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A Universal Volume Comparison Theorem
for Finsler Manifolds and Related Results

Wei Zhao and Yibing Shen

Abstract. In this paper, we establish a universal volume comparison theorem for Finsler manifolds
and give the Berger—Kazdan inequality and Santalé’s formula in Finsler geometry. Based on these,
we derive a Berger—Kazdan type comparison theorem and a Croke type isoperimetric inequality for
Finsler manifolds.

1 Introduction

As is well known, the Bishop—Gromov volume comparison theorem [10], the Berger—
Kazdan inequality [8], and Santal®’s formula [31] play very important roles in global
differential geometry and geometric analysis. Some of their applications are Gro-
mov’s precompactness theorem [22], the Berger-Kazdan comparison theorem [7]
and Croke’s isoperimetric inequality [17]. Moreover, with the Berger—Kazdan in-
equality, the Blaschke conjecture was thereby settled for even dimensions (cf. [9,13]).
See [13,16,17,22,28,29], etc., for other interesting applications in global Riemannian
geometry.

Finsler geometry is just Riemannian geometry without quadratic restriction. A
Finsler manifold is a differentiable manifold on which every tangent space is endowed
with a Minkowski norm instead of a Euclidean norm. Recently, there has been a
revived interest in the study of Finsler manifolds, particularly in their global aspect;
see, for example, [3-5,33, 34, 36].

By [11, Sect. 5.5], there is only one reasonable notion of the volume form for
Riemannian manifolds. However, the situation is different in Finsler geometry. The
Finsler volume form can be defined in various ways and essentially different results
may be obtained, e.g., [1,2]. Therefore, it is an interesting and important problem
to investigate the relations between the volume forms and the geometric properties
on a Finlser manifold. A Finsler volume form used frequently is the Busemann—
Hausdorff volume form dppy (cf. [12]), with respect to which Z. Shen firstly obtained
the following Bishop—Gromov type volume comparison theorem in [36].

Theorem 1.1 ([36]) Let (M, F) be a forward complete Finsler n-manifold satisfying
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Ric > (n — 1)k and Spyy > (n — 1)h. Then the function

_ peu(BT(p,1))
P = Vienn(r)

is decreasing, and for any r > 0,

(1.1) (B (p, 1)) < Vipa(r),

where

’ n—1
Vihn(r) == i1 / [eMs(n)] " dt,
0

Cy—1 is the volume of the standard Euclidean unit (n — 1)-sphere, si(t) is the unique
solution to y'' + ky = 0 with y(0) = 0 and y'(0) = 1, and Sgy is the S-curvature with
respect to dupy.

Using the Laplacian comparison theorem in Finsler geometry, Wu and Xin gave
a different proof of the above theorem in [39]. But, in general, Theorem 1.1 (more
precisely, the inequality (1.1)) is invalid for other volume forms. In [38], there are
some comparison theorems that are valid with respect to all volume forms. However,
Theorem 1.1 cannot be deduced from the results of [38]. We refer to [19, 23,32, 34,
36-39] for more results.

The purpose of this paper is to study the influence that the volume measure has
on the geometry of a Finsler manifold.

Let (M, F) be a forward complete Finsler #n-manifold. Given a point p € M,
denote by S,M the indicatrix at p, namely, S,M = {y € T,M : F(p,y) = 1}.
Let dv, be the Riemannian volume form on S,M induced by F (see [5]). For each
y € SpM, let 7, (t) denote the unit speed geodesic with ,(0) = y. Let i, denote the
cut value of y and let i, (resp. i) denote the injective radius of p (resp. M). Given
any volume form dy on (M, F), let 7 and S denote the distortion and S-curvature of
dp, respectively. Define

V(1) = ( dupm) ( / re_TW"(t))szl(t)dt).
SM 0

Let (r, y) denote the polar coordinate system at p on (M, F) (see Section 3). Set du =
Gp(r,y)dr Ndv,(y) and Z (1, y) = eT(”?’y(r))?fp(r, y). In fact, Z (r, y) is independent of
the choice of dy. We then shall establish the following theorem.

Theorem 1.2 Let (M, F, du) be a forward complete Finsler n-manifold with a volume
form du. Suppose the Ricci curvature of M is bounded from below by (n — 1)k. Then

the function
F(r,y)
)= e
k (r)
is monotonically decreasing in r and converges to 1 (as r — 07). Therefore, for any
r>0,

(B (p,1) < Vpsulr),
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with equality for some ro > 0 if and only if the flag curvature of M satisfies
K(4,(1); ) =k, 0<t<r <t

forally € S,M.

It is easy to check that the usual Bishop—Gromov volume comparison theorem,
Theorem 1.1, and [38, Theorem 5.4] can all be deduced from Theorem 1.2 (see Re-
mark 3.5 and 3.8).

Forany y € S,M, define y* := {X € T,M : g,(X,y) = 0}. Denote by ¢, the
geodesic flow of F. Then we have the following theorem.

Theorem 1.3 Let (M,F) be a compact Finsler n-manifold. For each y € SM and
0<t<I<i, wehave

l l e, ]\ ntl
a(+ __ n _
/0 dr/r ,/’(t 1, go,(y)) dr > e (77) ,

with equality if and only if

2
Ry iy = (7)) id, o<y,

where R is the (Riemannian) curvature tensor acting on W'y(t)l.

When F becomes Riemannian, .7 (r, y)dr A dv,(y) reduces to the Riemannian
volume form, and, therefore, Theorem 1.3 becomes the Berger—Kazdan inequality
[8].

Another volume form that is used frequently in Finsler geometry is the so-called
Holmes-Thompson volume form dugr, ¢f. [24]. If F is reversible, then dugy >
dpg, with equality if and only if F is Riemannian (cf. [19]). There exist counterex-
amples to the inequality when F is nonreversible, e.g., [26]. According to [30], the
reversibility A of a Finsler manifold (M, F) is defined by

A:= sup F(x,—y), SM= {J S:M.
(x,y)ESM xEM

Clearly, A > 1 and A = 1 if and only if F is reversible. As an application of Theo-
rem 1.3, we have the following theorem.

Theorem 1.4 Let (M, F) be a compact Finsler n-manifold with reversibility . Then

(1.2) pr (M) > cn(%)neXp[*%(lhl\ +|hz|)},

where hy 1= SUP, o Spu(y) and hy == SUP e pr Sur(y).
In particular, if F is reversible, then equality holds in (1.2) if and only if (M, F) is
isometric to the standard n-sphere of constant sectional curvature (1 /i)
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In the Riemannian case, Spy = Syr = 0 and A = 1. Thus, Theorem 1.4 implies
the Berger—Kazdan comparison theorem [7].

Let Q C M be a relatively compact domain in (M, F) with smooth boundary 0.
Denote by n the unit inward normal vector field along 9€2. Thus, g,(n, X) = 0 for all
X € TON (see [34]). Set STOQ = {y € SM|oq : ga(n, y) > 0}. For y € SQ U §*99,
define t(y) := sup{T > 0 : Y (t) € Q, ¥Vt € (0,T)} and I(y) := min{iy,?(y)}. Let
m1: SM — M be the natural projection and dV gy be the canonical volume form on
SM. Given any volume form dy on (M, F), the induced volume form on 052 by dy is
defined by dA := i*(n|dp), where i: 92 < M is the inclusion map (cf. [34]). Then
we have the following theorem.

Theorem 1.5 Let (2 be a relatively compact domain in a reversible Finsler n-manifold
(M, F, dp), with 02 € C*°. For all integrable function f on S, we have

I(y)
fdVen = / eV gn(n, y)dx(y) fler(y))dt,
vy 5490 0
where Vg, :== {y € SQ (H—y) < i_y}and dx(y) = dA(m\(y)) dvz, ) (y).

In the Riemannian case, e’ = 1, & = & and, therefore, Theorem 1.5 yields
Santald’s formula [31].
Given any point p € €2, define

U, := 7r1_1|v5 (p) CSM, w,:= / eVdv,(y), and w:= infw,.
U

Cn—1 » peEQ

Theorem 1.3 together with Theorem 1.5 furnishes the following theorem.

Theorem 1.6 Let ) be a relatively compact domain with 0Q) € C™ in a reversible
Finsler n-manifold (M, F). Let dy denote either the Busemann—Hausdorff volume form
or the Holmes—Thompson volume form. Set

1
E=sup7(y), M =max| sup ————, sup V& y)).
yesQ (y€SM\asz V&1, y) yesmlan B )
Then
(i)
A(00) S (n—1)c—qw
w(Q) T e =EMA(Q)
where d()) denotes the diameter of €);

(ii)

A(0Q) S Co1 ( w )1+1/"7

w(Q)I=1/n = M(Znﬂ)(cn/z)lfl/n 22

with equality if and only if (Q, F|g) is a hemisphere of a constant sectional curva-
ture sphere.
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If F is Riemannian, then = = 0 and M = 1. Therefore, Theorem 1.6 gives Croke’s
isoperimetric inequality [17].

The paper is organized as follows. In Section 2, we give some necessary definitions
and properties concerned with Finsler geometry. In Section 3, by investigating the
polar coordinate system of a Finsler manifold, we prove Theorem 1.2 and obtain a
Bishop—Giinther type volume comparison theorem. As applications of Theorem 1.2,
we derive a characterization of R” in Finsler geometry and give a Finsler version of
the Calabi—Yau linear volume growth theorem. In Section 4, by virtue of the study of
Jacobi fields on a Finsler manifold, we prove Theorems 1.3 and 1.4. In Section 5, we
prove Theorem 1.5 by studying the properties of the distance function from a closed
hypersurface in a Finsler manifold. Based on these, Theorem 1.6 will be shown in
Section 6.

2 Preliminaries

In this section, we recall some definitions and properties cencerned with Finsler ge-
ometry. See [5,33,34] for more details.

Let (M, F) be a (connected) Finsler manifold with Finsler metric F: TM —
[0, +00). Define

SM:={y € T:M:F(x,y) =1} and SM:= |J SM.
xeEM

Let (x,y) = (x',y") be local coordinates on TM, and let 7: TM — M and
m1: SM — M be the natural projections. Denote by c¢,_; the volume of the Eu-
clidean unit (n — 1)-sphere. Define

oy 1 92F2(x, ) F &°F*(x, y)
El = = i7 5 = T A A A," 5 = T A A a1
il gij(x,y) 2 Dydy jk(x,y) 10y 0yioyk
i1y Ogji  Ogu  Ogjk i i pj i _kor
=58 (50t og o) Ni= Gt - Alakee) -F

The Chern connection V is defined on the pulled-back bundle 7* TM, and its forms
are characterized by the following structure equations:

(1) torsion freeness: dx/ A w§ =0;

(2) almost g-compatibility:

Ajjx
dgij — gewf — g = 2= (dy* + Nfdd).

From this it is easy to obtain wj- = F;kdxk, and F;k = F;'cj.
The curvature form of the Chern connection is defined as

dy' + Nldx*

, , 1 ,
Q== dw’; — wf Awp =: ERIJ dxk A dx! + P dxk A F

J
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Given a non-zero vector V € T, M, the flag curvature K(y,V) on (x,y) € TM\0 is
defined by o
_ ViyIRjiy'VE

&gV, V) = [g,(y, V)]*

where Ry := g,-sR; - And the Ricci curvature of y is defined as

K(y,V):

Ric(y) := Y K(y,e),

where ey, ..., e, is a g,-orthonormal base on (x, y) € TM\0.

For any y # 0, let 7,(¢) denote a constant speed geodesic with 7,(0) = y.
Given any the volume form du on M, in a local coordinate system (x'), express
du = o(x)dx' A --- A dx". For y € T,M\{0}, define the distortion of (M, F, dp)
as

det(gi;(x, y))

7(y) = log o)

And we define the S-curvature S as
d .
SO =4 [7(9,()) ] =0,
t
Two volume forms used frequently are the Busemann—Hausdorff volume form dypy

and the Holmes-Thompson volume form dyiyr, respectively. Given a local coordi-
nate system (x'), dupy = opg(x)dx! A -+« Adx"” and dugr = ogr(x)dx! A - Adx",

where
(x) VOI]R{H (]B;n)
U =
BH VOIRH{)/ e T.M : F(X, }/) < 1}7
" . . —_
our(x) = . det g;;(x, )/)(z:(—l)’_lyldy1 Ao Ndyi AN A d)/”) .
n—1 JS M i=1

If F is reversible, then it follows from [5, 19] that opy(x) > opr(x), with equality if
and only if F(x, -) is a Euclidean norm.
By Stokes’ formula, we have

/ e*TBH(}’)dVX(y) — / eTH'r(}/)de(y) = Cp—1,
S M SeM

where

n

dvy(y) = /detg;j(x, y)(Z:(—l)"‘l)f"dy1 Ao Nyl A A dy”) -

i=1

Throughout this paper, let gy, Ty7, Spy, and Syt denote the distortions and S-cur-
vatures of the Busemann—Hausdorff volume form and the Holmes—Thompson vol-
ume form, respectively.

https://doi.org/10.4153/CJM-2012-053-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-053-4

A Universal Volume Comparison Theorem for Finsler Manifolds 1407
Given any volume form dy on M. The volume form on SM is defined by

AVsm|(x.y)

= detg;;(x, y)dx' A+ Adx" A (Z(fl)]‘*lyjdy1 ARERWA d/y\f ARERWA dy”)

j=1

= 4/ detg;i(x, Y)dx' A - Ndx" A du(y)

=i (dp(x) A du(y).

The spray G(y) of F is defined by

;i 0 i 9 ji
G(y)_yﬁ_y(axi_Niayj)'

For any y € TM, let ¢;(y) be the integral curve of G with po(y) = y. Then ; is
called the geodesic flow of F. Clearly, y,(t) = 7 o ¢,(y) and 7, (t) = ¢, (y). If M is
compact, then ¢;: SM — SM is a diffeomorphism (see [33]). P. Dazord proved the
following theorem in [18]; see also [34].

Theorem 2.1 ([18]) The volume form dVsy on SM is invariant with respect to the
geodesic flow, that is o} (dVsy) = dVy.

F is called reversible if F(X) = F(—X), for all X € TM. By [30], the reversibility
Ar of (M, F) is defined by
F(x7 —}’)

)\F = .
(x,y)ETM\0 F(x,y)

Clearly, Ar > 1 and A = 1 if and only if F is reversible. According to [20], the
uniformity constant of (M, F) is defined by

gX(Y) Y)
xyzesm&z(Y,Y)

AF =

Clearly, A\ < v/Arpand Ar = 1 if and only if F is Riemannian.
The Legendre transformation £: TM — T*M is defined by

e Y =0,
gY(Y7 : )7 Y 7& 0.

For any x € M, the Legendre transformation is a smooth diffeomorphism from

T.M\{0} onto T;M\{0} (see [34]). Given a function f € C'(M) and a point
x € M, the gradient of f at x is defined as

_Jo, dfl, =0,
VI = {L—%dﬂx), dflc £ 0.
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3 Universal Volume Comparison Theorem

In this section, we will investigate the polar coordinate system of a Finsler manifold
and prove Theorem 1.2.

Fix a point p of a forward complete Finsler n-manifold (M, F). Let {x'} be local
coordinates on some neighborhood of p. Then F induces a Riemannian metric on
TyM\{0} by o

&)= g(p, )ijdy’ @ dy’,

where y = y' ‘?cf . Let ¢, and dv,, denote the Riemannian metric and the Riemannian

volume form on S,M = {y € T,M : F(p, y) = 1} induced by g, respectively. Thus,

dv,(y) = ,/detgi]-(p,y)(Z(—nf—lyfdyl Ao Adyi Ao A dy”) .
i=1

Let {x'}"_, be (local) polar coordinates on T,M\{0}. Namely,

X"(v) :==7(v) == F(v), x"(v) := g“(%) ’

where {6"}"~! are local coordinates on SpM. According to [5, p. 412], g, = dr ®

—n—1

dF + g, and dv, = \/detg, d©, where dO := d A --- A df
Given y € S,M, denote by i, the cut value of y. Define

Dy:={tyeT,M:yecSM0<t<i,},

and D, := epr(DP). Thus, M = D, U Cut, (see [5, Proposition 8.5.2]). The
coordinate system

{1 ={xo exp;l}: D, —{p} —R"
is called the polar coordinate system at p. For convenience, let
r:=x"o exp;l, 0% :=x"o exp;l .
It is noticeable that the polar coordinates actually describe a diffeomorphism of

(0,+00) x S,M onto D, \{p}, given by (r, y) — exp,, ry- Hence, we also use (r, y) to
denote the polar coordinate system at p. Thus,

0 0
(31) @ (r,y) - (expp)*ry(rﬁ> 9
0
(32) 5 (ry) - (eXPp)*ry)/,

where y is a point in S,M whose coordinates are {6 }.
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Given any volume form dyu on M, in the polar coordinates, express dpi(.,) =

op(r, y)dr A dO, where d© = df* A --- A\ d6"~!. By abuse of notation, we will use
dv, to denote (exp;l)*dyp. Thus,

_ (o) :
pley = ( \/W) dr A (/det g, (7)d®)

_ ( o,(r,y)
/detgy(y)

The following is a key lemma for the proof of Theorem 1.2.

)dr A duy(y) =5 Gy y)dr A dvy(p).

Lemma 3.1 Let T be the distortion of (M, F,du). Then

lim O’p(?’; )’) _ e,,-(y).
r—0t =1

Proof From the above, we have

op(1,y)

\/detg,(y)

\/detg(expp(ry), %) Vdetgy(y)

o)
,T((expp)*rﬂ,) \/det [g(expp(r}’)7 E):| |
Vdetg,(y)

where det [g(expp(ry), %)] is the determinant ofg,'j(expp(ry), %) (in the polar coor-
dinates). By the Gauss Lemma (see [5, p. 140]), we have

g%(%’%) =1 and g%(%,%) —0.

From (3.1), we obtain

(3.3) ap(ry) =

=e

(3.4)

Vees(emion. )] = e (5 )]

= r”_l\/det[ggr ((eXPp)*ry%’ (epr)*ryaZg) } '

Thus, (3.2) together with (3.3) and (3.4) gives

lim (1.7 = W, [ |
r—0+ =1
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Recall that -, (¢) is a constant speed geodesic with ,(0) = y. Hence, %|(ny> =
(exp,)«ryy = 7,(r). Throughout this paper, let 7/v/k := +0o when k < 0. The first
consequence of Lemma 3.1 is the following lemma.

Lemma 3.2 Let (M, F du) be a forward complete Finsler n-manifold. If for each
y € S,M, K(7,(1); - ) = k, then

u(B;(r)) =Voinu(r), forany0 < r <+,

where .
Vp,k,n(r) = ( de(y)) . (/ e_T(ﬂ;y(t))SZ_l(t)dt),
SpM 0
andi, := inf i,. Moreover,
yES,M
0 2/ N .
g(— ) =dr®dr+5(ng,(y), 0 <r <iy,
Orl(ry)

where (1, y) is the polar coordinate system at p.

Proof Given y € S,M, set T = ,(t). Let J(¢) be a Jacobi field along -, (¢) such that
J(0) = 0and gr(J, T) = 0. Since K(T; -) = k, VIVI]+kJ = 0. Hence, i i, < 77/\[
and J(t) = si(t)E(t), where E(t) is a parallel field along Yy (B).

Let (r, y) (or (r, 0)) be the polar coordinate system about p. From (3.1), we have

iml 9] -9
=071 00 ey 00" 1y
Hence,
0

W () = Sk(t)Ea(t)a

where E, (t) is a parallel field along 7,(t) such that E,(0) = % | ,
Since gr\ ty) =Ty(t) =

(3.5) \/det[g(expp(ty), )| =7 0 /detgr(Ba Ea) = 5710y /detgy (7).

By the definition of distortion, we deduce

d P d. d
(3.6) - log \/det [g(expp(ty), 5)} = ZlogFy(t,y) + ZT(3(0).

Equation (3.5) together with (3.6) yields

(3.7) jlogop(t y) = ilog[ g1 .
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From Lemma 3.1 and (3.7), we have

6p(t,Y) . a\P(‘eay)
ST e et (5
e TG (t)  em0te 5. (e)

Hence, u(B*(p, 1)) = Vpu(r), forany 0 < r < 1,. Since gag(%, %) =0,
(ﬁ
g or

Corollary 3.3 Let (M,F,du) be a simply connected reversible complete Finsler
n-manifold with K = k > 0. Then

W)) —dredr+ (N, 0<r<i, n

M) = Vo %) .

Proof By [37], for each p € M and each y € S,M, 1, =i, = % Hence,

M(M):u(3+(p7%)) :Vpﬁk.n(%>- u

Let (1, y) denote the polar coordinate system at p € M and let

detg(expp(ry)7 %)
detg,(y)

F(ry):= em’(”)ffp(r, y) = \/

Then we have the following theorem.

Theorem 3.4 Let (M, F,dpu) be a forward complete Finsler n-manifold. Suppose that

Ric > (n — 1)k.

Then the function
b = 210
5. (1)

is monotonically decreasing in r and converges to 1 (asr — 0%). Therefore,
u(B(p,1)) < Vpu(r), foranyr >0,
with equality for some ry > 0 if and only if for each y € S,M,
Ky, (t); ) =k, 0 <t <rg <.
In this case,
(9
&\ or

where (1, y) is the polar coordinate system at p.

( )) =drQdr+ si(r)gp(y), 0<r<ry,
r’y
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Proof By [34,39], Ar = %logap(r, y) = % loga,(r, y) and Ar + %T("yy(r)) <
% log[si(r)]" !, for 0 < r < i,. Thus, for any y € S,M

0 ( ap(r,y)

(3.8) r m

)SO, for0 < r <i,.

Lemma 3.1, together with (3.8), yields 7,(r, y) < e‘T("’V(’DSZ_I(r) for 0 < r < i,.
Hence, for any r > 0,

mln{rly}
(3.9) (B*(p7r))</ dup(y)/ T g (r)dr
/ dup(y)/ T g (r)dr
= Vpn(r).

If we have equality in (3.9) for some ry > 0, then ry < i,, and equality holds in
(3.8). By using Lemma 3.1 again, we have

g

oo, | 8P (Y), 5r) Gy(r,y) = e T (),

; ap(ryy
detgp(y)

for each y € S,M and for 0 < r < ry. Therefore, for any y € S,M,
\/detg(expp(ry), C,r)

detg'p(y)
By the proof of [36, Lemma 4.1], we have K(,(¢); - ) = kand

sp(r)" L, for0 < r < 1.

% = s(t)Eq(t),
for 0 < t < 1y, where E,(t) is a parallel field along v, (¢) such that E,(0) = Oea
Therefore,
(9 ) =drodr+ g, (), 0<r<n.
g A (ry) K\T)Ep\Y ), 0
The conclusion then follows from Lemma 3.2. [ |

Remark 3.5 From Theorem 3.4 and the standard argument (see [13] or [39]), one
can obtain the following relative volume comparison theorems:

(i)  Suppose that Ric > (n — 1)kand S > (n — 1)h. Then

w(B*(p,1))
Yo k(1)

is monotonically decreasing in r and converges to 1 (as r — 07), where

() = /S Wiy (y) / ()"

P

P(r) =
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(ii) Suppose that Ric > (n — 1)kand a < 7 < b. Then

Josi M (@)at

BB (0,1)

uB(p,R) ~ [Retnydr

forany 0 < r < R.
A simple argument yields the following theorem.

Theorem 3.6 Let (M, F, du) be a forward complete Finsler n-manifold. Suppose that
K < k. Then the function
F(r,y)

sZﬁl(r)

is monotonically increasing in r and converges to 1 (as r — 0%). Therefore,

P(r) =

(B (p, 1) > Vypu(r), forany0 < r < min{i,, 7/Vk},

with equality for some ry > 0 if and only if for each y € S,M,

K(5,(t); -) =k, 0 <t < 1y < min{i,, 7/Vk}.

(5

where (r, y) is the polar coordinate system at p.

In this case,

( )) =drQdr+ 5i(r)g'p(y), 0<r<ry,
ry

Fix a point p of a forward complete Finsler manifold (M, F). Let (r, ) be the polar
coordinate system at p. Define g, := g( % |(r.y))- Clearly, g, is a Riemannian metric on
D, — {p}. As an application of Theorem 3.4, we have the following characterization
of R™.

Corollary 3.7 Let (M, F,du) be a forward complete noncompact Finsler n-manifold
with Ric > 0 and S > 0. If for some p € M,

B* 1
lim infi'u}( (p,r)) = f/ e "Vdu,(y),
r—+00 r’ nJsum

P

then M is C'-diffeomorphic to TyM. In this case, (M\{p},g,) is isometric to
(TyM\{0},g,). Moreover, if (M, F) is a Berwald space, then M is C*°-diffeomorphic
to T,M.

Proof Remark 3.5 guarantees #},0,0,.(r) > pu(B*(p,r)) — +00, as r — +o0. Clearly,

n n

lim inf = .
r—=+00 ¥ 0.0.4(1) fspM e ™ Wdy,(y)
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By using Remark 3.5 again, we have

+ -+ + n
1> (B (p, 1) > lim infM > lim infM Jiminf— " > 1,
Vp.0,0(1) r=+c0 ¥}0.0,n(7) r—+00 " r=+o0 V) 0.0.n(1)

which implies that i, = +o0 and g, = dr @ dr + r’¢,(y). Hence, exp,: T,M — M
is a C'-diffeomorphism and g, = exp;@p). If F is of Berward type, then exp is C*°
throughout TM (see [5, p. 127]). This complete the proof. [ |

Remark 3.8 If dy is the Busemann-Hausdorff volume form, then

1 —
1 / e dy,(y) = CTI = Vol (B").
S,M

n
P

Clearly, g, = g|p, when F is Riemannian. Therefore, Corollary 3.7 implies [15,
Corollary 1.134].

From Theorem 3.4, we also obtain a generalized version of the Calabi-Yau linear
volume growth theorem [40]. See [38] for another version.

Corollary 3.9 Let (M, F, du) be a forward complete noncompact Finsler manifold
with Ric > 0, S > 0 and the reversibility A\ < +o00. For any point p € M, there exists a
constant C > 0 such that for any r > 1,

w(B*(p,r)) >Cr.

Proof By Theorem 3.4 and the standard argument (see [13] or [39]), one can show

that

o = £ D)

is monotonically decreasing in r. Fix a point x € M with d(x, p) = r > A + 1. Thus,

pB (x,r+ 1) — p(B e r =) _ r+1)" == N" _CA)

(3.10) w(Bt(x,r — X)) - (r— M) - r

Note that B¥(p, 1) C B*(x,r+1) —B*(x,r— A) and B*(p, \r+r—\) D B*(x,r— \).
Equation (3.10) then yields

w(B(p, Ar+1— X)) < r

w(B*(p, 1)) ~ C(m,\)
a (B (p,) (B (p,1))
~ . . I B p,r o o B p, 1 ~
C .= 76[17&2{)2—/\] . ,and C := mln( Co N ,C) .
Then we have u(B*(p,r)) > Cr, forr > 1. [ |
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4 Generalized Berger-Kazdan Inequality

Let (M, F) be a forward complete Finsler n-manifold. Given p € M and y € S,M,
define an inner product (-, -) on T,M by (-, ) :=g,(+, ). Let y* = {X € T,M :
(y,X) = 0}. Thus, T,M = Ry & y*. Denote by Py, the parallel translation along
7y from T, ()M to T, ;)M (with respect to the Chern connection).
Set T = 7, (¢). For 0 <t < ¢y,let Ry := Ry(-,T)T and
R(t,y) =P} oRp o Pyy: y= — yt.
Let A(t, y) be the solution of the matrix (or linear transformation) ordinary dif-
ferential equation on y=:
A +R(t,y)A =0,
(4.1) A0,y) =0,
‘A/(Oy )/) =17,
where A’ = %A and J is the identity transformation of y=.
Given any vector V (t) € y, it is easy to check that
Vi(Py V(1) = Py, V().

Hence, (4.1) is equivalent to

VIVL(P,AX) + Rr(Pyy AX, T)T =0, foranyX € y=,
(PyyAlt, $)X)|i=0 = 0,
V(P Alt, y)X) 1= = X.
Therefore, Py, A(t, y)X = (expp)*tth (see [5], p- 131).
Define det A(t, y) := det A(t, y)?, where A(t, y)e, = A(t, y)’es and {e, } is any

basis of y. It is not hard to see that det A is well defined and independent of {e, }.
Let (1, y) denote the polar coordinate system at p. From (3.1), we have

0 0 0
P, o A(r,y)—5 = (exp,) sy —5 = =——-
NPT Pl 557 = d6e
Note that for any X, Y € T, M,
g2 (Pr;yXa Pr;yY) = g}’(Xa Y).

Hence,

0 [ 0 0
det[g(expp(ry)7 5)} = det _g% (PW o Alr, y)W,PW o Alr, y)aw)}

[ 0 0
= det g,V (-A(r, )/)W“A(n }/)ﬁ) :|

[ < o 0
=det| A y oaA 5 T] T 5 A0 :|
e _ (1, y)oAlr, y),;gy(ago P )

= (det A(r, )" detg,(y),
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where A(r, y)% =: A(r, y)ga—%g. Namely,
detg(exp,,(ry), %) _ detAlr y)
det g, (y) 7

Equation (3.4) together with the above equality yields

lim det A(r, y) -1

r—0r 1

Denote by A* the adjoin of the linear transformation A on (y*, (-, -)); that is,
forany X,Y € yt, (A(X),Y) = (X, A*(Y)). Then A*A is self-adjoint and det A* =
det A. Moreover, we have the following lemma.

Lemma 4.1

i A*A=A*A'.

(ii) For0 <t < ¢y, A" A~ is self-adjoint.

Proof (i) Let T = ,(t). Forany X,Y € yt, set Jy = (expp)*tth = P, AX and
Jy = (expp)*,ytY = Py, AY. From the Lagrange identity (see [5, p. 135]), we have

0= gr(ViJx, Jr) = grUx, ViJy)
= gr(Pyy A'X, Py AY) — gr(Py; AX, Py, A'Y)
=g, (A'X,AY) — g,(AX, A'Y)
= (X, (A" A = A*A")(Y)).

This proves (i).
(i) From (i), we have 0 = (X, (A~ 1)*[A*A — A*A']A~'Y), which implies

(X, (A'ATYY) = (X, A'A7TY). n
Let C(t, ) be the solution of the matrix (linear transformation) ordinary equa-
tion on y=:
G+ R(t,y)C =0,
Ci(s, ) =0,
Ci(s,y) =1.

It is easy to check that C(t, y) = ngl o A(t — s5,7,(s)) o Py, for t > s. Hence,
det Ci(t, y) = detA(t —s, v'y(s)) , t>s.

In particular, by Lemma 4.1, one can show the following lemma, whose proof is the
same as that of [13, Theorem 5.8, Step 1-2] (cf. also [9, Appendix D]).
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Lemma 4.2 Giveny € S,M, forany 0 <s <t <,

Cu(t, y) = A(w)(/ (A A~ y)dr) A% (s, y).

(det A(s, »)) w /t %dn
*

det A(r, )/)) !

=1 > (det A(t, y)) a

with equality if and only if A(t, y) = (det A(t, y))n%lj.

Now we recall the Kazdan inequality (see [9, Appendix E]). Given A > 0, let S
denote the set of functions

S={peClo,m/A] : p(x) = x*(m/A — x)"1(x) for some 0 < a, B, < 2
and some ¢ € C[0, 7/\] with ) > 0 on [0,7r/)\]}.

Flp) = / dt / / @(tza(pgr) — t)ds,

where p € C[0,7/A] is a given nonnegative function.

Let

Theorem 4.3 (L. Kazdan) Ifp(n/X —1t) = p(t), forall0 <t < w /), then F(p) >
F(sin o), where sin o\(x) := sin(Ax).

Let (1, y) denote the polar coordinate system at p € M. Then

_ B detg(exp,(ry), %) -
F(ry) = \/ detg, () = det A(r, y).

From the above, we have the following inequality, which can be interpreted as a
generalization of the Berger—Kazdan inequality [8].

Theorem 4.4 Let (M,F) be a compact Finsler n-manifold. For each y € SM and
0 <1< iy, wehave

I I
T, [y ntl
. - T > . - )
(4.2) /Odr/rf(t r,ga(y))dt_zn 1(77)

with equality if and only if

2
Riw (-3 ®) 50 = (7) id foro<e<l,

where @, is the geodesic flow and R is the (Riemannian) curvature tensor acting on
o (1)L
Ty ().
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Proof Set € = 7. Using Holder’s inequality, Lemma 4.2, and Theorem 4.3, we have

1 1
/ dr / F(t— o) dt
0 r

>[ﬁdﬂiﬁu—n¢4nﬁﬁsm%%@a—ﬂmﬂ“l
N [fddr [!sin" " (€t — r)de] "

[fmfmfiﬂi!ﬁl!wwﬂwu—mmﬂ“l
F(my)n !

[Jhdr ['sin™ " (€(t — r)de] "
1 ) 1

> W/ dr/ sin"_l((‘:(t—r)) dt

(gnﬂ/ dr/ sin" it — r)dr = (E”“

If we have equality in (4.2), then

%

1

F(t —r,p,(y)) = (=)
Alt,y) = (det A(t, y)) 719,

for0 < r <t <1 Hence, A(t, y) = & J,0 <t < It follows from (4.1) that
R(t,y) =C%, for0<t <L

This completes the proof. u

The remainder of this section will be devoted to the proof of Theorem 1.4. First,
we recall the following theorem due to C. Kim and J. Yim (see [25, Theorem 4]).

Theorem 4.5 ([25]) If (M, F) is an n-dimensional reversible Finsler manifold with
K = 1 and Sy = 0, then F is a Riemannian metric. In fact, the universal covering of
M is isometric to the standard n-sphere of constant sectional curvature one.

Theorem 4.4 together with Theorems 2.1 and 4.5 yields the following theorem.

Theorem 4.6 Let (M, F) be a compact Finsler n-manifold with reversibility . Then

(4.3) ,uBH(M)2cn<%)nexp{—%(|h1\+|hz|)},

where h; 1= SUP, con Spu(y), hy == SUP, o Sur(y).
In particular, if F is reversible, then equality holds in (4.3) if and only if (M, F) is
isometric to the standard n-sphere of constant sectional curvature (1 /i)
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Proof Note that if we set F := = i-F, then the injective radius of (M, F F) is equal to .
Hence, without loss of generahty, we may assume that iy, = 7.
Since i)y = 7 and the reversibility is A,

+ + - r
B (yy(o),g) N B ('yy(w),ﬂT) =g, Vrelo,n/2].
Hence,
ppr (M) > MBH(B+<7y(O)7 ;) ) + MBH(B+<’Yy(7T), %) ) .

It is straightforward to compute
@t [ (B )0) V()

SM

= / dNHT(X)/ psr (B (x,1)) e dy(y)
M S M

:cn,l/ g (B (x, 7)) dpprr (x)
M

s / dpgr () / dt / Ganlt, Y)din(y)
M 0 SeM

=y / dpgr(x) / dt / F(t,y)e M dy, (y).
M 0 SeM

Since M is compact, the geodesic flow ¢,: SM — SM is a diffeomorphism. From
Theorem 2.1, we have

@9 [ (B (0. ) ) avaut)
= [ (B (m o 0. 5E) ) vt
= /%‘O%(SM) ,UBH(B (7T1 04,07()’), ))dVSM()')

= [;W(SM)(W;I)* |:NBH(B (7T1 O‘PW(J’) ))dVSM()’)}

= /%(SM) MBH(B (771 o <pﬂ(y) ) ) AVsm(px(y))

:/SM,UBH( (m(y) ))dVSM()’)
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Note that Vg = ¢,—1pugr(M). Using (4.4) and (4.5), we deduce that

61 aarr (M) g (M) = / i (M)dVps ()
SM

> /SM[MBH(B*(W(OL;)) +uBH(B*(vy(7r>,”;r))] dViu(y)

N /SM {MBH<B+(7T1()/)’ %)) " MBH<B+(771(J’)7 %) )] aVsm(y)

r/\ ?
— / dunr ) | dun(y) [ / " / D, y)dt} ,
M SeM 0 0

where D(t, y) = .Z (t, y)e” ™% 0D Therefore,

(46) S purr(Mpupn(M) >

/2 r/A ==
/ dpgr(x) dv,(y) / [ / + / D(t, y)dt} dr.
M SeM 0 0 0

By interchanging the order of integration, we obtain

/2 r/A oy /2
/ dr/ D(t, y)dt = / dt/ D(t, y)dr
0 0 0 %)

= /5(”2 — tA\)D(t, y)dt
0

and

/2 % oy /2 /A T—M\t
/ dr/ D(t, y)dt :/ dt/ D(t,y)dr+/ dt/ D(t, y)dr
0 0 0 0 x 0
b m/A

:/ gD(tv}’)dt+/T (m — AD)D(t, y)dt.
0 g

2M

Hence,

—

/2 r/A ~ z
(4.7) / {/ +/ D(t, y)dt} dr = / (m — At)D(¢, y)dt,
0 0 0 0
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By (4.6), (4.7), and Theorem 2.1, we obtain

g:uHT(M)MBH (M)

> / dsrr (%) / dv(y) / " = AOD(t, y)dt
M SeM 0

z T_y
- >\/ d,uHT(x)/ dl/x(y)/A dt/A D(t, y)dr
M SeM 0 0
S
=\ / dt / dr / e D(t, y)dVipn(y)
0 0 SM

£ i
= )\/ dt/ dr/ eI D(t, 0, (y)dVsu(y)
SM

Y / d / r [ e O ) 1, (Vs )
SM

It follows from the definition of S-curvature that

T T
(4.8) 781 (Per(9)) < TEH(Y) + Tl 7arer(n) < 7ur(y) + S lhal.
Set A = e~ 3Ml*1hD From the above, we have

%MHT(M),UJBH(M)

>A/ dt/ dr/ e O Z (¢ 0,(y)) dVism(y)
sM

—A / - / &0 d(y) / dt / (1, 0(y)) dr
SeM
:A/ duHT(x)/ e_T"”(y)de()/)/Xdr/X7 T (t,0,(y)) dr
M SeM 0 0
:A/ dpsr (x) / efTBH(”de(ﬂ/ Xdr/ T (1) de
M SeM 0 r

By Theorem 4.4,

cnlA .
pir D00 = [ dpr(a) [ e ()
a1 A" S SM

A

= M
i ,UHT( ).

Namely, figy; (M) > %2

https://doi.org/10.4153/CJM-2012-053-4 Published online by Cambridge University Press

1421


https://doi.org/10.4153/CJM-2012-053-4

1422 W. Zhao and Y. Shen
If F is reversible and we have equality in (4.3), then it follows from (4.8) that

THT(SOr(}’)) + TBH(SDHr()/)) = 7uar(y) + 7u(y) + 7T( |hy| + |h2\) )

forevery y € SM,0 <t <mand 0 < r < 7 — t. Since (M, F) is reversible, h; > 0,
h, > 0, and

TaT(Y) + TBH(Y) t rha + (t +1)h > THT(%(}/)) + TBH(<,0t+r(}’)) )

which implies that iy = h, = 0. If there exists y € SM such that Sgr(y) < 0,
then Syr(—y) = —Sgr(y) > 0, which is a contradiction. Hence, Sy = Spy = 0.
Theorem 4.4 yields R(¢, y) = J, for 0 < t < 7. By lettingt — 0%, we have

Ry:R},(',y)y:J:yJ‘%yl‘7

i.e., K = 1. Now, we have shown that (M, F) is a reversible compact Finsler n-mani-
fold with K = 1 and Sgy = 0. Theorem 4.5 then implies that F is a Riemmanian
metric and the universal covering of M is S”. But since u(M) = ¢,, (M, F) must be
isometric to S". n

When F is Riemannian, A = 1, h; = h, = 0, and, therefore, Theorem 4.6 becomes
the Berger—Kazdan comparison theorem [7].

5 Generalized Santalo formula

This section is dedicated to the proof of Theorem 1.5. Let (M, F) be a reversible
complete Finsler n-manifold and let & C M be a relatively compact domain with
smooth boundary 0€2. Denote by n the unit inward normal vector field along 0f.
Thus, gu(n, X) = 0 for any X € TS (see [34]). According to [14], n always exists.
In fact, since codim(9€2) = 1, by a partition of unity one can construct a nonzero
1-form w on 0f2 such that i*(w) = 0, where i: 92 — M is the inclusion map. Thus,
n= (L' (w))/(F(L™ (w))) (up to a sign), where £ is the Legendre transformation.

Let N = {k-n(x) : x € 9Q, k € R} denote the normal bundle over 9. Since F
is reversible, N is an n-dimensional smooth manifold. For convenience, we use (x, k)
to denote k - n(x) € N. The exponential map Exp of the normal bundle N is defined
by

Exp: N — M

(x, k) — exp, (kn).

We always identify OS2 with the zero section of N. This implies that for any x € 012,
we have the inclusion T, 02 C T\, ¢)N. Moreover, from the definition of N, we have

(5.1) TeoN = TONOR, TM = T,0Q @ Rn.

Lemma 5.1 Themap Exp: N — M maps a neighborhood of 02 C N C!-diffeomor-
phically onto a neighborhood of 02 C M.
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Proof Choose a (local) coordinate system {x*} of Q. Thus, (x*, k) is a (local)
coordinate system of N. Given any point x € 00, it is easy to check that

(EXP)*(X,O)(%) 8 o (EXp)axo) (ak) = n(x).

Hence, it follows from (5.1) that (Exp).(x0): T(x0N — TxM is an isomorphism, for
all x € 0N). The remaining part is the same as the proof of [21, Lemma 2.3] (¢f. also
[27, p. 200]), and we omit it here. [ |

Remark 5.2 Lemma 5.1 guarantees that there exists a small positive number § > 0
such that Exp: 5 — Exp({)s) is C!-diffeomorphic, where

Qs ={(x,k)eN:0<k<d}.
It follows from [5, p. 126] that Exp: Q5\0€2 — Exp(£25)\0€2 is C*°-diffeomorphic.

Define p: Q — R by p(x) = d(0Q, x). Let Qs be defined as in Remark 5.2 and let
O = Exp(§2s). From the above, we have the following lemma.

Lemma 5.3
(i) peC>®(0\0N).
(ii) Givenany p € 0, lim,_,,(dp)|\00(x) = ga(n, -).

Proof For each q € O, there exists a unique point (x,k) € s such that g =
Exp(x, k) = exp,(kn). Consider the geodesic v,(s) = exp,(sn), s € [0, k]. By the
first variation of arc length, one can check that ~,(s) is the unique minimal unit
speed geodesic from 9 to q. Hence, F(Exp~'(q)) = k = p(q). By Remark 5.2,
p € C(0\00).

Given any continuous curve o(t), 0 < t < ¢, with 0(0) = p and o((0,¢)) C
O\OQ. Let (x(t),k(t)) := Exp~'(o(t)) and n(t) := n(x(¢)). From the above, for
each fixed t € (0,€), M) (s) = exp,,y(sn(t)), s € [0,k(t)] is the unique minimal
unit speed geodesic from 052 to o (t). By the proofs of [34, Lemma 3.2.3] and Lemma
5.1, we have

(5.2) vp|{7(t) = Yn(t) (,D(U(t))) 7£ 0, Vte(0,e).
Using the triangle inequality, we deduce
(5.3)  d(p,m(n@®)) <p(o®) +L(c@®)) <2L(a(t)) —0, ast— 0",

where L(o(t)) is the length of ([0, t]). Equation (5.2) together with (5.3) and [5,
Exercise 5.3.1(b)] then furnishes lim;_,o+ Vp|,() = n(p), which implies

igl})(dpﬂﬁ\aﬂ(x) =gn(n, -). u
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Lemma 5.4 Leto(t),0 <t < ¢ beaC'-curve with 0(0) € 0Q and o((0,€)) C Q.

Then p
E t:o+p oo(r) = g“(n’ 0'(0)) :

Hence, (Vp)|oq = nand p € CH(0).

Proof Set(0) =V + gn(n, c(0))n, where V € T, 0f). Without loss of generality,
we may assume that o/((0, €)) C . Thus, by Lemma 5.1, Exp~ (o (t)) = (x(t), k(t)),
where x(t) is a Cl-curve in 9Q with x(0) = &(0) and k(t) is a nonnegative C'-
function with k(0) = 0. Let (x*, k) be a (local) coordinate system of N, where {x*}
is a (local) coordinate system of €2. From the proof of Lemma 5.1, we have

0
Ox™

V a1, 6(0) n = 6(0) = (Bxp).coi00 (£100) 2o +0) )

@ 8 i
=% 0) 52 + k(0)n(o(0)).

Hence, ic(O) = gn(n, c(0)).
By the proof of Lemma 5.3, we have
d plo®) _
t

— poo(t) = lim
+ t—0*

o KO
dt =0

Ii

r—0t

= k(0).

Hence, for each x € 99, dp|, = ga(n, -), and therefore Vp|, = L~ (dp|;) = n(x).

Now, it follows from Lemma 5.3 that p € C!(0). [}
As an immediate consequence of Lemma 5.4, we have the following corollary.

Corollary 5.5 Leto(t), 0 < t < 1, be a C'-curve such that o([0,1)) C Q and
o(1) € 0. Then go(n,5(1)) < 0.

Proof Without loss of generality, we assume that o([0, 1)) C &. From Lemma 5.4,
we have

0> zil}z po J(ti : 'i) oo(l) = % t:l*p oo(t) = gn(nﬁ(l)) . [ |
Let STOS be the collection of inward pointing unit vectors along 912, i.e.,
STOQ :={y € SM|po: y =V +kn, V € TOQ, k > 0}
={y € SM|pq : gn(n, y) > 0}.

Using an argument similar to that in [6, p. 286], one can show that S*9f is a sub-
manifold of SM.

Define Z := {y € S0 : 3t > Osuchthatv,((0,¢)) C Q}. For each y €
SQUSTON U Z, we set

ty) = sup{ T>0:7,()cQ, Vvt e (0, T)};

that is, when y € SQ2 and 7 ) is finite, 7, (#( ¥)) will be the first point on the geodesic
to hit the boundary 0€2.
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Lemma 5.6 ?(y) is low semi-continuous on S U STOQ.

Proof Suppose that (y) is not low semi-continuous at some point y, € SQUS* 0.

Case I: t(y,) < +oo. In this case, there exists § > 0 such that for any neighborhood
U of yo, thereis y € U with t(y) < #(yy) — 8. Hence, we obtain a sequence {yn} C
SQ U §*0Q such that lim,_, o0 ¥, = 0, and 0 < £(y,,) < t(y) — 0, for all . Set

als) = expy, (s Fya)yn), s € 10,1].

By the Arzela—Ascoli theorem (see [11, Theorem 2.5.14]), there exists a uniformly
convergent subsequence of {~,}. Without loss of generality, we assume {~,} con-
verges uniformly to y(s): [0, 1] — Q. It is easy to check that y(s) is also a geodesic.
Note that 7,(1) € 992 and lim,,—, o, 7,(1) = (1). Since 92 is compact, y(1) € .
Let T denote the length of 7, i.e., T = L(+y). Hence,

(5.4) T = lim L(y) = lim f(y,) < #y0) — 0.
n— 00 n—o00

We claim that T > 0. If not, then lim,_,, #(y,) = 0 and v(0) = (1) € 9.
Thus, yo € S*OQ. However, from Corollary 5.5, we have

Fu(1)
0= g“<“’ F(v'n(n)) = gn(m, (exP; (y,))sity).5, V) - forallm,
which implies that g, (n, y9) < 0. This contradicts the definition of S*0€2.
Since T > 0,

7(0) = lim 7,(0) = lim t(ys)y» = Tyo # 0.

Therefore, v(&) = 7,,(s). In particular, v,,(7) = v(1) € OS2, which implies that
T > ?(yo). From (5.4), we get a contradiction.

Case IT: #( ¥0) = +oo. In this case, there exist a constant X > 0 and a sequence
{y,} C SQU SO0 such that y, — yoand #(y,) < X, for all n. The rest of the proof
is similar to Case I, and we omit it. |

Since (M, F) is complete, we can define a map
U: R x SO0 — SM
by U(t,y) = (). Foreach y € SQU STOQ U Z, let I(y) := min{iy,?(y)}. Set
Ug = {y €SQ:t(—y) < i,y},
N:={(t,y):y €S0t €(0,i(y)},
Uz :={@(y):y € 2,6 €(0,1())} .

Then we have the following lemma.
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Lemma 5.7 ¥|y: N — Uy \Uy is a one-one map.

Proof Let Ny :={(t,y):y € Z,t € (0,1(y))}. We extend ¥ to a map
d: R x (§T0Q U SON) — SM

such that ®(¢, y) = ¢,(y). Clearly, Uz = ®(Nz) and ®|y = ¥|y. We just need to
prove that ®|yun, : N UNgz — U, is a one-one map.

Since Q) is compact, for each X € Uy, H(—X) < i_x < +4o0o. LetY :=
—4_x(t(—=X)). Corollary 5.5 implies Y € S*9Q U Z. Set p = m(X) and q = m,(Y),
where m;: SM — M is the natural projection. From the definition of U, we
have d(p,q) = t(—X) = L(’Lxhoj(,x)])- Since F is reversible, L(’yy|[07;(7x>]) =
(=X) = d(q, p). Hence, iy > t(—X) and ~y is the minimal geodesic from g to p
with Ay (H(—X)) = X.

We now claim that 7(—X) < iy. In fact, if iy = 7(—X), then p is the cut point
of g along ~y. Since F is reversible, p is not the first conjugate point of g along ~y.
By [5, Corollary 8.2.2], there exists an another distinct geodesic ¢ of the same length
(—X) from q to p. This contradicts T(—X) < i_x, since F is reversible.

From the above, we have shown that for each X € U, there existY € $*90Q U Z
and r € (0,1(Y)) such that ¢,(Y) = X. Hence, ®|yun,: NUNz — Ug isa
subjective map. It is not hard to see that ® |y, is also an injective map. Therefore,
we conclude that ®|yyy,, is a one-one map. |

Given any volume form dyp on M, the induced volume form on 02 by dp is de-
fined by dA := i*(n]du), where i: 9Q — M is the inclusion map (see [34, pp. 31—
32]). Definea (2n —1)-form 3 on R x S*0Q by |,,) = dt NdA(m(y)) Advz, y)(y).
Hence, there exists 7 € C° (R x S*9Q) such that (V)*(dVsy) =1 - 8.

Lemma 5.8 Forany (t,y) € R x S*0Q, we have n(t,y) = n(0, y).

Proof Let ¢; denote the transformation of R x S*0€) into itself, i.e, (s, y) =
(s+1t,y). Clearly, ¢; o U = W o ;. Using this and Theorem 2.1, we have

n-f=V"(dVsy) = ¥ (@] (dVsy)) = (¢r 0 ¥)* (dVsm) = (¥ 0 )" (dVsmr)
= (WdVsy) =5 (n- B) = ¢ () (B).

Since § is invariant under ¢, it follows that n - 8 = ¢ (n) - 8. Hence, n(0, y)
n(t, y). ]

Then we have a generalization of Santald’s formula [31].

Theorem 5.9 For all integrable function f on SQ), we have

1(y)
/ fdVsy = / e Vga(n, y)dx(y) / f(e(y)) dt,
Vo §ToQ 0

where Vg, :== {y € SQ (H—y) < i_y}and dx(y) = dA(m (y))dvz, ) (p).
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Proof Given any y € S*09), identify T, (S*0€2) with its image in Ty ,)(R x S*0Q).
Since ¢y = id, we have W, ,)(X) = X, VX € T,(S*0€2). This implies that

(5.5) U (dx(y)) = dxloy (mod dr).

Let p(x) = d(0%, x). For e_ach X € T,(S§T0Q), there exists a curve £: (—¢,+e) —
STO0Q with £(0) = y and £(0) = X. Clearly, m;(£(s)) C OS2, which implies that
p(m1(&(s))) = 0. Hence,

d
(1. (Wi X), dp) = (m1,.X,dp) = %’SZOP(m(f(S))) =0.

Thus, from Lemma 5.4, we deduce

B
(5.6) [ (71 (dp)) ] o) = <§’ (i (dp) >(O.y)dt

_ (%‘ pom(®)di = ga(n, )i

By the co-area formula (see [34, Theorem 3.3.1]), (5.5), and (5.6), we have
[ndt A dx]loy) = ¥ (dVsu(y)) = O [P 75(dp) () A dve, ()]
T [ 7i(dp A dA) () A dvmy ) (7)]
U [ 7} (dp)(y) A dx(y)]

[eT(y)gn(n, y)dt A dx|

(0,9
that is, (0, y) = eT(y)gn(n, ). It follows from Lemma 5.8 that
(57) U (dVeu(@(»)) =€ Vgaln, y)dt Ady, V(t,y) € R x §'0Q,

which implies that W is of maximal rank. Hence, from Lemma 5.7, we deduce that
|y is a diffeomorphism.

Clearly, Uy = Uy \W(N) has measure zero with respect to dVsy. Let A :=
{y € SQ:t(—y) = i_,}. Thus, V; = Uy U .#. By an argument similar to the
proof of Lemma 5.7, one has .4 C {py,)y : y € STOQU Z, I(y) = i,}, which
implies that .4 has measure zero with respect to dVy. By (5.7), we have

J

deSM:/ degM:/ deSM:/\I/*(deSM)
Uy W(N) N

Q Q

I(y)
— [ eVamnno) [ st .
500 0
In the Riemannian case, ™) = 1 and g, = g. Therefore, Theorem 5.9 implies

Santalé’s formula [13,31].
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6 A Croke Type Isoperimetric Inequality

Let (M, F) be a reversible complete Finsler n-manifold and let 2 C M be a relatively
compact domain with smooth boundary 0f). Denote by n the unit inward normal
vector field along 0€2. In this section, dy is either the Busemann—Hausdorff volume
form or the Holmes—-Thompson volume form. Let = := sup e sa7(y), where 7 is the
distortion of du. Given any point p € €2, define

Up = 7Tf1|V§(P) CSM, wp:= / eVdv,y(y), and w = infycqwy.
U

tn—1 Ju,

For each point p € 01, define

My = max( sup 5I|”", sup [lyll), M= sup M,,
yES,M yES,M pEIN

where ||y|| := \/ga(y, y). Since Q is compact, 1 < M < oo. It is not hard to see that
M, 'E(y) < Iyl <M, F(y), Vy € T,M,¥p € 9.

Using Stokes’ formula, we have the following estimate.

Lemma 6.1 For each point p € 0, set S;@Q = {y € $,M : ga(n, y) > 0}. Then
/ gn(n, y)e™dv,(y) < ezECLZM?H’
5;89 n—1

with equality if and only if F(p, -) is a Euclidean norm.

Proof Choose a g,-orthnormal basis {e;} of T,M such that e, = n. Let {y'} be the
corresponding coordinates. Define

B,:={y € T,M:F(y) <1}, B,:={y€B,:y" >0},

By, :={y€By:y" =1}, By(r):={yeT,M:|y|<r} 2B"(r),

n—1

> yen

a=1

By, (s) == {y eTM:y" =,

< s} =~ Br=(s).

Clearly, 9B} = B0 U S;09, B,(M,") C By, and B,, C lB%I,,,(\/J\/EIZ7 —7%). In
particular, for each y € B;, 0 < y" =gu(n,y) < F(y)F(n) < 1. Let

w = y"(Z(fl)iflyidyl /\~-~/\d/)7i /\-~-/\dy”).
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From Stokes’ formula, we have

(6.1) / w:/ w= [ dw=(n+1) [ ydy' A---Ndy"
5500 B} B B
1
= (T’l + 1)/ VO]:R{n—l(Bp’y”)yndyn
0
MP
<(n+ 1)/ Volga—1(Bp,y,)y"dy"
0
MP
(n+ 1)/ Volgi—1 (]Bip,yn( jv[; — (y")? ) ) ydy"
0
ca(n+1) [N » =l Cn— "
=B (VMG -0 ) Tyt = G

n—1 0 n

IN

with equality if and only if M, = 1, i.e., F(p, - ) is a Euclidean norm.

Let {9} be the dual basis of {e;} and let du(p) = o(p)9' A --- A 9" Since F is
reversible,
Vol(B") Vol(B")
Vol(B,) ~ Vol(B,(M, "))

(6.2) our(p) < opu(p) = =M.

Using (6.1) and (6.2), we have

| satnpean )
S;OQ
=/ ga(n, )™ ™ dy, (y) < eE/ g, y)e " Vdu,(y)
S;(F)Q S;OQ

:ezza(p)/ Y (0T Ay A ndy A A dy”
§300 (Z )

P

< eEM! / w < = ]
- s;00 -

By Theorem 4.4, Lemma 5.6, Theorem 5.9, and Lemma 6.1, we have the following
theorem.

Theorem 6.2 Let () be a relatively compact domain in a reversible Finsler n-manifold
(M, F), with 0Q2 € C*. Let dys denote either the Busemann—Hausdorff volume form or
the Holmes—Thompson volume form and let w, M and = be defined as above.

(i) We have

A(ON) S (n—1)cw

(6:3) 1)~ o dENA(Q)

where d(2) denotes the diameter of Q2. The equality holds in (6.3) if (0, F|g) is a stan-
dard hemisphere of a constant sectional curvature sphere.
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(ii) We have

A(09Q)
u(Q)l—l/n

(6.4) > Cn—1 (i
M(2n+1)(cn/2)1—1/n

W. Zhao and Y. Shen

with equality if and only if (0, F|g) is a hemisphere of a constant sectional curvature

sphere.

Proof (i) From Theorem 5.9, we have

bt Q) < ery / wndpi(x) = Ve (V) = / 1)e P gn(n, )dx(y)
Q StoN

<dQ) [ dA(x) e Vgn(n, y)dvy(y)
o0

$+00

< d(Q)A(QQ)EZEMZ”“L_zl.
n J—

(ii) Given any point x € €2, let (, ¥) be the polar coordinate system at x. Recall

that dul(.,) = ox(r, y)dr A dv,(y), where 6.(r, y) = ey

)F (1, ). Clearly,

I(y)
(@) = / dv(y) / 5.(r, )dr.
SeM 0

For each y € 5,0, I(ip:(y)) > I(y) — t. Using Holder’s inequality, Theorems 4.4 and
5.9 and Lemma 6.1, we have

1(y)
Q) = / du) [ du(y) / 51, y)dr
Q M 0

(6.5)

(6.6)

I(y)
=/ dVSM(J’)/ e
SQ 0
I(y)
> / AVe(y) / e
5 0

) I(y) l(w(y)
:/ eTygn(n,y)dx(y)/ dt/
R

>

W5 (r, y)dr
W?f}(f, y)dr
T(pe(y)

ox(r, o (y))dr

(e (y)—

T(Pr+r(y) >ﬂ(7’ (Pt(y))

/ D gn(n, y)dx( y)/ dt/
StoQ
T(y
/ g(n,ydxy)/ dt/
N
= ) I(y) I(y)—
o= / ¢ Vga(n, y)dx() / dr / F(r, 01(y))dr
Sto0 0 0

Cn n+l T
/ )™ e ga(n, )dx(y)
Ne

*T(Wr(}’ —7(rer ()/)

F (r,p:(y))dr

2e%=¢, "

https://doi.org/10.4153/CJM-2012-053-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-053-4

A Universal Volume Comparison Theorem for Finsler Manifolds 1431

n+1 —n
Cn T T
69 2= ([ esnna) ([ smnerao)
n—1T 500 5toQ
Cn [ 2E Cn—2 o c2ntl -
. > ~ A= - .
(610) > o= (Vou(Vy) (=20 a0
- Cn ( n—1 ) n VSM(VS;)nH
- 26— 1 2 DEN @) \ ¢, A(@Q)n

cpw™! (n— Dear\ " (D)™
= 262(n+1)EMn(2n+1>( ) A(OQ)"

TCh—2

B W a1 ()™
= ez(n+1)EMn(2n+l) (Cn/z)nfl A(@Q)"’

the equality (6.6) is Theorem 5.9; the inequality (6.8) is Theorem 4.4; the inequality
(6.9) is Holer’s inequality; the inequality (6.10) is Lemma 6.1. Therefore,

A(GQ) Cn—1 w \ 1+1/n
> (i) .
M(Q)l*l/rt M(ZnJrl)(Cn/z)lfl/n 2=
If equality holds in (6.4), then we have equalities in (6.5)—(6.10). From (6.10) and
Lemma 6.1, it follows that F(p, -) is a Euclidean norm, for each p € 0f2. Hence,
M=1land e =1 forall y € S*ON. Thus, by (6.10), we have

A(OQ) Cni 11/
(6.11) M(Q)l—l/n - (Cn/z)l—l/neZE/nw

Equation (6.5) yields Vi, = S€), which implies that for each y € SQ, ?(—y) <iy.
Since F is reversible, 7( y) < iy, forall y € SQ. From Lemma 5.6, we have

-~ < . . -~ < . . . _ . + .

t(yo) < hin_}yr;ft(y) < h}r/rlg;;ﬁy iy, Vyo€ S08
Equality in (6.9), the Holder inequality, implies that I(y) is constant, say, equal to I,
on all of $*0€). From above, #(y) = I, for all y € S*9. Equality in (6.7) implies that
e @) = ¢== forall y € §*08Q, t € (0,1). By the proof of Theorem 5.9, we have

Vi (SQ\T(N)) = Vaur (Vg \W(N)) = 0.

Hence, e ™) = ¢ =, for all y € 82, which implies that F |§ is a Riemannian metric
and e~Z = 1. Then (6.11) becomes

M(Q)l—l/n - (Cn/z)l—l/n

A(09) Gt vt

Equality in (6.8), Theorem 4.4, implies that { has constant sectional curvature equal
to (7r/l)2. Thus, forall y € S*@Q,?(y) =1=i,,ie, (isa hemisphere. |
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If F is Riemannian, then = = 0 and M = 1. Therefore, the theorem above implies
Croke’s isoperimetric inequality [17].

Let (M, F) be a compact reversible Finsler n-manifold without boundary. Given
p € M, the (open) metric ball of radius r centered at p is denoted by B(p, r), and
S(p,r) :== IB(p, ). Define

war(x) == /eTHT(y)de(}’)a WHT = iBI%f whT(x),
Ux

Cn—1 xEB(p,r)

rp = inf{r: (B(p,r)7F|B(p,r)) has wyr < 1}~

Clearly, wyr = 1 if and only if U, = S;M, Vx € B(p, ), which implies that the
cut locus of any interior point in B(p, r) lies outside B(p, r). Therefore, r, > iy/2.
Then we have the following proposition, which implies [17, Proposition 14].

Proposition 6.3 Let (M, F, du) be a compact reversible Finsler n-manifold without
boundary, where dy is either the Busemann—Hausdorff volume form or the Holmes—
Thompson volume form. Forany p € M and 0 < r < r,, (orr < iy/2), we have

C'(n,A) -y
’

nn—l

L Cmd)
nn

u(B(p,r)) > A(S(p,n) >

b

where A is the uniform constant of (M, F) and C(n, A) is a constant that depends on n
and A.

Proof Let (x', ') be local coordinates on TM. By [38], we have

max detg;;(x, y)
yESM / Cn—1 Cn—1

< A2,

: <A, =
yrélSIXII}/I detg;;(x, y) Vol (S:M) fst dvy(y)

for all x € M. Hence, for each y € SM,

\/detgij(y)

6.12 erry) = MO D o A
( ) our(m(y)) —

where 7, : SM — M is the natural projection.

Since F is reversible, dupy > dugr (see Section 2 or [5,19]). Let p(x) := d(p, x).
Then p is differentiable almost everywhere and dA := i*(Vp|du), wherei: S(p,r) —
M is the inclusion map (see [34]). Hence, dAgy > dApr. Therefore, u(B(p,r)) >
puT(B(p, 1)) and A(S(p, 7)) > Aur(S(p,1)).

LetC(n, A) := Mﬁ From Theorem 6.2 and (6.12), we have

d
EILHT(B(P7 1)) AHT(S(P, 1)) N
= C 7A )
it B (o, 0) 7 e (B(p, ey~ O
which implies that
MHT(B(P,r)) > %r’ﬂ 0<r<r,.
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Thus, we get the first statement. Using Theorem 6.2 again, we have

C"(n,A) -1

Anr(S(p, 1) = Cln, Mpir(B(p, r)' /" > =5 L0<r<r, ®

By Theorem 3.4, we have the following proposition, which is a Finslerian version
of [17, Lemma 3].

Proposition 6.4 Let (M, F, du) be a compact reversible Finsler n-manifold with
Ric> (n— 1k, 72>h,
where dy is either the Busemann—Hausdorff volume form or the Holmes—Thompson

volume form. If I is any (n — 1)-dimensional compact submanifold of M dividing M
into two open submanifolds My and M,, such that OM,=0M, = T, then

eZhu(M )
G lfo 0 1(r)dr

i 7]

Wi

where wj is the w corresponding to M, and d(M) is the diameter of M.
In particular, if 1(M;) < u(M,), then

ezﬁu(M )

= d)
-1, N (r )dr’

Proof Given p € Mj, let
Op:={geM:q=r,(t), t€(0,i,],y €Uy}

Then for any g € M), there is a unit speed minimizing geodesic v, (¢) from p to q.
Hence, 7y, (¢) must hit the boundary and therefore y = +,(0) € U,,. This implies that
M, C O,. Thus, by the proof of Theorem 3.4, we obtain

H(Ms) < 1(0,) = / dvy(y) / "5, (1, )i
U 0

/ vy () / OO (1)
Up
/ Vdvy(y) / "o (1) dt

gcn,lwl(p)e* /skfl(t)dt. [ |
0
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According to [13, 34], the Cheeger’s constant of a reversible Finsler n-manifold
(M, F,dyp) is defined by

. AT)
Ioo M = f N )
(M) T min{p(M;), p(M,)}

where I' varies over compact (n — 1)-dimensional submanifolds of M that divide
M into two disjoint open submanifolds M;, M, of M. Then we have the following
theorem.

Theorem 6.5 Let (M,F,du) be a compact reversible Finsler manifold, where dy is
either the Busemann—Hausdorff volume form or the Holmes—Thompson volume form.
Then I.o(M) > 0.

Proof Given any compact (n — 1)-dimensional submanifold I" that divided M into
two disjoint open submanifolds. Let n be the unit inward normal vector field along
I" and let M be defined as above. Since M is compact, the uniformity constant A is
finite and v/A > M. Combining Theorem 6.2 and Proposition 6.4 completes the
proof. ]
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