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A Universal Volume Comparison Theorem
for Finsler Manifolds and Related Results

Wei Zhao and Yibing Shen

Abstract. In this paper, we establish a universal volume comparison theorem for Finsler manifolds
and give the Berger–Kazdan inequality and Santaló’s formula in Finsler geometry. Based on these,
we derive a Berger–Kazdan type comparison theorem and a Croke type isoperimetric inequality for
Finsler manifolds.

1 Introduction

As is well known, the Bishop–Gromov volume comparison theorem [10], the Berger–
Kazdan inequality [8], and Santaló’s formula [31] play very important roles in global
differential geometry and geometric analysis. Some of their applications are Gro-
mov’s precompactness theorem [22], the Berger-Kazdan comparison theorem [7]
and Croke’s isoperimetric inequality [17]. Moreover, with the Berger–Kazdan in-
equality, the Blaschke conjecture was thereby settled for even dimensions (cf. [9,13]).
See [13,16,17,22,28,29], etc., for other interesting applications in global Riemannian
geometry.

Finsler geometry is just Riemannian geometry without quadratic restriction. A
Finsler manifold is a differentiable manifold on which every tangent space is endowed
with a Minkowski norm instead of a Euclidean norm. Recently, there has been a
revived interest in the study of Finsler manifolds, particularly in their global aspect;
see, for example, [3–5, 33, 34, 36].

By [11, Sect. 5.5], there is only one reasonable notion of the volume form for
Riemannian manifolds. However, the situation is different in Finsler geometry. The
Finsler volume form can be defined in various ways and essentially different results
may be obtained, e.g., [1, 2]. Therefore, it is an interesting and important problem
to investigate the relations between the volume forms and the geometric properties
on a Finlser manifold. A Finsler volume form used frequently is the Busemann–
Hausdorff volume form dµBH (cf. [12]), with respect to which Z. Shen firstly obtained
the following Bishop–Gromov type volume comparison theorem in [36].

Theorem 1.1 ([36]) Let (M, F) be a forward complete Finsler n-manifold satisfying
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Ric ≥ (n− 1)k and SBH ≥ (n− 1)h. Then the function

P(r) =
µBH(B+(p, r))

Vk,h,n(r)

is decreasing, and for any r > 0,

(1.1) µBH(B+(p, r)) ≤ Vk,h,n(r),

where

Vk,h,n(r) := cn−1

∫ r

0

[
e−ht sk(r)

] n−1
dt,

cn−1 is the volume of the standard Euclidean unit (n − 1)-sphere, sk(t) is the unique
solution to y ′ ′ + ky = 0 with y(0) = 0 and y ′(0) = 1, and SBH is the S-curvature with
respect to dµBH .

Using the Laplacian comparison theorem in Finsler geometry, Wu and Xin gave
a different proof of the above theorem in [39]. But, in general, Theorem 1.1 (more
precisely, the inequality (1.1)) is invalid for other volume forms. In [38], there are
some comparison theorems that are valid with respect to all volume forms. However,
Theorem 1.1 cannot be deduced from the results of [38]. We refer to [19, 23, 32, 34,
36–39] for more results.

The purpose of this paper is to study the influence that the volume measure has
on the geometry of a Finsler manifold.

Let (M, F) be a forward complete Finsler n-manifold. Given a point p ∈ M,
denote by SpM the indicatrix at p, namely, SpM = {y ∈ TpM : F(p, y) = 1}.
Let dνp be the Riemannian volume form on SpM induced by F (see [5]). For each
y ∈ SpM, let γy(t) denote the unit speed geodesic with γ̇y(0) = y. Let i y denote the
cut value of y and let ip (resp. iM) denote the injective radius of p (resp. M). Given
any volume form dµ on (M, F), let τ and S denote the distortion and S-curvature of
dµ, respectively. Define

Vp,k,n(r) :=

(∫
SpM

dνp(y)

)
·
(∫ r

0
e−τ (γ̇y (t))sn−1

k (t)dt

)
.

Let (r, y) denote the polar coordinate system at p on (M, F) (see Section 3). Set dµ =
σ̂p(r, y)dr ∧ dνp(y) and F (r, y) = eτ (γ̇y (r))σ̂p(r, y). In fact, F (r, y) is independent of
the choice of dµ. We then shall establish the following theorem.

Theorem 1.2 Let (M, F, dµ) be a forward complete Finsler n-manifold with a volume
form dµ. Suppose the Ricci curvature of M is bounded from below by (n − 1)k. Then
the function

P(r) =
F (r, y)

sn−1
k (r)

is monotonically decreasing in r and converges to 1 (as r → 0+). Therefore, for any
r > 0,

µ
(

B+(p, r)
)
≤ Vp,k,n(r),
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with equality for some r0 > 0 if and only if the flag curvature of M satisfies

K
(
γ̇y(t); ·

)
≡ k, 0 ≤ t ≤ r0 ≤ ip,

for all y ∈ SpM.

It is easy to check that the usual Bishop–Gromov volume comparison theorem,
Theorem 1.1, and [38, Theorem 5.4] can all be deduced from Theorem 1.2 (see Re-
mark 3.5 and 3.8).

For any y ∈ SpM, define y⊥ := {X ∈ TpM : gy(X, y) = 0}. Denote by ϕt the
geodesic flow of F. Then we have the following theorem.

Theorem 1.3 Let (M, F) be a compact Finsler n-manifold. For each y ∈ SM and
0 < t ≤ l ≤ i y , we have

∫ l

0
dr

∫ l

r
F
(

t − r, ϕr(y)
)

dt ≥ πcn

2cn−1

( l

π

) n+1
,

with equality if and only if

Rγ̇y (t)( · , γ̇y(t))γ̇y(t) =
( π

l

) 2
id, 0 ≤ t ≤ l,

where R is the (Riemannian) curvature tensor acting on γ̇y(t)⊥.

When F becomes Riemannian, F (r, y)dr ∧ dνp(y) reduces to the Riemannian
volume form, and, therefore, Theorem 1.3 becomes the Berger–Kazdan inequality
[8].

Another volume form that is used frequently in Finsler geometry is the so-called
Holmes–Thompson volume form dµHT , cf. [24]. If F is reversible, then dµBH ≥
dµHT , with equality if and only if F is Riemannian (cf. [19]). There exist counterex-
amples to the inequality when F is nonreversible, e.g., [26]. According to [30], the
reversibility λ of a Finsler manifold (M, F) is defined by

λ := sup
(x,y)∈SM

F(x,−y), SM =
⋃

x∈M
SxM.

Clearly, λ ≥ 1 and λ = 1 if and only if F is reversible. As an application of Theo-
rem 1.3, we have the following theorem.

Theorem 1.4 Let (M, F) be a compact Finsler n-manifold with reversibility λ. Then

(1.2) µBH(M) ≥ cn

(
iM

λπ

) n
exp
[
− iM

λ

(
|h1| + |h2|

)]
,

where h1 := supy∈SM SBH(y) and h2 := supy∈SM SHT(y).
In particular, if F is reversible, then equality holds in (1.2) if and only if (M, F) is

isometric to the standard n-sphere of constant sectional curvature (π/iM)2.
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In the Riemannian case, SBH = SHT = 0 and λ = 1. Thus, Theorem 1.4 implies
the Berger–Kazdan comparison theorem [7].

Let Ω ⊂ M be a relatively compact domain in (M, F) with smooth boundary ∂Ω.
Denote by n the unit inward normal vector field along ∂Ω. Thus, gn(n,X) = 0 for all
X ∈ T∂Ω (see [34]). Set S+∂Ω = {y ∈ SM|∂Ω : gn(n, y) > 0}. For y ∈ SΩ ∪ S+∂Ω,
define t̂(y) := sup{T > 0 : γy(t) ∈ Ω, ∀t ∈ (0,T)} and l(y) := min{i y , t̂(y)}. Let
π1 : SM → M be the natural projection and dVSM be the canonical volume form on
SM. Given any volume form dµ on (M, F), the induced volume form on ∂Ω by dµ is
defined by dA := i∗(ncdµ), where i : ∂Ω ↪→ M is the inclusion map (cf. [34]). Then
we have the following theorem.

Theorem 1.5 Let Ω be a relatively compact domain in a reversible Finsler n-manifold
(M, F, dµ), with ∂Ω ∈ C∞. For all integrable function f on SΩ, we have∫

V−
Ω

f dVSM =

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0
f (ϕt (y))dt,

where V−Ω := {y ∈ SΩ : t̂(−y) ≤ i−y} and dχ(y) = dA(π1(y)) dνπ1(y)(y).

In the Riemannian case, eτ (y) = 1, gn = g, and, therefore, Theorem 1.5 yields
Santaló’s formula [31].

Given any point p ∈ Ω, define

U p := π−1
1 |V−

Ω
(p) ⊂ SpM, ωp :=

1

cn−1

∫
U p

eτ (y)dνp(y), and ω := inf
p∈Ω

ωp.

Theorem 1.3 together with Theorem 1.5 furnishes the following theorem.

Theorem 1.6 Let Ω be a relatively compact domain with ∂Ω ∈ C∞ in a reversible
Finsler n-manifold (M, F). Let dµ denote either the Busemann–Hausdorff volume form
or the Holmes–Thompson volume form. Set

Ξ = sup
y∈SΩ

τ (y), M = max
(

sup
y∈SM|∂Ω

1√
gn(y, y)

, sup
y∈SM|∂Ω

√
gn(y, y)

)
.

Then

(i)
A(∂Ω)

µ(Ω)
≥ (n− 1)cn−1ω

cn−2e2ΞM2n+1d(Ω)
,

where d(Ω) denotes the diameter of Ω;
(ii)

A(∂Ω)

µ(Ω)1−1/n
≥ cn−1

M(2n+1)(cn/2)1−1/n

( ω

e2Ξ

) 1+1/n
,

with equality if and only if (Ω, F|Ω) is a hemisphere of a constant sectional curva-
ture sphere.
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If F is Riemannian, then Ξ = 0 and M = 1. Therefore, Theorem 1.6 gives Croke’s
isoperimetric inequality [17].

The paper is organized as follows. In Section 2, we give some necessary definitions
and properties concerned with Finsler geometry. In Section 3, by investigating the
polar coordinate system of a Finsler manifold, we prove Theorem 1.2 and obtain a
Bishop–Günther type volume comparison theorem. As applications of Theorem 1.2,
we derive a characterization of Rn in Finsler geometry and give a Finsler version of
the Calabi–Yau linear volume growth theorem. In Section 4, by virtue of the study of
Jacobi fields on a Finsler manifold, we prove Theorems 1.3 and 1.4. In Section 5, we
prove Theorem 1.5 by studying the properties of the distance function from a closed
hypersurface in a Finsler manifold. Based on these, Theorem 1.6 will be shown in
Section 6.

2 Preliminaries

In this section, we recall some definitions and properties cencerned with Finsler ge-
ometry. See [5, 33, 34] for more details.

Let (M, F) be a (connected) Finsler manifold with Finsler metric F : TM →
[0,+∞). Define

SxM := {y ∈ TxM : F(x, y) = 1} and SM :=
⋃

x∈M
SxM.

Let (x, y) = (xi , yi) be local coordinates on TM, and let π : TM → M and
π1 : SM → M be the natural projections. Denote by cn−1 the volume of the Eu-
clidean unit (n− 1)-sphere. Define

`i :=
yi

F
, gi j(x, y) :=

1

2

∂2F2(x, y)

∂yi∂y j
, Ai jk(x, y) :=

F

4

∂3F2(x, y)

∂yi∂y j∂yk
,

γi
jk :=

1

2
g il
( ∂g jl

∂xk
+
∂gkl

∂x j
−
∂g jk

∂xl

)
, N i

j :=
(
γi

jk`
j − Ai

jkγ
k
rs`

r`s
)
· F.

The Chern connection ∇ is defined on the pulled-back bundle π∗TM, and its forms
are characterized by the following structure equations:

(1) torsion freeness: dx j ∧ ωi
j = 0;

(2) almost g-compatibility:

dgi j − gk jω
k
i − gikω

k
j = 2

Ai jk

F
(dyk + Nk

l dxl).

From this it is easy to obtain ωi
j = Γi

jkdxk, and Γi
jk = Γi

k j .
The curvature form of the Chern connection is defined as

Ωi
j := dωi

j − ωk
j ∧ ωi

k =:
1

2
Ri

j kldxk ∧ dxl + Pi
j kldxk ∧ dy l + N l

sdxs

F
.
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Given a non-zero vector V ∈ TxM, the flag curvature K(y,V ) on (x, y) ∈ TM\0 is
defined by

K(y,V ) :=
V i y jR jikl y lV k

gy(y, y)gy(V,V )− [gy(y,V )]2
,

where R jikl := gisRs
j kl. And the Ricci curvature of y is defined as

Ric(y) :=
∑

i

K(y, ei),

where e1, . . . , en is a gy-orthonormal base on (x, y) ∈ TM\0.
For any y 6= 0, let γy(t) denote a constant speed geodesic with γ̇y(0) = y.

Given any the volume form dµ on M, in a local coordinate system (xi), express
dµ = σ(x)dx1 ∧ · · · ∧ dxn. For y ∈ TxM\{0}, define the distortion of (M, F, dµ)
as

τ (y) := log

√
det(gi j(x, y))

σ(x)
.

And we define the S-curvature S as

S(y) :=
d

dt

[
τ
(
γ̇y(t)

)]
|t=0,

Two volume forms used frequently are the Busemann–Hausdorff volume form dµBH

and the Holmes-Thompson volume form dµHT , respectively. Given a local coordi-
nate system (xi), dµBH = σBH(x)dx1 ∧ · · · ∧ dxn and dµHT = σHT(x)dx1 ∧ · · · ∧ dxn,
where

σBH(x) =
VolRn (Bn)

VolRn{y ∈ TxM : F(x, y) < 1}
,

σHT(x) =
1

cn−1

∫
SxM

det gi j(x, y)
( n∑

i=1

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)
.

If F is reversible, then it follows from [5, 19] that σBH(x) ≥ σHT(x), with equality if
and only if F(x, · ) is a Euclidean norm.

By Stokes’ formula, we have∫
SxM

e−τBH (y)dνx(y) =

∫
SxM

eτHT (y)dνx(y) = cn−1,

where

dνx(y) :=
√

det gi j(x, y)
( n∑

i=1

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)
.

Throughout this paper, let τBH , τHT , SBH , and SHT denote the distortions and S-cur-
vatures of the Busemann–Hausdorff volume form and the Holmes–Thompson vol-
ume form, respectively.
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Given any volume form dµ on M. The volume form on SM is defined by

dVSM |(x,y)

= det gi j(x, y)dx1 ∧ · · · ∧ dxn ∧
( n∑

j=1

(−1) j−1 y jdy1 ∧ · · · ∧ d̂y j ∧ · · · ∧ dyn
)

=
√

det gi j(x, y)dx1 ∧ · · · ∧ dxn ∧ dνx(y)

= eτ (y)π∗1 (dµ(x)) ∧ dνx(y).

The spray G(y) of F is defined by

G(y) = yi δ

δxi
= yi

( ∂

∂xi
− N j

i

∂

∂y j

)
.

For any y ∈ TM, let ϕt (y) be the integral curve of G with ϕ0(y) = y. Then ϕt is
called the geodesic flow of F. Clearly, γy(t) = π ◦ ϕt (y) and γ̇y(t) = ϕt (y). If M is
compact, then ϕt : SM → SM is a diffeomorphism (see [33]). P. Dazord proved the
following theorem in [18]; see also [34].

Theorem 2.1 ([18]) The volume form dVSM on SM is invariant with respect to the
geodesic flow, that is ϕ∗t (dVSM) = dVSM .

F is called reversible if F(X) = F(−X), for all X ∈ TM. By [30], the reversibility
λF of (M, F) is defined by

λF := sup
(x,y)∈TM\0

F(x,−y)

F(x, y)
.

Clearly, λF ≥ 1 and λF = 1 if and only if F is reversible. According to [20], the
uniformity constant of (M, F) is defined by

ΛF := sup
X,Y,Z∈SM

gX(Y,Y )

gZ(Y,Y )
.

Clearly, λF ≤
√

ΛF and ΛF = 1 if and only if F is Riemannian.
The Legendre transformation L : TM → T∗M is defined by

L(Y ) =

{
0, Y = 0,

gY (Y, · ), Y 6= 0.

For any x ∈ M, the Legendre transformation is a smooth diffeomorphism from
TxM\{0} onto T∗x M\{0} (see [34]). Given a function f ∈ C1(M) and a point
x ∈ M, the gradient of f at x is defined as

∇ f (x) =

{
0, d f |x = 0,

L−1(d f |x), d f |x 6= 0.
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3 Universal Volume Comparison Theorem

In this section, we will investigate the polar coordinate system of a Finsler manifold
and prove Theorem 1.2.

Fix a point p of a forward complete Finsler n-manifold (M, F). Let {xi} be local
coordinates on some neighborhood of p. Then F induces a Riemannian metric on
TpM\{0} by

gp(y) := g(p, y)i jdyi ⊗ dy j ,

where y = yi ∂
∂xi . Let ġp and dνp denote the Riemannian metric and the Riemannian

volume form on SpM = {y ∈ TpM : F(p, y) = 1} induced by gp, respectively. Thus,

dνp(y) =
√

det gi j(p, y)
( n∑

i=1

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)
.

Let {xi}n
i=1 be (local) polar coordinates on TpM\{0}. Namely,

xn(v) := r(v) := F(v), xα(v) := θ
α
( v

F(v)

)
,

where {θα}n−1
α=1 are local coordinates on SpM. According to [5, p. 412], gp = dr ⊗

dr + r2ġp and dνp =
√

det ġp dΘ, where dΘ := dθ
1 ∧ · · · ∧ dθ

n−1
.

Given y ∈ SpM, denote by i y the cut value of y. Define

Dp := {t y ∈ TpM : y ∈ SpM, 0 ≤ t < i y},

and Dp := expp(Dp). Thus, M = Dp t Cutp (see [5, Proposition 8.5.2]). The
coordinate system

{xi} = {xi ◦ exp−1
p } : Dp − {p} −→ Rn

is called the polar coordinate system at p. For convenience, let

r := xn ◦ exp−1
p , θα := xα ◦ exp−1

p .

It is noticeable that the polar coordinates actually describe a diffeomorphism of
(0,+∞)× SpM onto Dp\{p}, given by (r, y) 7→ expp ry.Hence, we also use (r, y) to
denote the polar coordinate system at p. Thus,

∂

∂θα

∣∣∣
(r,y)

= (expp)∗ry

(
r
∂

∂θ
α

)
,(3.1)

∂

∂r

∣∣∣
(r,y)

= (expp)∗ry y,(3.2)

where y is a point in SpM whose coordinates are {θα}.
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Given any volume form dµ on M, in the polar coordinates, express dµ|(r,y) =
σp(r, y)dr ∧ dΘ, where dΘ = dθ1 ∧ · · · ∧ dθn−1. By abuse of notation, we will use
dνp to denote (exp−1

p )∗dνp. Thus,

dµ|(r,y) =
( σp(r, y)√

det ġp(y)

)
dr ∧

(√
det ġp(y)dΘ

)
=
( σp(r, y)√

det ġp(y)

)
dr ∧ dνp(y) =: σ̂p(r, y)dr ∧ dνp(y).

The following is a key lemma for the proof of Theorem 1.2.

Lemma 3.1 Let τ be the distortion of (M, F, dµ). Then

lim
r→0+

σ̂p(r, y)

rn−1
= e−τ (y).

Proof From the above, we have

σ̂p(r, y) =
σp(r, y)√
det ġp(y)

=
σp(r, y)√

det g(expp(ry), ∂∂r )

√
det
[

g(expp(ry), ∂∂r )
]

√
det ġp(y)

= e−τ
(

(expp)∗ry y
) √det

[
g(expp(ry), ∂∂r )

]
√

det ġp(y)
,

(3.3)

where det[g(expp(ry), ∂∂r )] is the determinant of gi j(expp(ry), ∂∂r ) (in the polar coor-
dinates). By the Gauss Lemma (see [5, p. 140]), we have

g ∂
∂r

( ∂

∂r
,
∂

∂r

)
= 1 and g ∂

∂r

( ∂

∂r
,
∂

∂θα

)
= 0.

From (3.1), we obtain

√
det
[

g
(

expp(ry),
∂

∂r

)]
=

√
det
[

g ∂
∂r

( ∂

∂θα
,
∂

∂θβ

)]
= rn−1

√
det
[

g ∂
∂r

(
(expp)∗ry

∂

∂θ
α , (expp)∗ry

∂

∂θ
β

)]
.

(3.4)

Thus, (3.2) together with (3.3) and (3.4) gives

lim
r→0+

σ̂p(r, y)

rn−1
= e−τ (y).
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Recall that γy(t) is a constant speed geodesic with γ̇y(0) = y. Hence, ∂
∂r |(r,y) =

(expp)∗ry y = γ̇y(r). Throughout this paper, let π/
√

k := +∞ when k ≤ 0. The first
consequence of Lemma 3.1 is the following lemma.

Lemma 3.2 Let (M, F, dµ) be a forward complete Finsler n-manifold. If for each
y ∈ SpM, K(γ̇y(t); · ) ≡ k, then

µ(B+
p(r)) = Vp,k,n(r), for any 0 < r ≤ ip,

where

Vp,k,n(r) :=

(∫
SpM

dνp(y)

)
·
(∫ r

0
e−τ (γ̇y (t))sn−1

k (t)dt

)
,

and ip := inf
y∈SpM

i y . Moreover,

g
( ∂

∂r

∣∣∣
(r,y)

)
= dr ⊗ dr + s2

k(r)ġp(y), 0 < r < i y ,

where (r, y) is the polar coordinate system at p.

Proof Given y ∈ SpM, set T = γ̇y(t). Let J(t) be a Jacobi field along γy(t) such that

J(0) = 0 and gT( J,T) = 0. Since K(T; · ) = k,∇T
T∇T

T J + k J = 0. Hence, i y ≤ π/
√

k
and J(t) = sk(t)E(t), where E(t) is a parallel field along γy(t).

Let (r, y) (or (r, θ)) be the polar coordinate system about p. From (3.1), we have

lim
r→0+

1

r

∂

∂θα

∣∣∣
(r,y)

=
∂

∂θ
α

∣∣∣
y
.

Hence,
∂

∂θα

∣∣∣
(t,y)

= sk(t)Eα(t),

where Eα(t) is a parallel field along γy(t) such that Eα(0) = ∂
∂θ

α

∣∣
y
.

Since ∂
∂r |(t,y) = γ̇y(t) = T,

(3.5)

√
det
[

g(expp(t y),
∂

∂r
)
]

= sn−1
k (t)

√
det gT(Eα, Eβ) = sn−1

k (t)
√

det ġp(y).

By the definition of distortion, we deduce

(3.6)
d

dt
log

√
det
[

g
(

expp(t y),
∂

∂r

)]
=

d

dt
log σ̂p(t, y) +

d

dt
τ (γ̇y(t)).

Equation (3.5) together with (3.6) yields

(3.7)
d

dt
log σ̂p(t, y) =

d

dt
log
[

e−τ (γ̇y (t))sn−1
k (t)

]
.
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From Lemma 3.1 and (3.7), we have

σ̂p(t, y)

e−τ (γ̇y (t))sn−1
k (t)

= lim
ε→0+

σ̂p(ε, y)

e−τ (y)sn−1
k (ε)

= 1.

Hence, µ(B+(p, r)) = V p,k,n(r), for any 0 < r ≤ ip. Since g ∂
∂r

( ∂∂r ,
∂
∂θα ) = 0,

g
( ∂

∂r

∣∣∣
(r,y)

)
= dr ⊗ dr + s2

k(r)ġp(y), 0 < r < i y .

Corollary 3.3 Let (M, F, dµ) be a simply connected reversible complete Finsler
n-manifold with K ≡ k > 0. Then

µ(M) = Vp,k,n

( π√
k

)
.

Proof By [37], for each p ∈ M and each y ∈ SpM, ip = i y = π√
k
. Hence,

µ(M) = µ
(

B+
(

p,
π√

k

))
= Vp,k,n

( π√
k

)
.

Let (r, y) denote the polar coordinate system at p ∈ M and let

F (r, y) := eτ (γ̇y (r))σ̂p(r, y) =

√
det g(expp(ry), ∂∂r )

det ġp(y)
.

Then we have the following theorem.

Theorem 3.4 Let (M, F, dµ) be a forward complete Finsler n-manifold. Suppose that

Ric ≥ (n− 1)k.

Then the function

P(r) =
F (r, y)

sn−1
k (r)

is monotonically decreasing in r and converges to 1 (as r → 0+). Therefore,

µ(B+(p, r)) ≤ Vp,k,n(r), for any r > 0,

with equality for some r0 > 0 if and only if for each y ∈ SpM,

K(γ̇y(t); · ) ≡ k, 0 ≤ t ≤ r0 ≤ ip.

In this case,

g
( ∂

∂r

∣∣∣
(r,y)

)
= dr ⊗ dr + s2

k(r)ġp(y), 0 < r < r0,

where (r, y) is the polar coordinate system at p.
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Proof By [34, 39], 4r = ∂
∂r logσp(r, y) = ∂

∂r log σ̂p(r, y) and 4r + d
dr τ (γ̇y(r)) ≤

∂
∂r log[sk(r)]n−1, for 0 < r < i y . Thus, for any y ∈ SpM,

(3.8)
∂

∂r

( σ̂p(r, y)

e−τ (γ̇y (r))sn−1
k (r)

)
≤ 0, for 0 < r < i y .

Lemma 3.1, together with (3.8), yields σ̂p(r, y) ≤ e−τ (γ̇y (r))sn−1
k (r) for 0 < r < i y .

Hence, for any r > 0,

µ(B+(p, r)) ≤
∫

SpM
dνp(y)

∫ min{r,i y}

0
e−τ (γ̇y (r))sn−1

k (r)dr

≤
∫

SpM
dνp(y)

∫ r

0
e−τ (γ̇y (r))sn−1

k (r)dr

= Vp,k,n(r).

(3.9)

If we have equality in (3.9) for some r0 > 0, then r0 ≤ ip, and equality holds in
(3.8). By using Lemma 3.1 again, we have

e−τ (γ̇y (r)))

√
det g(expp(ry), ∂∂r )

det ġp(y)
= σ̂p(r, y) = e−τ (γ̇y (r))sn−1

k (r),

for each y ∈ SpM and for 0 < r < r0. Therefore, for any y ∈ SpM,√
det g(expp(ry), ∂∂r )

det ġp(y)
= sk(r)n−1, for 0 < r < r0.

By the proof of [36, Lemma 4.1], we have K(γ̇y(t); · ) ≡ k and

∂

∂θα

∣∣∣
(t,y)

= sk(t)Eα(t),

for 0 < t < r0, where Eα(t) is a parallel field along γy(t) such that Eα(0) = ∂
∂θ

α |y .
Therefore,

g
( ∂

∂r

∣∣∣
(r,y)

)
= dr ⊗ dr + s2

k(r)ġp(y), 0 < r < r0.

The conclusion then follows from Lemma 3.2.

Remark 3.5 From Theorem 3.4 and the standard argument (see [13] or [39]), one
can obtain the following relative volume comparison theorems:

(i) Suppose that Ric ≥ (n− 1)k and S ≥ (n− 1)h. Then

P1(r) =
µ(B+(p, r))

Vp,k,h,n(r)

is monotonically decreasing in r and converges to 1 (as r → 0+), where

Vp,k,h,n(r) =

∫
SpM

e−τ (y)dνp(y)

∫ r

0

(
e−ht sk(t)

) n−1
dt.
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(ii) Suppose that Ric ≥ (n− 1)k and a ≤ τ ≤ b. Then

µ(B+(p, r))

µ(B+(p,R))
≥ ea−b

∫ r
0 sn−1

k (t)dt∫ R
0 sn−1

k (t)dt
,

for any 0 < r ≤ R.

A simple argument yields the following theorem.

Theorem 3.6 Let (M, F, dµ) be a forward complete Finsler n-manifold. Suppose that
K ≤ k. Then the function

P(r) =
F (r, y)

sn−1
k (r)

is monotonically increasing in r and converges to 1 (as r → 0+). Therefore,

µ(B+(p, r)) ≥ Vp,k,n(r), for any 0 < r ≤ min{ip, π/
√

k},

with equality for some r0 > 0 if and only if for each y ∈ SpM,

K(γ̇y(t); · ) ≡ k, 0 ≤ t ≤ r0 ≤ min{ip, π/
√

k}.

In this case,

g
( ∂

∂r

∣∣∣
(r,y)

)
= dr ⊗ dr + s2

k(r)ġp(y), 0 < r < r0,

where (r, y) is the polar coordinate system at p.

Fix a point p of a forward complete Finsler manifold (M, F). Let (r, y) be the polar
coordinate system at p. Define ĝp := g( ∂∂r |(r,y)). Clearly, ĝp is a Riemannian metric on
Dp − {p}. As an application of Theorem 3.4, we have the following characterization
of Rn.

Corollary 3.7 Let (M, F, dµ) be a forward complete noncompact Finsler n-manifold
with Ric ≥ 0 and S ≥ 0. If for some p ∈ M,

lim inf
r→+∞

µ(B+(p, r))

rn
=

1

n

∫
SpM

e−τ (y)dνp(y),

then M is C1-diffeomorphic to TpM. In this case, (M\{p}, ĝp) is isometric to
(TpM\{0}, gp). Moreover, if (M, F) is a Berwald space, then M is C∞-diffeomorphic
to TpM.

Proof Remark 3.5 guarantees Vp,0,0,n(r) ≥ µ(B+(p, r))→ +∞, as r → +∞. Clearly,

lim inf
r→+∞

rn

Vp,0,0,n(r)
=

n∫
SpM e−τ (y)dνp(y)

.
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By using Remark 3.5 again, we have

1 ≥ µ(B+(p, r))

Vp,0,0,n(r)
≥ lim inf

r→+∞

µ(B+(p, r))

Vp,0,0,n(r)
≥ lim inf

r→+∞

µ(B+(p, r))

rn
· lim inf

r→+∞

rn

Vp,0,0,n(r)
≥ 1,

which implies that ip = +∞ and ĝp = dr ⊗ dr + r2ġp(y). Hence, expp : TpM → M

is a C1-diffeomorphism and gp = exp∗p(ĝp). If F is of Berward type, then exp is C∞

throughout TM (see [5, p. 127]). This complete the proof.

Remark 3.8 If dµ is the Busemann-Hausdorff volume form, then

1

n

∫
SpM

e−τ (y)dνp(y) =
cn−1

n
= VolRn (Bn).

Clearly, ĝp = g|Dp when F is Riemannian. Therefore, Corollary 3.7 implies [15,
Corollary 1.134].

From Theorem 3.4, we also obtain a generalized version of the Calabi-Yau linear
volume growth theorem [40]. See [38] for another version.

Corollary 3.9 Let (M, F, dµ) be a forward complete noncompact Finsler manifold
with Ric ≥ 0, S ≥ 0 and the reversibility λ < +∞. For any point p ∈ M, there exists a
constant C > 0 such that for any r ≥ 1,

µ(B+(p, r)) ≥ Cr.

Proof By Theorem 3.4 and the standard argument (see [13] or [39]), one can show
that

Q(r) :=
µ(B+(x, r))

rn

is monotonically decreasing in r. Fix a point x ∈ M with d(x, p) = r ≥ λ + 1. Thus,

(3.10)
µ(B+(x, r + 1))− µ(B+(x, r − λ))

µ(B+(x, r − λ))
≤ (r + 1)n − (r − λ)n

(r − λ)n
≤ C(n, λ)

r
.

Note that B+(p, 1) ⊂ B+(x, r + 1)−B+(x, r−λ) and B+(p, λr + r−λ) ⊃ B+(x, r−λ).
Equation (3.10) then yields

µ(B+(p, λr + r − λ))

µ(B+(p, 1))
≥ r

C(n, λ)
.

Let

C̃ := inf
r∈[1,(λ+1)2−λ]

µ(B+(p, r))

r
, and C := min

( µ(B+(p, 1))

C(n, λ)
, C̃
)
.

Then we have µ(B+(p, r)) ≥ Cr, for r ≥ 1.
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4 Generalized Berger–Kazdan Inequality

Let (M, F) be a forward complete Finsler n-manifold. Given p ∈ M and y ∈ SpM,
define an inner product 〈 · , · 〉 on TpM by 〈 · , · 〉 := gy( · , · ). Let y⊥ = {X ∈ TpM :
〈y,X〉 = 0}. Thus, TpM = Ry ⊕ y⊥. Denote by Pt ;y the parallel translation along
γy from Tγy (0)M to Tγy (t)M (with respect to the Chern connection).

Set T = γ̇y(t). For 0 ≤ t < cy , let RT := RT( · ,T)T and

R(t, y) := P−1
t ;y ◦ RT ◦ Pt ;y : y⊥ → y⊥.

Let A(t, y) be the solution of the matrix (or linear transformation) ordinary dif-
ferential equation on y⊥:

(4.1)


A ′ ′ + R(t, y)A = 0,

A(0, y) = 0,

A ′(0, y) = I,

where A ′ = d
dt A and I is the identity transformation of y⊥.

Given any vector V (t) ∈ y⊥, it is easy to check that

∇T
T

(
Pt ;yV (t)

)
= Pt ;yV ′(t).

Hence, (4.1) is equivalent to
∇T

T∇T
T(Pt ;yAX) + RT(Pt ;yAX,T)T = 0, for any X ∈ y⊥,

(Pt ;yA(t, y)X)|t=0 = 0,

∇T
T(Pt ;yA(t, y)X)|t=0 = X.

Therefore, Pt ;yA(t, y)X = (expp)∗t ytX (see [5], p. 131).

Define detA(t, y) := detA(t, y)βa , where A(t, y)eα = A(t, y)βαeβ and {eα} is any
basis of y⊥. It is not hard to see that detA is well defined and independent of {eα}.

Let (r, y) denote the polar coordinate system at p. From (3.1), we have

Pr;y ◦A(r, y)
∂

∂θ
α = (expp)∗ryr

∂

∂θ
α =

∂

∂θα
.

Note that for any X, Y ∈ TpM,

g ∂
∂r

(Pr;yX, Pr;yY ) = gy(X,Y ).

Hence,

det
[

g(expp(ry),
∂

∂r
)
]

= det

[
g ∂
∂r

(
Pr,y ◦A(r, y)

∂

∂θ
α , Pr,y ◦A(r, y)

∂

∂θ
β

)]
= det

[
gy

(
A(r, y)

∂

∂θ
α ,A(r, y)

∂

∂θ
β

)]
= det

[
A(r, y)δαA(r, y)ηβgy

( ∂

∂θ
δ
,
∂

∂θ
σ

)]
=
(

detA(r, y)
) 2

det ġp(y),
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where A(r, y) ∂
∂θ

α =: A(r, y)βα
∂

∂θ
β . Namely,

√
det g(expp(ry), ∂∂r )

det ġp(y)
= detA(r, y).

Equation (3.4) together with the above equality yields

lim
r→0+

detA(r, y)

rn−1
= 1.

Denote by A∗ the adjoin of the linear transformation A on (y⊥, 〈 · , · 〉); that is,
for any X, Y ∈ y⊥, 〈A(X),Y 〉 = 〈X,A∗(Y )〉. Then A∗A is self-adjoint and detA∗ =
detA. Moreover, we have the following lemma.

Lemma 4.1

(i) A ′∗A = A∗A ′.
(ii) For 0 < t < cy , A ′A−1 is self-adjoint.

Proof (i) Let T = γ̇y(t). For any X, Y ∈ y⊥, set JX = (expp)∗t ytX = Pt ;yAX and
JY = (expp)∗t ytY = Pt ;yAY . From the Lagrange identity (see [5, p. 135]), we have

0 = gT(∇T
T JX, JY )− gT( JX,∇T

T JY )

= gT(Pt ;yA
′X, Pt ;yAY )− gT(Pt ;yAX, Pt ;yA

′Y )

= gy(A ′X,AY )− gy(AX,A ′Y )

=
〈

X, (A ′∗A−A∗A ′)(Y )
〉
.

This proves (i).
(ii) From (i), we have 0 = 〈X, (A−1)∗[A ′∗A−A∗A ′]A−1Y 〉, which implies〈

X, (A ′A−1)∗Y
〉

= 〈X,A ′A−1Y 〉.

Let Cs(t, y) be the solution of the matrix (linear transformation) ordinary equa-
tion on y⊥: 

Cs
′ ′ + R(t, y)Cs = 0,

Cs(s, y) = 0,

C ′s (s, y) = I.

It is easy to check that Cs(t, y) = P−1
s;y ◦A(t − s, γ̇y(s)) ◦ Ps;y , for t ≥ s. Hence,

detCs(t, y) = detA
(

t − s, γ̇y(s)
)
, t ≥ s.

In particular, by Lemma 4.1, one can show the following lemma, whose proof is the
same as that of [13, Theorem 5.8, Step 1–2] (cf. also [9, Appendix D]).
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Lemma 4.2 Given y ∈ SpM, for any 0 < s ≤ t < cy ,

Cs(t, y) = A(t, y)

(∫ t

s
(A∗A)−1(r, y)dr

)
A∗(s, y).

(detCs(t, y))
1

n−1 ≥
(

detA(t, y)
) 1

n−1
(

detA(s, y)
) 1

n−1

∫ t

s

1(
detA(r, y)

) 2
n−1

dr,

with equality if and only if A(t, y) = (detA(t, y))
1

n−1 I.

Now we recall the Kazdan inequality (see [9, Appendix E]). Given λ > 0, let S
denote the set of functions

S =
{
ϕ ∈ C[0, π/λ] : ϕ(x) = xα(π/λ− x)βψ(x) for some 0 ≤ α, β,< 2

and some ψ ∈ C[0, π/λ] with ψ > 0 on [0, π/λ]
}
.

Let

F(ϕ) :=

∫ π/λ

0
dt

∫ π/λ

t
dr

∫ r

t

ϕ(t)ϕ(r)

ϕ2(s)
ρ(r − t)ds,

where ρ ∈ C[0, π/λ] is a given nonnegative function.

Theorem 4.3 (L. Kazdan) If ρ(π/λ − t) = ρ(t), for all 0 ≤ t ≤ π/λ, then F(ϕ) ≥
F(sin ◦λ), where sin ◦λ(x) := sin(λx).

Let (r, y) denote the polar coordinate system at p ∈ M. Then

F (r, y) =

√
det g(expp(ry), ∂∂r )

det ġp(y)
= detA(r, y).

From the above, we have the following inequality, which can be interpreted as a
generalization of the Berger–Kazdan inequality [8].

Theorem 4.4 Let (M, F) be a compact Finsler n-manifold. For each y ∈ SM and
0 ≤ l ≤ i y , we have

(4.2)

∫ l

0
dr

∫ l

r
F (t − r, ϕr(y)) dt ≥ πcn

2cn−1

( l

π

) n+1
,

with equality if and only if

Rγ̇y (t)

(
· , γ̇y(t)

)
γ̇y(t) =

( π
l

) 2
id, for 0 ≤ t ≤ l,

where ϕt is the geodesic flow and R is the (Riemannian) curvature tensor acting on
γ̇y(t)⊥.
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Proof Set C = π
l . Using Hölder’s inequality, Lemma 4.2, and Theorem 4.3, we have

∫ l

0
dr

∫ l

r
F (t − r, ϕr(y)) dt

≥
[∫ l

0 dr
∫ l

r F (t − r, ϕr(y))
1

n−1 sinn−2(C(t − r))dt
] n−1[∫ l

0 dr
∫ l

r sinn−1(C(t − r))dt
] n−2

≥

[∫ l
0 dr

∫ l
r dt

∫ t
r

F (t,y)
1

n−1 F (r,y)
1

n−1

F (m,y)
2

n−1
sinn−2(C(t − r))dm

] n−1

[∫ l
0 dr

∫ l
r sinn−1(C(t − r))dt

] n−2

≥ 1

Cn−1

∫ l

0
dr

∫ l

r
sinn−1

(
C(t − r)

)
dt

=
1

Cn+1

∫ π

0
dr

∫ π

r
sinn−1(t − r)dt =

πcn

2cn−1Cn+1
.

If we have equality in (4.2), then{
F (t − r, ϕr(y)) =

(
sin C(t−r)

C

) n−1
,

A(t, y) = (detA(t, y))
1

n−1 I,

for 0 ≤ r ≤ t ≤ l. Hence, A(t, y) = sin(Ct)
C
· I, 0 ≤ t ≤ l. It follows from (4.1) that

R(t, y) = C2I, for 0 ≤ t ≤ l.

This completes the proof.

The remainder of this section will be devoted to the proof of Theorem 1.4. First,
we recall the following theorem due to C. Kim and J. Yim (see [25, Theorem 4]).

Theorem 4.5 ([25]) If (M, F) is an n-dimensional reversible Finsler manifold with
K ≡ 1 and SBH ≡ 0, then F is a Riemannian metric. In fact, the universal covering of
M is isometric to the standard n-sphere of constant sectional curvature one.

Theorem 4.4 together with Theorems 2.1 and 4.5 yields the following theorem.

Theorem 4.6 Let (M, F) be a compact Finsler n-manifold with reversibility λ. Then

(4.3) µBH(M) ≥ cn

(
iM

λπ

) n
exp
[
− iM

λ

(
|h1| + |h2|

)]
,

where h1 := supy∈SM SBH(y), h2 := supy∈SM SHT(y).
In particular, if F is reversible, then equality holds in (4.3) if and only if (M, F) is

isometric to the standard n-sphere of constant sectional curvature (π/iM)2.
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Proof Note that if we set F̃ := π
iM

F, then the injective radius of (M, F̃) is equal to π.
Hence, without loss of generality, we may assume that iM = π.

Since iM = π and the reversibility is λ,

B+
(
γy(0),

r

λ

)
∩ B+

(
γy(π),

π − r

λ

)
= ∅, ∀r ∈ [0, π/2].

Hence,

µBH(M) ≥ µBH

(
B+
(
γy(0),

r

λ

))
+ µBH

(
B+
(
γy(π),

π − r

λ

))
.

It is straightforward to compute

∫
SM
µBH

(
B+(π1(y), r)

)
dVSM(y)

=

∫
M

dµHT(x)

∫
SxM

µBH

(
B+(x, r)

)
eτHT (y)dνx(y)

= cn−1

∫
M
µBH

(
B+(x, r)

)
dµHT(x)

= cn−1

∫
M

dµHT(x)

∫ r

0
dt

∫
SxM

σ̂BHx(t, y)dνx(y)

= cn−1

∫
M

dµHT(x)

∫ r

0
dt

∫
SxM

F (t, y)e−τBH (ϕt (y))dνx(y).

(4.4)

Since M is compact, the geodesic flow ϕt : SM → SM is a diffeomorphism. From
Theorem 2.1, we have∫

SM
µBH

(
B+
(
γy(π),

π − r

λ

))
dVSM(y)

=

∫
SM
µBH

(
B+
(
π1 ◦ ϕπ(y),

π − r

λ

))
dVSM(y)

=

∫
ϕ−1
π ◦ϕπ(SM)

µBH

(
B+
(
π1 ◦ ϕπ(y),

π − r

λ

))
dVSM(y)

=

∫
ϕπ(SM)

(ϕ−1
π )∗

[
µBH

(
B+
(
π1 ◦ ϕπ(y),

π − r

λ

))
dVSM(y)

]
=

∫
ϕπ(SM)

µBH

(
B+
(
π1 ◦ ϕπ(y),

π − r

λ

))
dVSM(ϕπ(y))

=

∫
SM
µBH

(
B+
(
π1(y),

π − r

λ

))
dVSM(y).

(4.5)
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Note that VSM = cn−1µHT(M). Using (4.4) and (4.5), we deduce that

cn−1µHT(M)µBH(M) =

∫
SM
µBH(M)dVSM(y)

≥
∫

SM

[
µBH

(
B+
(
γy(0),

r

λ

))
+ µBH

(
B+
(
γy(π),

π − r

λ

))]
dVSM(y)

=

∫
SM

[
µBH

(
B+
(
π1(y),

r

λ

))
+ µBH

(
B+
(
π1(y),

π − r

λ

))]
dVSM(y)

= cn−1

∫
M

dµHT(x)

∫
SxM

dνx(y)

[∫ r/λ

0
+

∫ π−r
λ

0
D(t, y)dt

]
,

where D(t, y) = F (t, y)e−τBH (ϕt (y)). Therefore,

(4.6)
π

2
µHT(M)µBH(M) ≥∫

M
dµHT(x)

∫
SxM

dνx(y)

∫ π/2

0

[∫ r/λ

0
+

∫ π−r
λ

0
D(t, y)dt

]
dr.

By interchanging the order of integration, we obtain

∫ π/2

0
dr

∫ r/λ

0
D(t, y)dt =

∫ π
2λ

0
dt

∫ π/2

tλ
D(t, y)dr

=

∫ π
2λ

0
(π/2− tλ)D(t, y)dt

and

∫ π/2

0
dr

∫ π−r
λ

0
D(t, y)dt =

∫ π
2λ

0
dt

∫ π/2

0
D(t, y)dr +

∫ π/λ

π
2λ

dt

∫ π−λt

0
D(t, y)dr

=

∫ π
2λ

0

π

2
D(t, y)dt +

∫ π/λ

π
2λ

(π − λt)D(t, y)dt.

Hence,

(4.7)

∫ π/2

0

[∫ r/λ

0
+

∫ π−r
λ

0
D(t, y)dt

]
dr =

∫ π
λ

0
(π − λt)D(t, y)dt,
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By (4.6), (4.7), and Theorem 2.1, we obtain

π

2
µHT(M)µBH(M)

≥
∫

M
dµHT(x)

∫
SxM

dνx(y)

∫ π
λ

0
(π − λt)D(t, y)dt

= λ

∫
M

dµHT(x)

∫
SxM

dνx(y)

∫ π
λ

0
dt

∫ π
λ−t

0
D(t, y)dr

= λ

∫ π
λ

0
dt

∫ π
λ−t

0
dr

∫
SM

e−τHT (y)D(t, y)dVSM(y)

= λ

∫ π
λ

0
dt

∫ π
λ−t

0
dr

∫
SM

e−τHT (ϕr(y))D(t, ϕr(y))dVSM(y)

= λ

∫ π
λ

0
dt

∫ π
λ−t

0
dr

∫
SM

e−[τHT (ϕr(y))+τBH (ϕt+r(y))]F (t, ϕr(y))dVSM(y).

It follows from the definition of S-curvature that

(4.8) τBH

(
ϕt+r(y)

)
≤ τBH(y) +

π

λ
|h1|, τHT(ϕr(y)) ≤ τHT(y) +

π

λ
|h2|.

Set Λ = e−
π
λ (|h1|+|h2|). From the above, we have

π

2λ
µHT(M)µBH(M)

≥ Λ

∫ π
λ

0
dt

∫ π
λ−t

0
dr

∫
SM

e−[τHT (y)+τBH (y)]F
(

t, ϕr(y)
)

dVSM(y)

= Λ

∫
M

dµHT(x)

∫
SxM

e−τBH (y)dνx(y)

∫ π
λ

0
dt

∫ π
λ−t

0
F
(

t, ϕr(y)
)

dr

= Λ

∫
M

dµHT(x)

∫
SxM

e−τBH (y)dνx(y)

∫ π
λ

0
dr

∫ π
λ−r

0
F
(

t, ϕr(y)
)

dt

= Λ

∫
M

dµHT(x)

∫
SxM

e−τBH (y)dνx(y)

∫ π
λ

0
dr

∫ π
λ

r
F
(

t − r, ϕr(y)
)

dt

By Theorem 4.4,

µHT(M)µBH(M) ≥ cnΛ

cn−1λn

∫
M

dµHT(x)

∫
SxM

e−τBH (y)dνx(y)

=
cnΛ

λn
µHT(M).

Namely, µBH(M) ≥ cnΛ
λn .
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If F is reversible and we have equality in (4.3), then it follows from (4.8) that

τHT

(
ϕr(y)

)
+ τBH

(
ϕt+r(y)

)
= τHT(y) + τBH(y) + π

(
|h1| + |h2|

)
,

for every y ∈ SM, 0 ≤ t ≤ π and 0 ≤ r ≤ π − t . Since (M, F) is reversible, h1 ≥ 0,
h2 ≥ 0, and

τHT(y) + τBH(y) + rh2 + (t + r)h1 ≥ τHT

(
ϕr(y)

)
+ τBH

(
ϕt+r(y)

)
,

which implies that h1 = h2 = 0. If there exists y ∈ SM such that SHT(y) < 0,
then SHT(−y) = −SHT(y) > 0, which is a contradiction. Hence, SHT = SBH = 0.
Theorem 4.4 yields R(t, y) = I, for 0 ≤ t ≤ π. By letting t → 0+, we have

Ry = Ry( · , y)y = I : y⊥ → y⊥,

i.e., K ≡ 1. Now, we have shown that (M, F) is a reversible compact Finsler n-mani-
fold with K ≡ 1 and SBH ≡ 0. Theorem 4.5 then implies that F is a Riemmanian
metric and the universal covering of M is Sn. But since µ(M) = cn, (M, F) must be
isometric to Sn.

When F is Riemannian, λ = 1, h1 = h2 = 0, and, therefore, Theorem 4.6 becomes
the Berger–Kazdan comparison theorem [7].

5 Generalized Santaló formula

This section is dedicated to the proof of Theorem 1.5. Let (M, F) be a reversible
complete Finsler n-manifold and let Ω ⊂ M be a relatively compact domain with
smooth boundary ∂Ω. Denote by n the unit inward normal vector field along ∂Ω.
Thus, gn(n,X) = 0 for any X ∈ T∂Ω (see [34]). According to [14], n always exists.
In fact, since codim(∂Ω) = 1, by a partition of unity one can construct a nonzero
1-form ω on ∂Ω such that i∗(ω) = 0, where i : ∂Ω ↪→ M is the inclusion map. Thus,
n = (L−1(ω))/(F(L−1(ω))) (up to a sign), where L is the Legendre transformation.

Let N = {k · n(x) : x ∈ ∂Ω, k ∈ R} denote the normal bundle over ∂Ω. Since F
is reversible, N is an n-dimensional smooth manifold. For convenience, we use (x, k)
to denote k · n(x) ∈ N. The exponential map Exp of the normal bundle N is defined
by

Exp: N −→ M

(x, k) 7−→ expx(kn).

We always identify ∂Ω with the zero section of N. This implies that for any x ∈ ∂Ω,
we have the inclusion Tx∂Ω ⊂ T(x,0)N. Moreover, from the definition of N, we have

(5.1) T(x,0)N = Tx∂Ω⊕ R, TxM = Tx∂Ω⊕ Rn.

Lemma 5.1 The map Exp: N→ M maps a neighborhood of ∂Ω ⊂ NC1-diffeomor-
phically onto a neighborhood of ∂Ω ⊂ M.
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Proof Choose a (local) coordinate system {xα} of ∂Ω. Thus, (xα, k) is a (local)
coordinate system of N. Given any point x ∈ ∂Ω, it is easy to check that

(Exp)∗(x,0)

( ∂

∂xα

)
=

∂

∂xα
, (Exp)∗(x,0)

( ∂

∂k

)
= n(x).

Hence, it follows from (5.1) that (Exp)∗(x,0) : T(x,0)N → TxM is an isomorphism, for
all x ∈ ∂Ω. The remaining part is the same as the proof of [21, Lemma 2.3] (cf. also
[27, p. 200]), and we omit it here.

Remark 5.2 Lemma 5.1 guarantees that there exists a small positive number δ > 0
such that Exp : Ωδ → Exp(Ωδ) is C1-diffeomorphic, where

Ωδ =
{

(x, k) ∈ N : 0 ≤ k < δ
}
.

It follows from [5, p. 126] that Exp : Ωδ\∂Ω→ Exp(Ωδ)\∂Ω is C∞-diffeomorphic.

Define ρ : Ω→ R by ρ(x) = d(∂Ω, x). Let Ωδ be defined as in Remark 5.2 and let
O = Exp(Ωδ). From the above, we have the following lemma.

Lemma 5.3

(i) ρ ∈ C∞(O\∂Ω).
(ii) Given any p ∈ ∂Ω, limx→p(dρ)|O\∂Ω(x) = gn(n, · ).

Proof For each q ∈ O , there exists a unique point (x, k) ∈ Ωδ such that q =
Exp(x, k) = expx(kn). Consider the geodesic γn(s) = expx(sn), s ∈ [0, k]. By the
first variation of arc length, one can check that γn(s) is the unique minimal unit
speed geodesic from ∂Ω to q. Hence, F(Exp−1(q)) = k = ρ(q). By Remark 5.2,
ρ ∈ C∞(O\∂Ω).

Given any continuous curve σ(t), 0 ≤ t < ε, with σ(0) = p and σ((0, ε)) ⊂
O\∂Ω. Let (x(t), k(t)) := Exp−1(σ(t)) and n(t) := n(x(t)). From the above, for
each fixed t ∈ (0, ε), γn(t)(s) = expx(t)(sn(t)), s ∈ [0, k(t)] is the unique minimal
unit speed geodesic from ∂Ω to σ(t). By the proofs of [34, Lemma 3.2.3] and Lemma
5.1, we have

(5.2) ∇ρ|σ(t) = γ̇n(t)

(
ρ
(
σ(t)

))
6= 0, ∀ t ∈ (0, ε).

Using the triangle inequality, we deduce

(5.3) d
(

p, π1

(
n(t)

))
≤ ρ
(
σ(t)

)
+ L
(
σ(t)

)
≤ 2L

(
σ(t)

)
→ 0, as t → 0+,

where L(σ(t)) is the length of σ([0, t]). Equation (5.2) together with (5.3) and [5,
Exercise 5.3.1(b)] then furnishes limt→0+ ∇ρ|σ(t) = n(p), which implies

lim
x→p

(dρ)|O\∂Ω(x) = gn(n, · ).
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Lemma 5.4 Let σ(t), 0 ≤ t < ε, be a C1-curve with σ(0) ∈ ∂Ω and σ((0, ε)) ⊂ Ω.
Then

d

dt

∣∣∣
t=0+

ρ ◦ σ(t) = gn

(
n, σ̇(0)

)
.

Hence, (∇ρ)|∂Ω = n and ρ ∈ C1(O).

Proof Set σ̇(0) = V + gn(n, σ̇(0))n, where V ∈ Tσ(0)∂Ω. Without loss of generality,
we may assume that σ((0, ε)) ⊂ O . Thus, by Lemma 5.1, Exp−1(σ(t)) = (x(t), k(t)),
where x(t) is a C1-curve in ∂Ω with x(0) = σ(0) and k(t) is a nonnegative C1-
function with k(0) = 0. Let (xα, k) be a (local) coordinate system of N, where {xα}
is a (local) coordinate system of Ω. From the proof of Lemma 5.1, we have

V + gn

(
n, σ̇(0)

)
n = σ̇(0) = (Exp)∗(σ(0),0)

(
ẋα(0)

∂

∂xα
+ k̇(0)

∂

∂k

)
= ẋα(0)

∂

∂xα
+ k̇(0)n

(
σ(0)

)
.

Hence, k̇(0) = gn(n, σ̇(0)).
By the proof of Lemma 5.3, we have

d

dt

∣∣∣
t=0+

ρ ◦ σ(t) = lim
t→0+

ρ(σ(t))

t
= lim

t→0+

k(t)

t
= k̇(0).

Hence, for each x ∈ ∂Ω, dρ|x = gn(n, · ), and therefore ∇ρ|x = L−1(dρ|x) = n(x).
Now, it follows from Lemma 5.3 that ρ ∈ C1(O).

As an immediate consequence of Lemma 5.4, we have the following corollary.

Corollary 5.5 Let σ(t), 0 ≤ t ≤ 1, be a C1-curve such that σ([0, 1)) ⊂ Ω and
σ(1) ∈ ∂Ω. Then gn(n, σ̇(1)) ≤ 0.

Proof Without loss of generality, we assume that σ([0, 1)) ⊂ O . From Lemma 5.4,
we have

0 ≥ lim
t→1−

ρ ◦ σ(t)− ρ ◦ σ(1)

t − 1
=

d

dt

∣∣∣
t=1−

ρ ◦ σ(t) = gn

(
n, σ̇(1)

)
.

Let S+∂Ω be the collection of inward pointing unit vectors along ∂Ω, i.e.,

S+∂Ω :={y ∈ SM|∂Ω : y = V + kn, V ∈ T∂Ω, k > 0}

={y ∈ SM|∂Ω : gn(n, y) > 0}.

Using an argument similar to that in [6, p. 286], one can show that S+∂Ω is a sub-
manifold of SM.

Define Z := {y ∈ S∂Ω : ∃ t > 0 such that γy((0, t)) ⊂ Ω}. For each y ∈
SΩ ∪ S+∂Ω ∪ Z, we set

t̂(y) := sup
{

T > 0 : γy(t) ∈ Ω, ∀t ∈ (0,T)
}

;

that is, when y ∈ SΩ and t̂(y) is finite, γy(t̂(y)) will be the first point on the geodesic
to hit the boundary ∂Ω.
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Lemma 5.6 t̂(y) is low semi-continuous on SΩ ∪ S+∂Ω.

Proof Suppose that t̂(y) is not low semi-continuous at some point y0 ∈ SΩ∪S+∂Ω.

Case I: t̂(y0) < +∞. In this case, there exists δ > 0 such that for any neighborhood
U of y0, there is y ∈ U with t̂(y) < t̂(y0) − δ. Hence, we obtain a sequence {yn} ⊂
SΩ ∪ S+∂Ω such that limn→∞ yn = y0, and 0 < t̂(yn) < t̂(y0)− δ, for all n. Set

γn(s) := expπ1(yn)(s · t̂(yn)yn), s ∈ [0, 1].

By the Arzela–Ascoli theorem (see [11, Theorem 2.5.14]), there exists a uniformly
convergent subsequence of {γn}. Without loss of generality, we assume {γn} con-
verges uniformly to γ(s) : [0, 1] → Ω. It is easy to check that γ(s) is also a geodesic.
Note that γn(1) ∈ ∂Ω and limn→∞ γn(1) = γ(1). Since ∂Ω is compact, γ(1) ∈ ∂Ω.
Let T denote the length of γ, i.e., T = L(γ). Hence,

(5.4) T = lim
n→∞

L(γn) = lim
n→∞

t̂(yn) ≤ t̂(y0)− δ.

We claim that T > 0. If not, then limn→∞ t̂(yn) = 0 and γ(0) = γ(1) ∈ ∂Ω.
Thus, y0 ∈ S+∂Ω. However, from Corollary 5.5, we have

0 ≥ gn

(
n,

γ̇n(1)

F(γ̇n(1))

)
= gn

(
n, (expπ1(yn))∗̂t(yn)·yn

yn

)
, for all n,

which implies that gn(n, y0) ≤ 0. This contradicts the definition of S+∂Ω.
Since T > 0,

γ̇(0) = lim
n→∞

γ̇n(0) = lim
n→∞

t̂(yn)yn = Ty0 6= 0.

Therefore, γ( s
T

) = γy0 (s). In particular, γy0 (T) = γ(1) ∈ ∂Ω, which implies that
T ≥ t̂(y0). From (5.4), we get a contradiction.

Case II: t̂(y0) = +∞. In this case, there exist a constant K > 0 and a sequence
{yn} ⊂ SΩ∪ S+∂Ω such that yn → y0 and t̂(yn) < K, for all n. The rest of the proof
is similar to Case I, and we omit it.

Since (M, F) is complete, we can define a map

Ψ : R × S+∂Ω −→ SM

by Ψ(t, y) = ϕt (y). For each y ∈ SΩ ∪ S+∂Ω ∪ Z, let l(y) := min{i y , t̂(y)}. Set

U−Ω :=
{

y ∈ SΩ : t̂(−y) < i−y

}
,

N :=
{

(t, y) : y ∈ S+∂Ω, t ∈ (0, l(y))
}
,

UZ :=
{
ϕt (y) : y ∈ Z, t ∈ (0, l(y))

}
.

Then we have the following lemma.
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Lemma 5.7 Ψ|N : N → U−Ω \UZ is a one-one map.

Proof Let NZ := {(t, y) : y ∈ Z, t ∈ (0, l(y))}. We extend Ψ to a map

Φ : R × (S+∂Ω ∪ S∂Ω) −→ SM

such that Φ(t, y) = ϕt (y). Clearly, UZ = Φ(NZ) and Φ|N = Ψ|N . We just need to
prove that Φ|N∪NZ

: N ∪ NZ → U−Ω is a one-one map.
Since Ω is compact, for each X ∈ U−Ω , t̂(−X) < i−X < +∞. Let Y :=

−γ̇−X(t̂(−X)). Corollary 5.5 implies Y ∈ S+∂Ω ∪ Z. Set p = π1(X) and q = π1(Y ),
where π1 : SM → M is the natural projection. From the definition of U−Ω , we
have d(p, q) = t̂(−X) = L(γ−X|[0,̂t(−X)]). Since F is reversible, L(γY |[0,̂t(−X)]) =

t̂(−X) = d(q, p). Hence, iY ≥ t̂(−X) and γY is the minimal geodesic from q to p
with γ̇Y (t̂(−X)) = X.

We now claim that t̂(−X) < iY . In fact, if iY = t̂(−X), then p is the cut point
of q along γY . Since F is reversible, p is not the first conjugate point of q along γY .
By [5, Corollary 8.2.2], there exists an another distinct geodesic ς of the same length
t̂(−X) from q to p. This contradicts t̂(−X) < i−X , since F is reversible.

From the above, we have shown that for each X ∈ U−Ω , there exist Y ∈ S+∂Ω ∪ Z

and t ∈ (0, l(Y )) such that ϕt (Y ) = X. Hence, Φ|N∪NZ
: N ∪ NZ → U−Ω is a

subjective map. It is not hard to see that Φ|N∪NZ
is also an injective map. Therefore,

we conclude that Φ|N∪NZ
is a one-one map.

Given any volume form dµ on M, the induced volume form on ∂Ω by dµ is de-
fined by dA := i∗(ncdµ), where i : ∂Ω ↪→ M is the inclusion map (see [34, pp. 31–
32]). Define a (2n−1)-form β on R×S+∂Ω by β|(t,y) = dt ∧dA(π1(y))∧dνπ1(y)(y).
Hence, there exists η ∈ C∞(R × S+∂Ω) such that (Ψ)∗(dVSM) = η · β.

Lemma 5.8 For any (t, y) ∈ R × S+∂Ω, we have η(t, y) = η(0, y).

Proof Let ςt denote the transformation of R × S+∂Ω into itself, i.e., ςt (s, y) =
(s + t, y). Clearly, ϕt ◦Ψ = Ψ ◦ ςt . Using this and Theorem 2.1, we have

η · β = Ψ∗(dVSM) = Ψ∗(ϕ∗t (dVSM)) = (ϕt ◦Ψ)∗(dVSM) = (Ψ ◦ ςt )∗(dVSM)

= ς∗t (Ψ∗dVSM) = ς∗t (η · β) = ς∗t (η)ς∗t (β).

Since β is invariant under ςt , it follows that η · β = ς∗t (η) · β. Hence, η(0, y) =
η(t, y).

Then we have a generalization of Santaló’s formula [31].

Theorem 5.9 For all integrable function f on SΩ, we have∫
V−

Ω

f dVSM =

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0
f
(
ϕt (y)

)
dt,

where V−Ω := {y ∈ SΩ : t̂(−y) ≤ i−y} and dχ(y) = dA(π1(y))dνπ1(y)(y).
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Proof Given any y ∈ S+∂Ω, identify Ty(S+∂Ω) with its image in T(0,y)(R × S+∂Ω).
Since ϕ0 = id, we have Ψ∗(0,y)(X) = X, ∀X ∈ Ty(S+∂Ω). This implies that

(5.5) Ψ∗
(

dχ(y)
)
≡ dχ|(0,y) (mod dt).

Let ρ(x) = d(∂Ω, x). For each X ∈ Ty(S+∂Ω), there exists a curve ξ : (−ε,+ε) →
S+∂Ω with ξ(0) = y and ξ̇(0) = X. Clearly, π1(ξ(s)) ⊂ ∂Ω, which implies that
ρ(π1(ξ(s))) = 0. Hence,

〈
π1∗(Ψ∗(0,y)X), dρ

〉
= 〈π1∗X, dρ〉 =

d

ds

∣∣∣
s=0
ρ
(
π1

(
ξ(s)
))

= 0.

Thus, from Lemma 5.4, we deduce

[
Ψ∗
(
π∗1 (dρ)

)]
|(0,y) =

〈 ∂

∂t
,Ψ∗

(
π∗1 (dρ)

)〉
(0,y)

dt

=
( d

dt

∣∣∣
t=0+

ρ ◦ γy(t)
)

dt = gn(n, y)dt.

(5.6)

By the co-area formula (see [34, Theorem 3.3.1]), (5.5), and (5.6), we have

[ηdt ∧ dχ]|(0,y) = Ψ∗
(

dVSM(y)
)

= Ψ∗
[

eτ (y)π∗1 (dµ)(y) ∧ dνπ1(y)(y)
]

= Ψ∗
[

eτ (y)π∗1 (dρ ∧ dA)(y) ∧ dνπ1(y)(y)
]

= Ψ∗
[

eτ (y)π∗1 (dρ)(y) ∧ dχ(y)
]

=
[

eτ (y)gn(n, y)dt ∧ dχ
]
|(0,y);

that is, η(0, y) = eτ (y)gn(n, y). It follows from Lemma 5.8 that

(5.7) Ψ∗
(

dVSM

(
ϕt (y)

))
= eτ (y)gn(n, y)dt ∧ dχ, ∀(t, y) ∈ R × S+∂Ω,

which implies that Ψ is of maximal rank. Hence, from Lemma 5.7, we deduce that
Ψ|N is a diffeomorphism.

Clearly, UZ = U−Ω \Ψ(N) has measure zero with respect to dVSM . Let N :=
{y ∈ SΩ : t̂(−y) = i−y}. Thus, V−Ω = U−Ω ∪N . By an argument similar to the
proof of Lemma 5.7, one has N ⊂ {ϕl(y) y : y ∈ S+∂Ω ∪ Z, l(y) = i y}, which
implies that N has measure zero with respect to dVSM . By (5.7), we have∫

V−
Ω

f dVSM =

∫
U−

Ω

f dVSM =

∫
Ψ(N)

f dVSM =

∫
N

Ψ∗( f dVSM)

=

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0
f (ϕt (y))dt.

In the Riemannian case, eτ (y) = 1 and gn = g. Therefore, Theorem 5.9 implies
Santaló’s formula [13, 31].
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6 A Croke Type Isoperimetric Inequality

Let (M, F) be a reversible complete Finsler n-manifold and let Ω ⊂ M be a relatively
compact domain with smooth boundary ∂Ω. Denote by n the unit inward normal
vector field along ∂Ω. In this section, dµ is either the Busemann–Hausdorff volume
form or the Holmes–Thompson volume form. Let Ξ := supy∈SΩτ (y), where τ is the
distortion of dµ. Given any point p ∈ Ω, define

U p := π−1
1 |V−

Ω
(p) ⊂ SpM, ωp :=

1

cn−1

∫
U p

eτ (y)dνp(y), and ω := infp∈Ωωp.

For each point p ∈ ∂Ω, define

Mp := max
(

sup
y∈SpM

‖y‖−1, sup
y∈SpM

‖y‖
)
, M = sup

p∈∂Ω

Mp,

where ‖y‖ :=
√

gn(y, y). Since Ω is compact, 1 ≤M <∞. It is not hard to see that

M−1
p F(y) ≤ ‖y‖ ≤Mp F(y), ∀y ∈ TpM,∀p ∈ ∂Ω.

Using Stokes’ formula, we have the following estimate.

Lemma 6.1 For each point p ∈ ∂Ω, set S+
p∂Ω := {y ∈ SpM : gn(n, y) > 0}. Then

∫
S+

p∂Ω

gn(n, y)eτ (y)dνp(y) ≤ e2Ξ cn−2

n− 1
M2n+1

p ,

with equality if and only if F(p, · ) is a Euclidean norm.

Proof Choose a gn-orthnormal basis {ei} of TpM such that en = n. Let {yi} be the
corresponding coordinates. Define

Bp := {y ∈ TpM : F(y) < 1}, B+
p := {y ∈ Bp : yn > 0},

Bp,r := {y ∈ Bp : yn = r}, Bp(r) :=
{

y ∈ TpM : ‖y‖ < r
} ∼= Bn(r),

Bp,r(s) :=
{

y ∈ TpM : yn = r,
∥∥∥ n−1∑
α=1

yαeα
∥∥∥ < s

}
∼= Bn−1(s).

Clearly, ∂B+
p = Bp,0 ∪ S+

p∂Ω, Bp(M−1
p ) ⊂ Bp, and Bp,r ⊂ Bp,r(

√
M2

p − r2). In
particular, for each y ∈ B+

p , 0 < yn = gn(n, y) ≤ F(y)F(n) ≤ 1. Let

$ := yn
(∑

i

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)
.
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From Stokes’ formula, we have∫
S+

p∂Ω

$ =

∫
∂B+

p

$ =

∫
B+

p

d$ = (n + 1)

∫
B+

p

yndy1 ∧ · · · ∧ dyn

= (n + 1)

∫ 1

0
VolRn−1 (Bp,yn )yndyn

≤ (n + 1)

∫ Mp

0
VolRn−1 (Bp,yn )yndyn

≤ (n + 1)

∫ Mp

0
VolRn−1

(
Bp,yn

(√
M2

p − (yn)2
))

yndyn

=
cn−2(n + 1)

n− 1

∫ Mp

0

(√
M2

p − (yn)2
) n−1

yndyn =
cn−2

n− 1
Mn+1

p ,

(6.1)

with equality if and only if Mp = 1, i.e., F(p, · ) is a Euclidean norm.
Let {ϑi} be the dual basis of {ei} and let dµ(p) = σ(p)ϑ1 ∧ · · · ∧ ϑn. Since F is

reversible,

(6.2) σHT(p) ≤ σBH(p) =
Vol(Bn)

Vol(Bp)
≤ Vol(Bn)

Vol(Bp(M−1
p ))

= Mn
p.

Using (6.1) and (6.2), we have∫
S+

p∂Ω

gn(n, y)eτ (y)dνp(y)

=

∫
S+

p∂Ω

gn(n, y)e2τ (y)e−τ (y)dνp(y) ≤ e2Ξ

∫
S+

p∂Ω

gn(n, y)e−τ (y)dνp(y)

= e2Ξσ(p)

∫
S+

p∂Ω

yn
(∑

i

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)

≤ e2ΞMn
p

∫
S+

p∂Ω

$ ≤ e2Ξ cn−2

n− 1
M2n+1

p .

By Theorem 4.4, Lemma 5.6, Theorem 5.9, and Lemma 6.1, we have the following
theorem.

Theorem 6.2 Let Ω be a relatively compact domain in a reversible Finsler n-manifold
(M, F), with ∂Ω ∈ C∞. Let dµ denote either the Busemann–Hausdorff volume form or
the Holmes–Thompson volume form and let ω, M and Ξ be defined as above.

(i) We have

(6.3)
A(∂Ω)

µ(Ω)
≥ (n− 1)cn−1ω

cn−2e2ΞM2n+1d(Ω)
,

where d(Ω) denotes the diameter of Ω. The equality holds in (6.3) if (Ω, F|Ω) is a stan-
dard hemisphere of a constant sectional curvature sphere.
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(ii) We have

(6.4)
A(∂Ω)

µ(Ω)1−1/n
≥ cn−1

M(2n+1)(cn/2)1−1/n

( ω

e2Ξ

) 1+1/n
,

with equality if and only if (Ω, F|Ω) is a hemisphere of a constant sectional curvature
sphere.

Proof (i) From Theorem 5.9, we have

cn−1ωµ(Ω) ≤ cn−1

∫
Ω

ωxdµ(x) = VSM(V−Ω ) =

∫
S+∂Ω

l(y)eτ (y)gn(n, y)dχ(y)

≤ d(Ω)

∫
∂Ω

dA(x)

∫
S+

x ∂Ω

eτ (y)gn(n, y)dνx(y)

≤ d(Ω)A(∂Ω)e2ΞM2n+1 cn−2

n− 1
.

(ii) Given any point x ∈ Ω, let (r, y) be the polar coordinate system at x. Recall
that dµ|(r,y) = σ̂x(r, y)dr ∧ dνx(y), where σ̂x(r, y) = e−τ (ϕr(y))F (r, y). Clearly,

µ(Ω) =

∫
SxM

dνx(y)

∫ l(y)

0
σ̂x(r, y)dr.

For each y ∈ SxΩ, l(ϕt (y)) ≥ l(y)− t . Using Hölder’s inequality, Theorems 4.4 and
5.9 and Lemma 6.1, we have

µ(Ω)2 =

∫
Ω

dµ(x)

∫
SxM

dνx(y)

∫ l(y)

0

σ̂x(r, y)dr

=

∫
SΩ

dVSM(y)

∫ l(y)

0

e−τ (y)σ̂x(r, y)dr

≥
∫
V

−
Ω

dVSM(y)

∫ l(y)

0

e−τ (y)σ̂x(r, y)dr(6.5)

=

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0

dt

∫ l(ϕt (y))

0

e−τ (ϕt (y))σ̂x(r, ϕt (y))dr(6.6)

=

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0

dt

∫ l(ϕt (y))

0

e−τ (ϕt (y))−τ (ϕt+r (y))F (r, ϕt (y))dr

≥
∫

S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0

dt

∫ l(y)−t

0

e−τ (ϕt (y))−τ (ϕt+r (y))F (r, ϕt (y))dr

≥ e−2Ξ

∫
S+∂Ω

eτ (y)gn(n, y)dχ(y)

∫ l(y)

0

dt

∫ l(y)−t

0

F (r, ϕt (y))dr(6.7)

≥ cn

2e2Ξcn−1πn

∫
S+∂Ω

l(y)n+1eτ (y)gn(n, y)dχ(y)(6.8)
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≥ cn

2e2Ξcn−1πn

(∫
S+∂Ω

l(y)eτ (y)gn(n, y)dχ(y)

) n+1(∫
S+∂Ω

gn(n, y)eτ (y)dχ(y)

)−n

(6.9)

≥ cn

2e2Ξcn−1πn

(
VSM(V−

Ω )
) n+1

(
e2Ξ cn−2

n − 1
M

2n+1A(∂Ω)
)−n

(6.10)

=
cn

2cn−1e2(n+1)ΞMn(2n+1)

( n − 1
πcn−2

) n VSM(V−
Ω )n+1

A(∂Ω)n

≥ cnω
n+1

2e2(n+1)ΞMn(2n+1)

( (n − 1)cn−1

πcn−2

) n µ(Ω)n+1

A(∂Ω)n

=
ωn+1

e2(n+1)ΞMn(2n+1)

cn
n−1

(cn/2)n−1

µ(Ω)n+1

A(∂Ω)n
,

the equality (6.6) is Theorem 5.9; the inequality (6.8) is Theorem 4.4; the inequality
(6.9) is Höler’s inequality; the inequality (6.10) is Lemma 6.1. Therefore,

A(∂Ω)

µ(Ω)1−1/n
≥ cn−1

M(2n+1)(cn/2)1−1/n

( ω

e2Ξ

) 1+1/n
.

If equality holds in (6.4), then we have equalities in (6.5)–(6.10). From (6.10) and
Lemma 6.1, it follows that F(p, · ) is a Euclidean norm, for each p ∈ ∂Ω. Hence,
M = 1 and eτ (y) = 1 for all y ∈ S+∂Ω. Thus, by (6.10), we have

(6.11)
A(∂Ω)

µ(Ω)1−1/n
=

cn−1

(cn/2)1−1/ne2Ξ/n
ω1+1/n.

Equation (6.5) yields V−Ω = SΩ, which implies that for each y ∈ SΩ, t̂(−y) ≤ i−y .
Since F is reversible, t̂(y) ≤ i y , for all y ∈ SΩ. From Lemma 5.6, we have

t̂(y0) ≤ lim inf
y→y0

t̂(y) ≤ lim inf
y→y0

i y = i y0 , ∀y0 ∈ S+∂Ω.

Equality in (6.9), the Hölder inequality, implies that l(y) is constant, say, equal to l,
on all of S+∂Ω. From above, t̂(y) = l, for all y ∈ S+∂Ω. Equality in (6.7) implies that
e−τ (ϕt (y)) = e−Ξ, for all y ∈ S+∂Ω, t ∈ (0, l). By the proof of Theorem 5.9, we have

VSM

(
SΩ\Ψ(N)

)
= VSM

(
V−Ω \Ψ(N)

)
= 0.

Hence, e−τ (y) = e−Ξ, for all y ∈ SΩ, which implies that F|Ω is a Riemannian metric
and e−Ξ = 1. Then (6.11) becomes

A(∂Ω)

µ(Ω)1−1/n
=

cn−1

(cn/2)1−1/n
ω1+1/n.

Equality in (6.8), Theorem 4.4, implies that Ω has constant sectional curvature equal
to (π/l)2. Thus, for all y ∈ S+∂Ω, t̂(y) = l = i y , i.e., Ω is a hemisphere.

https://doi.org/10.4153/CJM-2012-053-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-053-4


1432 W. Zhao and Y. Shen

If F is Riemannian, then Ξ = 0 and M = 1. Therefore, the theorem above implies
Croke’s isoperimetric inequality [17].

Let (M, F) be a compact reversible Finsler n-manifold without boundary. Given
p ∈ M, the (open) metric ball of radius r centered at p is denoted by B(p, r), and
S(p, r) := ∂B(p, r). Define

ωHT(x) :=
1

cn−1

∫
Ux

eτHT (y)dνx(y), ωHT := inf
x∈B(p,r)

ωHT(x),

rp := inf
{

r :
(

B(p, r), F|B(p,r)

)
has ωHT < 1

}
.

Clearly, ωHT = 1 if and only if Ux = SxM, ∀x ∈ B(p, r), which implies that the
cut locus of any interior point in B(p, r) lies outside B(p, r). Therefore, rp ≥ iM/2.
Then we have the following proposition, which implies [17, Proposition 14].

Proposition 6.3 Let (M, F, dµ) be a compact reversible Finsler n-manifold without
boundary, where dµ is either the Busemann–Hausdorff volume form or the Holmes–
Thompson volume form. For any p ∈ M and 0 < r ≤ rp (or r ≤ iM/2), we have

µ
(

B(p, r)
)
≥ Cn(n,Λ)

nn
rn, A

(
S(p, r)

)
≥ Cn(n,Λ)

nn−1
rn−1,

where Λ is the uniform constant of (M, F) and C(n,Λ) is a constant that depends on n
and Λ.

Proof Let (xi , yi) be local coordinates on TM. By [38], we have

max
y∈SxM

det gi j(x, y)

min
y∈SxM

det gi j(x, y)
≤ Λn,

cn−1

Volġx (SxM)
=

cn−1∫
SxM dνx(y)

≤ Λn/2,

for all x ∈ M. Hence, for each y ∈ SM,

(6.12) eτHT (y) =

√
det gi j(y)

σHT(π1(y))
≤ Λn,

where π1 : SM → M is the natural projection.
Since F is reversible, dµBH ≥ dµHT (see Section 2 or [5, 19]). Let ρ(x) := d(p, x).

Then ρ is differentiable almost everywhere and dA := i∗(∇ρcdµ), where i : S(p, r) ↪→
M is the inclusion map (see [34]). Hence, dABH ≥ dAHT . Therefore, µ(B(p, r)) ≥
µHT(B(p, r)) and A(S(p, r)) ≥ AHT(S(p, r)).

Let C(n,Λ) := cn−1

Λ(6n+5)/2(cn/2)1−1/n . From Theorem 6.2 and (6.12), we have

d
dtµHT(B(p, t))

µHT(B(p, t))1−1/n
=

AHT(S(p, t))

µHT(B(p, t))1−1/n
≥ C(n,Λ),

which implies that

µHT

(
B(p, r)

)
≥ Cn(n,Λ)

nn
rn, 0 < r ≤ rp.
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Thus, we get the first statement. Using Theorem 6.2 again, we have

AHT(S(p, r)) ≥ C(n,Λ)µHT(B(p, r))1−1/n ≥ Cn(n,Λ)

nn−1
rn−1, 0 < r ≤ rp.

By Theorem 3.4, we have the following proposition, which is a Finslerian version
of [17, Lemma 3].

Proposition 6.4 Let (M, F, dµ) be a compact reversible Finsler n-manifold with

Ric ≥ (n− 1)k, τ ≥ ~,

where dµ is either the Busemann–Hausdorff volume form or the Holmes–Thompson
volume form. If Γ is any (n − 1)-dimensional compact submanifold of M dividing M
into two open submanifolds M1 and M2, such that ∂M1=∂M2 = Γ, then

ωi ≥
e2~µ(M j)

cn−1

∫ d(M)
0 sn−1

k (r)dr
, i 6= j

where ωi is the ω corresponding to Mi , and d(M) is the diameter of M.
In particular, if µ(M1) ≤ µ(M2), then

ω1 ≥
e2~µ(M)

2cn−1

∫ d(M)
0 sn−1

k (r)dr
.

Proof Given p ∈ M1, let

Op := {q ∈ M : q = γy(t), t ∈ (0, i y], y ∈ U p}.

Then for any q ∈ M2, there is a unit speed minimizing geodesic γy(t) from p to q.
Hence, γy(t) must hit the boundary and therefore y = γ̇y(0) ∈ U p. This implies that
M2 ⊂ Op. Thus, by the proof of Theorem 3.4, we obtain

µ(M2) ≤ µ(Op) =

∫
U p

dνp(y)

∫ i y

0
σ̂p(t, y)dt

≤
∫

U p

dνp(y)

∫ i y

0
e−τ (γ̇y (t))sn−1

k (t)dt

=

∫
U p

eτ (y)dνp(y)

∫ i y

0
e−[τ (γ̇y (t))+τ (y)]sn−1

k (t)dt

≤ cn−1ω1(p)e−2~
∫ i y

0
sn−1

k (t)dt.
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According to [13, 34], the Cheeger’s constant of a reversible Finsler n-manifold
(M, F, dµ) is defined by

I∞(M) := inf
Γ

A(Γ)

min{µ(M1), µ(M2)}
,

where Γ varies over compact (n − 1)-dimensional submanifolds of M that divide
M into two disjoint open submanifolds M1, M2 of M. Then we have the following
theorem.

Theorem 6.5 Let (M, F, dµ) be a compact reversible Finsler manifold, where dµ is
either the Busemann–Hausdorff volume form or the Holmes–Thompson volume form.
Then I∞(M) > 0.

Proof Given any compact (n − 1)-dimensional submanifold Γ that divided M into
two disjoint open submanifolds. Let n be the unit inward normal vector field along
Γ and let M be defined as above. Since M is compact, the uniformity constant Λ is
finite and

√
Λ ≥ M. Combining Theorem 6.2 and Proposition 6.4 completes the

proof.
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Mathematics, 152, Birkhäuser Boston, Boston, MA, 1999.
[23] Q. He and Y.-B. Shen, On Bernstein type theorems in Finsler spaces with the volume form induced

from the projective sphere bundle. Proc. Amer. Math. Soc. 134(2006), no. 3, 871–880.
http://dx.doi.org/10.1090/S0002-9939-05-08017-2

[24] R. D. Holmes and A. C. Thompson, n-dimensional area and content in Minkowski spaces. Pacific J.
Math. 85(1979), no. 1, 77–110.

[25] C.-W. Kim and J.-W. Yim, Finsler manifolds with positive constant flag curvature. Geom. Dedicata.
98(2003), 47–56. http://dx.doi.org/10.1023/A:1024034012734

[26] M. Matsumoto, Theory of curves in tangent planes of two-dimensional Finsler spaces. Tensor (N.S.)
37(1982), no. 1, 35–42.

[27] B. O’Neill, Semi-Riemannian geometry. Pure and Applied Mathematics, 103, Academic Press,
New York, 1983.

[28] P. V. Petersen, Gromov-Hausdorff convergence of metric spaces. In: Riemannian geometry (Los
Angeles,CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, American Mathematical Society,
Providence, RI, 1993, pp. 489–504.

[29] , Riemannian geometry. Graduate Texts in Mathematics, 171, Springer-Verlag, New York,
1998.

[30] H.-B. Rademacher, A sphere theorem for non-reversible Finsler metrics. Math. Ann. 328(2004),
no. 3, 373–387. http://dx.doi.org/10.1007/s00208-003-0485-y
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