X —> Y be an equivariant holomorphic map between compact 

G-Kahler manifolds with non-empty connected and simply connected fixed-point sets. 
Thenf is formal. 
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