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The Choquard equation is a partial differential equation that has gained significant
interest and attention in recent decades. It is a nonlinear equation that combines
elements of both the Laplace and Schrödinger operators, and it arises frequently in
the study of numerous physical phenomena, from condensed matter physics to
nonlinear optics.

In particular, the steady states of the Choquard equation were thoroughly
investigated using a variational functional acting on the wave functions.

In this article, we introduce a dual formulation for the variational functional in
terms of the potential induced by the wave function, and use it to explore the
existence of steady states of a multi-state version the Choquard equation in critical
and sub-critical cases.
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1. Introduction

1.1. Background

The Choquard equation

−Δφ+ φ−
(∫ |φ(y)|2

|x− y| dy
)
φ(x) = 0

in R
3 was originally proposed by Ph. Choquard, as an approximation to Hartree-

Fock theory for a one component plasma. Equation of similar types also appear to
be a prototype of the so-called nonlocal problems, which arise in many situations
(see, e.g [17]) and as a model of self-gravitating matter [11].

A generalized version in R
n takes the form

− Δφ+ φ = (Iα ∗ |φ|p) |φ|p−2φ (1.1)

where

Iα = A(α)|x|α−n; A(α) :=
Γ
(
n−α

2

)
2απn/2Γ (α/2))

(1.2)
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2 G. Wolansky

is the Rietz potential, α ∈ (0, n), p ∈ (1, ∞) was considered by many authors in
the last decades, using its variational structure as a critical point of the functional

Ep,α(φ) =
1
2

∫
Rn

(
|∇u|2 + |φ|2 − 1

2p
(Iα ∗ |φ|p) |φ|p

)
(1.3)

on an appropriate space. In particular, existence of solutions the case p = 2 (and
for more general singular interaction kernels) was studied by E.H. Lieb, P.L Lions
and G. Menzala [6, 7, 10]. For existence, regularity and asymptotic behaviour of
solutions in the general case see [12, 13] and references therein.

The non-linear Schrödinger equation associated with Ep,α takes the form

− i∂tψ − Δψ − a(Iα ∗ |ψ|p)|ψ|p−2ψ = 0 . (1.4)

The number a ∈ R is the strength of interaction. The case a > 0 corresponds to the
attractive, gravitation-like dynamics, and is related to Choquard’s equation. The
case a < 0 is the repulsive, electrostatic case and is related to the Hartree system
(see, e.g. [18]). In this paper we deal with the attractive case.

Considering an eigenmode ψ = e−iλtφ we get that φ satisfy the non-linear
eigenvalue problems

− Δφ− a (Iα ∗ |φ|p) |φ|p−2φ− λφ = 0 (1.5)

which can be reduced to (1.1) by a proper scaling1 . However, the solutions of the
nonlinear equation (1.4) preserve the L

2 norm, so it is natural to look for stationary
solutions (1.5) under a prescribed L

2 norm (say, ‖φ‖2 = 1). It is not difficult to see
that, in general, one can find a scaling φ �→ φε(x) = ε−n/2φ(ε/x) which preserves
the L

2 norm and transform the strength of interaction in (1.5) into a = 1, making
this parameter mathematically insignificant. There is, however, an exceptional case
α = n(p− 1) − 2. In that case the first two terms in (1.5) are transformed with equal
coefficients under L

2 preserving scaling, so the size of the interaction coefficient a
is mathematically significant in that case.

In the case p = 2 and in the presence of a prescribed, confining potential W , the
L

2− constraint version of (1.5) takes the form

− Δφ+Wφ− a

(∫
Rn

|φ(y)|2
|x− y|n−α dy

)
φ− λφ = 0, ‖φ‖2 = 1 . (1.6)

A solution of (1.6) is given by a minimizer of the functional

EWa (φ) :=
1
2

∫
Rn

(|∇φ|2 +W |φ|2) dx− a

4

∫
Rn

∫
Rn

|φ(x)|2|φ(y)|2
|x− y|n−α dxdy (1.7)

restricted to the L
2 unit ball ‖φ‖2 = 1.

In [8] the authors studied the equation (1.6) in the exceptional case α = n− 2,
for n � 3, a > 0 and W a prescribed function satisfying limx→∞W (x) = ∞. In
particular, they showed the existence of a critical strength āc > 0, depending on n
but independent of W , such that EWa is bounded from below on the sphere ‖φ‖2 = 1

1Note that λ < 0 is an eigenvalue below the essential spectrum of −Δ

https://doi.org/10.1017/prm.2024.69 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.69


Dual formulation of constrained solutions 3

iff a � āc. Moreover, a minimizer of EWa exists if a < āc, and is a solution of (1.6)
(c.f. [8]). It was also shown that ac = ‖φ̄‖2, where φ̄ is the unique, positive solution
(c.f. [9]) of the equation of

− Δφ̄−
(∫

Rn

|φ̄(y)|2
|x− y|2 dy

)
φ̄+ φ̄ = 0. (1.8)

The object of the present paper is two-fold.
The first object is to extend the L

2-constraint Choquard equation (1.6) into a
k− state system

− Δφj +Wφj − a

(
k∑
i=1

βi

∫
Rn

|φi|2(y)
|x− y|n−α dy

)
φj − λjφj

= 0 ‖φj‖2 = 1, ; j = 1 . . . k (1.9)

where (φ1, . . . φk) constitutes an orthonormal k−sequence in L
2(Rn) and

βj > 0,
k∑
1

βj = 1 (1.10)

are the probabilities of occupation of the states j = 1 . . . k,
In § 1.2 we introduce the time dependent Heisenberg system which leads naturally

to (1.9), while the steady state (1.9) and its constraint variational formulation are
introduced in § 1.3.

The second object is to introduce a dual approach to the L
2 constraint Choquard

problem in the case p = 2. For the case of single state k = 1, the dual formulation
of EWa (1.7) for α = 2 on the constraint L

2 sphere takes the form of the functional
V �→ HW,α

a (V )

HW,2
a (V ) =

a

2

∫
Rn

|∇V |2 + λ1(V )

over the unconstrained Beppo-Levi space V ∈ Ḣ1(Rn) (c.f. §§ 1.4). Here the func-
tional λ1 = λ1(V ) is the leading (minimal) eigenvalue of the Schrödinger operator
−Δ +W − aV on R

n.
The extension of this dual formulation to the k−system (1.9) for α ∈ (0, 2] is

introduced in (1.28). In case α = 2 it takes the form

HW,2
β,a (V ) =

a

2

∫
Rn

|∇V |2 +
k∑
j=1

βjλj(V )

where λ1(V ) < λ2(V ) � . . . λk(V ) are the leading k eigenvalues of the Schrödinger
operator, while β1 > β2 > . . . βk > 0.

The main result of this paper is summarized below ( § 1.6):
Using the dual variational formulation we show the existence of a minimizer of

HW,α
β,a corresponding to a solution of (1.9) in R

n for any a > 0 where α ∈ (0, 2],
3 � n < 2 + α . In the critical cases α = 2, n = 4 and α = 1, n = 3 we show the
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4 G. Wolansky

existence of a critical interaction level a(n)
c (β) for which there is a minimizer of

HW,α
β,a if a < a

(n)
c (β) corresponding to a solution of (1.9), while HW,α

β,a is unbounded

from below for any a > a
(n)
c (β) for n = 3, 4.

1.2. Mean-field Heisenberg system

Consider the Von Neumann-Heisenberg equation

i
∂R

∂t
=
[
LW − aV,R

]
, t ∈ R (1.11)

on a Hilbert space H. Here R is a density operator, namely a bounded linear oper-
ator on H which is self-adjoint, non-negative and of trace equal one. LW is an
Hermitian operator generating a norm preserving group eitL

W

on H and V is a
non-linear operator.

In the context of mean-field system we consider (H, 〈·, ·〉) to be the Hilbert space
L

2(Rn) where 〈φ, ψ〉 :=
∫

Rn φψ̄ the canonical inner product. A density operator can
be represented by a kernel KR acting on φ ∈ H via R(φ) =

∫
Rn KR(x, y)φ(y) dy

and Tr(R)(x) := KR(x, x). In these terms we define V (R) as the operator acting
on φ ∈ H by multiplication with

V (R) := Iα ∗ Tr(R) (1.12)

Since LW − aV is hermitian for any prescribed potential V , all observables along
the orbit t �→ R(·, t) are unitary equivalent:

R(·, t) = exp
(
−i
∫ t

0

(LW − aV (·, s))ds
)
R(·, 0) exp

(
i

∫ t

0

(LW − aV (·, s))ds
)
.

(1.13)
We restrict ourselves to a class of observables of a finite rank k ∈ N. Hence the
kernel of R can be represented as

R(x, y, t) =
k∑
1

βjψj(x, t)ψ̄j(y, t) (1.14)

where βj > 0 are the eigenvalues of R, which are constant in time, and ψj(·, t) ∈ H

constitute an orthonormal sequence for any t ∈ R. Under this representation (1.11)
takes the form

i
∂ψj
∂t

= (LW − aV )ψj , j = 1, 2, . . . k (1.15)

The eigenvalues βj ∈ [0, 1] are interpreted as the probability of occupation of
the j− level satisfying

∑k
j=1 βj = 1. For any t ∈ R, the trace of R conditioned on
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Dual formulation of constrained solutions 5

x ∈ R
n is

Tr(R)(x, t) =
k∑
j=1

βj |ψj(x, t)|2, (1.16)

and the potential V is determined in terms of the solution R by (1.12)

V =
k∑
j=1

βjIα ∗ |ψj |2 .

Consider now the Hamiltonian

E(α)
β,a (
ψ) :=

1
2

k∑
j=1

βj

[〈
LWψj , ψj

〉− a

2

k∑
i=1

βi
〈|ψj |2, Iα ∗ |ψi|2

〉]

acting on k− orthonormal frames 
ψ = (ψ1, . . . ψk). The system (1.11) (equivalently
(1.15) ) is, in fact, an Hamiltonian system in the canonical variables {ψi, ψ̄j}:

i
∂ψj
∂t

= − 1
βj
δψ̄j

E(α)
β,a ; i

∂ψ̄j
∂t

=
1
βj
δψj

E(α)
β,a . (1.17)

In particular, E(α)
β,a is constant along the solution of (1.11).

1.3. Steady states

The steady states of this system are given by ψj = e−iλjφj where {φj} is an
orthonormal sequence corresponding to eigenvalues λj of the operator LW − aV ,
satisfying

LWφj − aIα ∗
(

k∑
i=1

βi|φi|2
)
φj − λjφj = 0. (1.18)

Definition 1.1.

H
1 := {φ ∈ L

2(Rn), ; ∇φ ∈ L
2(Rn); ‖φ‖2 = 1,

∫
Rn

W |φ|2 <∞ }

⊕kH1 :=
{

φ = (φ1, . . . φk), ;φj ∈ H

1; 〈φj , φi〉 = δji , i, j ∈ {1, . . . k}
}
.

〈〈φ, φ〉〉W is the quadratic form on H
1 defined by the completion of

〈
LWφ, φ

〉
:

〈〈φ, φ〉〉W :=
∫

Rn

|∇φ|2 +W |φ|2.

Let

E(α)
β,a (
φ) :=

1
2

k∑
1

βj

[
〈〈φj , φj〉〉W − a

2

k∑
i=1

βi
〈|φj |2, Iα ∗ |φi|2

〉]

is defined over ⊕kH1 (c.f. Corollary 2.4 below).
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6 G. Wolansky

We formally obtain from (1.17) that the steady states (1.18) are critical points
of E(α)

β,a subject to the orthogonality constraints.

Proposition 1.2. Suppose βj �= βi for any 1 � i �= j � k. Then any critical
point of E(α)

β,a restricted to orthonormal frames
−→
φ = (φ̄1 . . . φ̄k) is composed of k

normalized eigenstates of the operator LW − aV̄ where V̄ = Iα ∗ (
∑k

1 βj |φ̄j |2).

For the proof of proposition 1.2 see the beginning of §2.
From now on we assume

β1 > β2 > . . . > βk > 0. (1.19)

Formulation of the problem : Consider the multi-state Choquard system satisfying
the equivalent of (1.18):

(LW − aV )φj − λjφj = 0 ; j = 1, . . . k (1.20)

on R
n. Here:

i) LW = −Δ +W , Δ :=
∑n
i=1 ∂

2
xi

is the Laplacian on R
n and

W ∈ L
∞
loc(R

n), lim
|x|→∞

W (x) = ∞, inf
x∈Rn

W (x) = W (0) = 0 (1.21)

ii) 
φ = (φ1, . . . φk) ∈ ⊕kH1 are normalized eigenfunctions of LW − aV and λj ∈
R are the corresponding eigenvalues.

iii)

V =
k∑
i=1

βiIα ∗ |φi|2 (1.22)

where βj are the probabilities of occupation of the states j, thus βj > 0 and∑k
1 βj = 1. iv) a > 0.

1.4. A crush review on Rietz kernels and its dual

Let us recall some definitions and theorems we use later (for more details see [4]):
For V1, V2 ∈ C∞

0 (Rn) and α ∈ (0, n), consider the quadratic form

〈V1, V2〉α/2 := A(−α)
∫

Rn

∫
Rn

(V1(x) − V1(y))(V2(x) − V2(y))
|x− y|n+α

dxdy

where the constant A(−α) is defined as in (1.2). If α = 2

〈V1, V2〉(1) :=
∫

Rn

∇V1 · ∇V2 dx .
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Dual formulation of constrained solutions 7

The closure of C∞
0 (Rn) with respect to the norm induced by the inner product

〈·, ·〉α/2 is denoted by Ḣ
α/2. We denote the associated norm by ‖| · ‖|α/2.2 Recall

that Ḣ
α/2 is a Hilbert space so, in particular, is weakly locally compact.

Lemma 1.3 [1]. For α ∈ (0, 2], n > 2, the space Ḣ
α/2 is continuously embedded in

L
2n/(n−α)(Rn), so there exists S = Sn,α > 0 such that

‖V ‖2n/(n−α) � Sn,α‖V ‖|α/2.

The fractional Laplacian (−Δ)α/2, 0 < α < 2 is defined as a distribution by

〈V, φ〉α/2 =
〈
(−Δ)α/2V, φ

〉
∀ φ ∈ C∞

0 (Rn).

and the pointwise definition of the fractional Laplacian for 0 < α < 2 is given in
terms of the singular integral

(−Δ)α/2V (x) = A(−α)
∫

Rn

V (x+ y) − V (x)
|y|n+α

dy .

For α = 2, the above definition is reduced to the classical, local Laplacian −Δ =∑n
j=1 ∂

2
xj

.
The Rietz potential Iα is defined as a distribution via the quadratic form induced

by the dual of the 〈·, ·〉α/2 inner product:

1
2
〈Iα ∗ ρ, ρ〉 := sup

V ∈C∞
0 (Rn)

〈ρ, V 〉 − 1
2
〈V, V 〉α/2 . (1.23)

The Euler-Lagrange equation corresponding to the right hand side of (1.23) takes
the form

(−Δ)α/2V = ρ. (1.24)

In particular, Iα ≡ (−Δ)−α/2 corresponds to the right inverse of the fractional
Laplacian

Iα ∗ (−Δ)α/2V = V . (1.25)

The pointwise representation of the kernel Iα is given by (1.2). Moreover

Lemma 1.4 [16]. For any 0 < α < n, the Rietz potential is a bounded operator from
L
p(Rn) to L

q(Rn) iff 1 < p < n/α and 1/q = 1/p− α/n.

Our main results, described below, concern the Choquard problem on R
n. How-

ever, in order to overcome problems of lack of compactness, we shell need to
introduce a version of this problem in bounded domain Ω ⊂ R

n. In order to handle
this we need to define the Green function corresponding to the fractional Laplacian

2Note that Ḣ
α/2(Rn) does not contain L

2(Rn). In case α = 2 it is sometimes called Beppo-Levi
space.
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8 G. Wolansky

(−Δ)α in a bounded domain under homogeneous Dirichlet condition. This is the
motivation to define the local Rietz potential IΩ

α on L
p(Ω) by

1
2
〈
IΩ
α (ρ), ρ

〉
:= sup

φ∈C∞
0 (Ω)

〈ρ, φ〉 − 1
2
〈φ, φ〉α/2 . (1.26)

In the case α = 2 this definition induces the Green function of the Dirichlet problem
IΩ
2 ≡ (−ΔΩ)−1, that is, V (x) =

∫
Ω
IΩ
2 (x, y)ρ(y) dy is the solution of the Poisson

problem

ΔV + ρ = 0 x ∈ Ω; V = 0 on ∂Ω . (1.27)

Not much is known3 on the Green function IΩ
α for α < 2. In case α = 2 the maxi-

mum principle implies immediately that for any x, y ∈ Ω the inequality I2(x− y) �
IΩ
2 (x, y) holds, and that IΩ

2 (x, y) = 0 if x ∈ Ω, y ∈ ∂Ω. In the general case we obtain
from (1.26) :

Lemma 1.5. For any 0 < α < 2, Ω2 ⊃ Ω1 and supp(ρ) ⊂ Ω1 then IΩ1
α (ρ) �

IΩ2
α (ρ) � Iα ∗ ρ.
In addition: Let Ωj ⊂ R

n, Ωj → R
n is a monotone sequence of domains in R

n.
If ρj converges to ρ in L

p(Rn), p ∈ (1, n/α), and ρj are supported in Ωj then

lim
j→∞

IΩj
α (ρj) = Iα ∗ ρ in L

pn
n−pα (Rn) .

1.5. Spectrum of the Schrödinger operator

One of the most celebrated results on the discreteness of spectrum for the
Schrödinger operator −Δ +W in L

2(Rn) with a locally integrable potential is a
result of K. Friedrichs [2] which ensures the discreteness of spectrum if the potential
W grows at infinity at arbitrary rate. This and (1.21) implies, in particular

Proposition 1.6. Let V ∈ C∞
0 (Rn) and W satisfies (1.21). Then the spectrum of

the operator LW − aV is composed of an infinite set of eigenvalues λj → ∞ and
the corresponding normalized eigenfunctions φj constitute a complete orthonormal
base of L

2(Rn).

For the proof of proposition 1.7 see Lemma 2.7 in § 2.

Proposition 1.7. If 3 � n � 5, 0 < α � 2, then proposition 1.6 can be extended for
V ∈ Ḣ

α/2(Rn), and V �→ λj(V ) is a continuous functional in the ‖| · ‖|α/2 norm.

Proposition 1.7 allows us to define the dual functional on Ḣ
α/2(Rn):

HW,α
β,a (V ) :=

a

2
〈V, V 〉α/2 +

k∑
j=1

βjλj(V ) (1.28)

where λ1(V ) < λ2(V ) � λ3(V ) . . . � λk(V ) are the lowest k eigenvalues of the
operator LW − aV .

3But see § 3-c.
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1.6. Main theorem

For any V ∈ Ḣα/2(Rn) let φj(V ) be a normalized eigenstate corresponding to
λj(V )4

[i] V is a minimizer of HW,α
β,a on Ḣα/2(Rn) if and only if (φ1(V ), . . . φk(V )) is a

minimizer of E(α)
β,a on ⊕kH1. If this is the case then {λj(V ), φj(V )}1�j�k is a

solution of (1.20) .

[ii] If α ∈ (0, 2] 3 � n < 2 + α then HW,α
β,a is bounded from below on Ḣα/2(Rn)

for any β satisfying (1.19) and any a > 0, and there is a minimizer of HW,α
β,a

in Ḣα/2(Rn).

[iii] If α = 1, n = 3 or α = 2, n = 4 then there exists ac(β) > 0 such that HW,α
β,a is

bounded from below on Ḣα/2(Rn) if a < ac(β) and unbounded from below if
a > ac(β). If a < ac(β) there exists a minimizer of HW,α

β,a in Ḣα/2(Rn).

2. Proofs

We start by proving proposition 1.2

Proof. Let γi,j be the Lagrange multiplier for the constraints 〈φi, φj〉 = δi,j . Then−→
φ is an unconstraint critical point of

E(α)
β,a (
φ) +

k∑
1

γj,j‖φj‖2
H1 +

∑
i�=j

γi,j 〈φi, φj〉 .

This implies

δE(α)
β,a

δφ̄j
+ 2γj,j φ̄j +

∑
i�=j

γi,j φ̄i = βj(LW − aV̄ )φ̄j + 2γj,j φ̄j +
∑
i�=j

γi,j φ̄i = 0 .

In particular, Sp(φ̄1 . . . φ̄k) is an invariant subspace of LW − aV̄ . Since (φ̄1 . . . φ̄k) is
an orthonormal sequence we get, after multiplying the above line by φ̄i and taking
the inner product: 〈

βj
[
LW − aV̄

]
φ̄j , φ̄i

〉
+ γi,j = 0

for any i �= j. switching i with j and taking into consideration that L+ V̄ is self-
adjoint, we also get 〈

βi
[
LW − aV̄

]
φ̄j , φ̄i

〉
+ γi,j = 0

Subtracting the two inequalities we obtain
〈
(βj − βi)(LW − aV̄ )φ̄j , φ̄i

〉
= 0 thus〈

(LW − aV̄ )φ̄j , φ̄i
〉

= 0 for any i �= j. Since Sp(φ̄1 . . . φ̄k) is an invariant subspace
of LW − aV̄ , this implies that φ̄j is are eigenstates of LW − aV̄ . �

4If λj(V ) is degenerate, so λj−1(V ) > λj(V ) = . . . = λj+l(V ) > λj+l+1(V ), then
{φj(V ), . . . φj+l(V )} is any orthonormal base of the eigenspace of λj .
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The first part of the following Lemma follows from a compactness embedding
Theorem (c.f. Theorem XIII.67 in [15]). The second part from Sobolev and HLS
inequalities (see, e.g. [13], sec. 3.1.1)

Lemma 2.1. For any n � 3, H
1 is compactly embedded in L

r for 2 < r < 2n/n− 2.
If n− 2/n+ α � 1/2 � n/n+ α and φ ∈ H

1 then |φ|2 ∈ L
2n/(n+α)(Rn) ∩ L

1(Rn)
and ∫

Rn

(Iα ∗ |φ|2)|φ|2 � Cn,α

(∫
|φ|4n/(n+α)

)1+α/n

In particular we obtain:

Corollary 2.2. If max(0, n− 4) � α � n then the functional E(α)
β,a is defined on

⊕kH1.

Let α ∈ (0, 2], 
φ ∈ ⊕kH1 and V ∈ C∞
0 (Rn). Define

H(α)
β (
φ, V ) =

k∑
1

βj
〈
LWφj , φj

〉
+ a

[
〈V, V 〉α/2 −

〈
V,
∑

βj |φj |2
〉]

. (2.1)

By (1.23) we get (c.f definition 1.1)

inf
V ∈C∞

0 (Rn)
H(α)
β (
φ, V ) = 2E(α)

β,a (
φ) .

Thus

inf
V ∈C∞

0

inf
�φ∈⊕kH1

H(α)
β (
φ, V ) ≡ inf

�φ∈⊕kH1
inf

V ∈C∞
0

H(α)
β (
φ, V ) = inf

�φ∈⊕kH1
E(α)
β,a (
φ) .

Let

HW,α
β,a (V ) = inf

�φ∈⊕kH1
H(α)
β (
φ, V ) .

From (1.23 , 2.1) we observe that

HW,α
β,a (V ) =

a

2
〈V, V 〉α/2 + inf

�φ∈⊕kH1

k∑
j=1

βj
〈
(LW − aV )φj , φj

〉
.

Let

inf
�φ∈⊕kH1

k∑
j=1

βj
〈
(LW − aV )φj , φj

〉
:= Gβ,a(V ) . (2.2)

As the infimum over linear functionals, V �→ Gβ,a(V ) is a concave functional, so

HW,α
β,a (V ) =

a

2
〈V, V 〉α/2 +Gβ,a(V ) (2.3)
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Dual formulation of constrained solutions 11

is the sum of convex and concave functionals. In the case k = 1 (
β = β1 = 1) we
observe, by the Rayleigh-Ritz principle

G1,a(V ) = inf
‖φ‖=1

〈
(LW − aV )φ, φ

〉
= λ1(V )

and the supremum is obtained at the normalized ground state φ̄1 satisfying (LW −
aV − λ1)φ̄1 = 0. In particular we reassure that G1,a(V ) = λ1(V ) is a concave func-
tional. In general, higher eigenvalues λj = λj(V ) are not concave functions if j > 1.
However, if 
β := (β1, . . . βk) satisfies (1.19) then we claim that V �→∑k

j=1 βjλj(V )
is concave. Indeed:

Lemma 2.3.

Gβ,a(V ) =
k∑
j=1

βjλj(V ) (2.4)

where λj(V ) are the k lowest eigenvalues of the operator LW − aV arranged by
order

λ1(V ) < λ2(V ) � . . . � λk(V ) .

Moreover, the minimum in (2.2) is obtained at the eigenfunction φ̄j of LW − aV
corresponding to λj.

Recall the definition of sup-gradient of a concave functional G on a vector space
C∞

0 (Rn) at V :

∂VG :=
{
ζ ∈ (C∞

0 )
′
; G(Z) � G(V ) + 〈Z − V, ζ〉 ∀Z ∈ C∞

0

}

while G is differentiable at V if ∂VG is a singleton.

Corollary 2.4. The sup-gradient of the functional Gβ,a on C∞
0 (Rn) is contained

in L
1. In fact ∂VGβ,a = a

∑k
j=1 βj |φ̄j |2 where φ̄j ∈ L

2 is a normalized eigenstate
of LW − aV corresponding to the j− eigenvalue. So, in particular, ‖∂VGβ,a‖1 = a.
If all eigenvalues of LW − aV are simple then Gβ,a is differentiable at V .

Proof. Since V �→∑k
j=1 βj

〈
(LW − aV )φj , φj

〉
is a linear functional, (2.2) would

imply, in particular, that the functional Gβ,a is, indeed, a concave one.
Let φ̄j be the normalized eigenvalues of LW − aV corresponding to λj(V ). Fix

some m � j and let Hm = Sp(φ̄1, . . . φ̄m). Let us restrict the supremum (2.2) to
H
k
m := {
φ := (φ1, . . . φk), φj ∈ Hm} ⊂ H

k.
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12 G. Wolansky

Then

φj =
m∑
i=1

〈
φj , φ̄i

〉
φ̄i, (LW − aV )φj =

m∑
i=1

λi
〈
φj , φ̄i

〉
φ̄i.

Define βk+1 = . . . = βm = 0. Then we can write, for any 
φ ∈ H
k
m

k∑
j=1

βj
〈
(LW − aV )φj , φj

〉
=

m∑
i=1

m∑
j=1

βjλi|
〈
φj , φ̄i

〉 |2. (2.5)

Denote now γi,j := | 〈φj , φ̄i〉 |2. Then {γi,j} is m×m, bi-stochastic matrix,
i.e

∑m
i=1 γi,j =

∑m
j=1 γi,j = 1 for all i, j = 1 . . .m. Consider now the infimum

of
∑m
i=1

∑m
j=1 γ̃i,jλiβj over all bi-stochastic martices {γ̃i,j}. By Krain-Milman

theorem, the minimum is obtained on an extreme point in the convex set of bi-
stochastic matrices. By Birkhoff theorem, the extreme points are permutations so,
from(2.5)

∀
φ ∈ H
k
m,

k∑
j=1

βj
〈
(LW − aV )φj , φj

〉
�

m∑
j=1

βπ(j)λj

for some permutation π : {1, . . .m} �→ {1, . . .m}. Now, recall that βj are assumed
to be in descending order while λj are in ascending order by definition. By the
discrete rearangment theorem of Hardy, Littelwood and Polya [3] we obtain that
the maximum on the right above is obtained at the identity permutation π(i) = i,
that is, at the identity matrix γ̃i,j :=

〈
φj , φ̄i

〉
= δi,j . This implies that the eigenbasis

φ̄1, . . . φ̄k of the k leading eigenvalues is the minimizer of (2.2) on H
k
m for anym � k.

In particular, the minimizer of (2.2) in H
k
m is independent of m, as long as m � k.

Suppose there exists some 
ψ ∈ H
k which is not contained in and finite dimensional

subspace generated by eigenstates, for which (2.2) is strictly smaller than its value
on the first k− leading eigenspace. Since the eigenstates of the Schrödinger operator
under assumption (1.21) generate the whole space we can find, for a sufficiently large
m, an orthonormal base in H

k
m for on which the left side of (2.2) is strictly larger

than
∑k
j=1 βjλj(V ), and we get a contradiction for this value of m. �

From Corollary 2.4 and (1.24, 1.25) It follows that the Euler-Lagrange equation
corresponding to HW,α

β,a is

(−Δ)α/2V −
k∑
j=1

βj |φj |2 = 0 ⇐⇒ V = Iα ∗
⎛
⎝ k∑
j=1

βj |φj |2
⎞
⎠

where φj are the normalized eigenfunction corresponding to λj(V ). In particular
we obtain the proof of theorem 1.6-(i):

Corollary 2.5. If V̄ is a minimizer of HW,α
β,a then V̄ =

∑k
j=1 βjIα ∗ |φ̄j |2 where φ̄j

are the normalized eigenfunction corresponding to λj(V̄ ). In particular, {λj(V̄ ), φ̄j}
is a solution of the Choquard system (1.20, 1.22).
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Dual formulation of constrained solutions 13

Lemma 2.6. Suppose α ∈ (0, 2], 3 � n � 4 + α and V ∈ C∞
0 (Rn) is bounded

in Ḣ
α/2. If φ is a normalized eigenfunction of a−1LW − V then ‖∇φ‖2 ,∫

W |φ|2 dx and ‖φ‖2n/(n−2) are bounded in terms of ‖|V ‖|α/2 and the corresponding
eigenvalue λ.

Proof. By assumption, ‖φ‖2 = 1 and satisfy

(−Δφ+W )φ− aV φ− λφ = 0 .

Multiply by φ and integrate to obtain

‖∇φ‖2
2 − a

∫
V |φ|2 dx+

∫
W |φ|2 dx− λ = 0. (2.6)

By the critical Sobolev inequality (lemma 1.3) and and Holder inequality

∫
V |φ|2 dx � ‖V ‖ 2n

n−α
‖φ|2‖ 2n

n+α
� Sn,α‖|V ‖|2α/2‖φ|2‖ 2n

n+α
(2.7)

By the Gagliardo-Nirenberg interpolation inequality [14]

‖φ‖p � C(θ)‖∇φ‖θ2‖φ‖1−θ
2

where C(θ) is independent of φ, p = 2n/(n− 2θ) whenever θ ∈ [0, 1]. Since ‖φ‖2 = 1
we get

‖|φ|2‖p/2 = ‖φ‖2
p � C2(θ)‖∇φ‖2θ

2 . (2.8)

Let now p/2 = 2n/n+ α, corresponding to θ = (n− α)/4, we obtain from (2.7)

∫
V |φ|2 dx � Sn,αC

2(θ)‖|V ‖|2α/2‖∇φ‖2θ
2

where θ < 1 if 3 � n < 4 + α. Substitute it in (2.6) we obtain the upper estimate
on ‖∇φ‖2 and

∫
W |φ|2 dx. Finally setting θ = 1 corresponding to p = 2n/(n− 2)

we obtain from (2.8) the estimate on ‖φ‖2n/(n−2). �

Lemma 2.7. If 2 < n < 4 + α, 0 < α � 2 then C∞
0 (Rn) � V �→ λ

(V )
j is continuous

on bounded sets in Ḣα/2(Rn) with respect to Lebesgue norms L
q(Rn), where n/2 �

q � ∞. In particular V �→ λ
(V )
j can be extended as a continuous function on Ḣα/2.
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14 G. Wolansky

Proof. By lemma 2.3, there exists 
φ(V ) ∈ H
k
1 such that

Gβ,a(V ) = inf
�φ∈⊕kH1

k∑
j=1

βj
〈
(LW − aV )φj , φj

〉
.

Thus, for Ṽ1, Ṽ2 bounded in Ḣ
α/2,

Gβ,a(Ṽ1) −Gβ,a(Ṽ2) �
k∑
j=1

βj

〈
(LW − aṼ1)φ

(Ṽ2)
j , φ

(Ṽ2)
j

〉

−
k∑
j=1

βj

〈
(LW − aṼ2)φ

(Ṽ2)
j , φ

(Ṽ2)
j

〉

= a

k∑
j=1

βj

〈
(Ṽ2 − Ṽ1)φ

(Ṽ2)
j , φ

(Ṽ 2)
j

〉

� a

k∑
j=1

βj‖Ṽ2 − Ṽ1‖q‖|φ(Ṽ2)
j |2‖ q

q−1
.

By lemma 2.6, ‖|φ(V )
j |2‖p is bounded in terms of the norm of ‖|V ‖|α/2 for 1 � p �

n/(n− 2). It follows that Gβ,a(Ṽ1) −Gβ,a(Ṽ2) is bounded in terms of ‖Ṽ2 − Ṽ1‖q
for n/2 � q � ∞, so Gβ,a is continuous in these norms. Since n/2 < 2n/n− α by
assumption and Ḣα/2(Rn) is embedded in L

2n/(n−α)(Rn), we obtain the continuous
extension of Gβ,a on Ḣα/2(Rn) .

Finally, to continuity of each eigenvalue λj is obtained by subtraction
G(β1,...βj),a(V ) −G(β1,...βj−1), a(V ) ≡ βjλ

(V )
j by lemma 2.3. �

2.1. Lower limit of the dual functional

Recall the Lieb-Thirring inequality for Schrodinger operator :

Theorem 2.8 [5]. For the Schrödinger operator −Δ + V on R
n with a real valued

potential V the numbers μ1(V ) � μ2(V ) � · · · � 0 denote the (not necessarily finite)
sequence of its negative eigenvalues. Then, for n � 3 and γ � 0

∑
j;μj(V )<0

|μj(V )|γ � Lγ,n

∫
V
n/2+γ
− dx (2.9)

where V− = max{0, −V } and Lγ,n is independent of V .

Proposition 2.9. The functional V �→ a/2 〈V, V 〉α/2 +Gβ,a(V ) is bounded from
below on Ḣα/2 for any a > 0 if 3 � n < 2 + α. if n = 3, α = 1 or n = 4, α = 2 there
exists a = a

(n)
c (
β) > 0 independent of W for which the functional is bounded from

below if a < a
(n)
c (
β) and unbounded if a > a

(n)
c (
β).
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Dual formulation of constrained solutions 15

Moreover, in the cases n = 3 and n = 4, a < a
(n)
c (
β) the functional is coersive on

Ḣα/2(Rn), namely

lim
‖|V ‖|α/2→∞

1
2
〈V, V 〉α/2 +Gβ,a(V ) = ∞. (2.10)

Proof. Recall that λj(V ) are the eigenvalues of LW − aV = −Δ +W − aV .
Since W � 0 it follows that λj(V ) � μj(aV ). Hence Gβ,a(V ) :=

∑k
j=1 βjλj(V ) �

−∑j;μj(aV )<0 βj |μj(aV )|. By Holder inequality, for γ � 1, γ
′
= γ/(γ − 1) and (2.9)

Gβ,a(V ) � −
⎛
⎝ k∑
j=1

|βj |γ
′

⎞
⎠

1/γ
′ ⎛
⎝ ∑
j;μj(aV )<0

|μj(aV )|γ
⎞
⎠

1/γ

�

−a1+n/2γL1/γ
γ,n‖
β‖γ′

(∫
V
n/2+γ
− dx

)1/γ

.

Set now γ = 2n
n−α − n/2 ≡ (4+α)n−n2

2(n−α) . Then, if 2 < n < 2 +
√

1 + 3α we get γ
′
n,α � 1

and

Gβ,a(V ) � −a 4
4+α−nL1/γ

γ,n‖β‖γ′
n,α

(∫
Rn

V
2n

n−α

+

) 2(n−α)
(4+α)n−n2

.

Using the critical Sobolev inequality

Gβ,a(V ) � −a 4
4+α−nL1/γ

γ,n‖β‖γ′
n,α
S

4
(4+α)−n
n,α 〈V, V 〉

2
(4+α)−n

α/2

hence
a

2
〈V, V 〉α/2 +Gβ,a(V ) �

a 〈V, V 〉
2

4+α−n

α/2

(
1
2
〈V, V 〉1−

2
4+α−n

α/2 − a
n−α

4+α−nL1/γ
γ,n‖β‖γ′

n,α
S

4
(4+α)−n
n,α

)
(2.11)

It follows that HW,α
β,a is coersive for any a > 0 if 3 � n < 2 + α. If n = 2 + α then the

functional is coersive if a < S
4

n−(4+α)
n,α

2L
1/γ
γ,n

|β|−1
γ′

n,α

. Note that γ
′
n,α = ∞ for n = 3, α = 1

and γ
′
n,α = 2 for n = 4, α = 2. Hence coersivity holds if

• (α, n) = (1, 3): a <
S−2

3,1

2L
1/γ
γ,3

|β|−1
∞

• (α, n) = (2, 4): a <
S−2

4,12

2L
1/γ
γ,4

|β|−1
2

We now prove the existence of a critical strength ac(β) in both cases. For a given,
non-negative V ∈ Ḣ

α/2, let k(V ) be the number of negative eigenvalues of −Δ −
aV , enumerated by order λ0

1(V ) < λ0
2(V ) � . . . λ0

k(V )(V ) < 0. Denote G0
β,a(V ) =
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16 G. Wolansky∑k∧k(V )
1 βjλ

0
j (V ). Let φ̄0

j be the corresponding eigenfunctions of −Δ − aV . From
the variational characterization of Gβ,a introduced in lemma 2.3 we may obtain

G0
β,a(V ) � Gβ,a(V ) � G0

β,a(V ) +
k∧k(V )∑
j=1

βj

∫
W |φ0

j |2 +O(1) (2.12)

where O(1) stands for some constant independent of V .5

Substitute now now V/
√
a for V . Then a

2 〈V/√a, V/√a〉α/2 +G0
β,a(V/

√
a) =

1
2 〈V, V 〉α/2 +G0

β,a(V/
√
a). By definition G0

β,a(V/
√
a) =

∑k∧k(V/√a)
1 βjλ

0
j (V/

√
a),

while λ0
j (V/

√
a) is a negative eigenvalue of −Δ +W +

√
aV . Thus, if V < 0

somewhere then lima→∞G0
β,a(V/

√
a) = −∞. In particular it follows that

if a > 0 large enough then ∃V ∈ Ḣα/2 for which
a

2
〈V, V 〉α/2 +G0

β,a(V ) < 0

(2.13)
Now apply the transformation V �→ Vδ(x) := δ2V (δx), where δ > 0. We obtain

that λ0
j (Vδ) = δ2λ0

j (V ) (in particular, k(Vδ) = k(V )), while φ0,δ
j := δn/2φ0

j (δx) is
the corresponding normalized eigenfunction. Hence G0

β,a(Vδ) = δ2G0
β,a(V ) so, by

(2.12), Gβ,a(Vδ) � δ2G0
β,a(V ) +

∑k∧k(V )
j=1 βj

∫
W |φ0

j,δ|2 +O(1).
Next, we obtain for both n = 3, α = 1 and n = 4, α = 2 cases that the quadratic

form scale the same: 〈Vδ, Vδ〉α/2 = δ2 〈V, V 〉α/2 so

a

2
〈Vδ, Vδ〉α/2 +Gβ,a(Vδ) � δ2

[a
2
〈V, V 〉α/2 +G0

β,a(V )
]

+
k∧k(V )∑
j=1

βj

∫
W |φ0

j,δ|2 +O(1). (2.14)

By (1.21) we also get limδ→∞
∫
W |φ0

j,δ|2 = W (0) = 0, so, using (2.13) we obtain
the existence of V for which a

2 〈Vδ, Vδ〉α/2 +Gβ,a(Vδ) → −∞ as δ → ∞, if a > 0 is
large enough.

Now let

ac(
β) = inf
{
a > 0; inf

V ∈Ḣα/2

a

2
〈V, V 〉α/2 +G0

β,a(V ) < 0
}
.

It follows that ∞ > ac(β) > 0 and is independent of W for any 
β in the cases
n = 3, α = 1 and n = 4, α = 2. �

2.2. Existence of minimizers of the local problem

When attempting to prove the existence of minimizers to the functional HW,α
β,a

(2.3) we face the problem of compactness of the space Ḣα/2. So, we start by con-
sidering the subspace of Ḣα/2(BnR) ⊂ Ḣα/2R

n), obtained by the closure of C∞
0

5We may estimate this constant by
∑k

k∧k(V )+1 βjλw
j where λw

j is the j− eigenvalue of H0 =
−Δ + W .
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Dual formulation of constrained solutions 17

of functions supported on the ball BnR := {x ∈ R
n; |x| < R} under the induced

‖| · ‖|α/2 norm (§§ 1.4).
Note that, by this definition, V ∈ Ḣα/2(BnR) is defined over the whole of R

n, and
is identically zero on R

n −BnR.
By

Lemma 2.10. Given 
β satisfying (1.19), R > 0, 3 � n < 2 + α or either
n = 3, α = 1 or n = 4, α = 2. Then there exists a minimizer V̄R of HW,α

β,a restricted
to Ḣα/2(BnR). Moreover,

I
Bn

R
α (V̄R) =

⎛
⎝ k∑
j=1

βj |φ̄Rj |2
⎞
⎠ (2.15)

where φ̄Rj are the normalized eigenstates of LW − aV̄R in R
n.

Proof. Let Vn ⊂ Ḣα/2(BnR) be a minimizing sequence of HW,α
β,a . Since HW,α

β,a is
bounded from below by proposition 2.9 we get

lim
n→∞HW,α

β,a (Vn) = inf
V ∈Ḣα/2(B

n
R)

HW,α
β,a (V ).

Since Ḣα/2(BnR) is weakly compact and the functional is coersive (2.10) there
exists a weak limit V̄R ∈ Ḣα/2(BnR) of this sequence. Moreover, by Sobolev compact
embedding, Vn converges strongly to V̄R in L

q(BnB) for any 1 � q < 2n/(n− α).
Since n < 2 + α then n/2 < 2n/(n− α) and by lemma 2.7

lim
n→∞Gβ,a(Vn) = Gβ,a(V̄R). (2.16)

Since V �→ ‖|V ‖|2α/2 is l.s.c , it follows that

lim
n→∞ 〈Vn, Vn〉α/2 dx �

〈
V̄R, V̄R

〉
α/2

.

This and (2.16) imply that V̄R is, indeed, a minimizer of HW,α
β,a on Ḣα/2(BnR).

Finally, (2.15) follows from (1.26) while taking Ω = BnR. �

2.3. Proof of theorem 1.6(ii, iii)

Let Vm be a minimizing sequence for HW,α
β,a in Ḣα/2(Rn). Since C∞

0 (Rn) is dense
in Ḣα/2(Rn) by definition, we can assume that there exists a sequence Rm → ∞
such that Vm is supported in BnRm

.
Let V̄m be the minimizers of HW,α

β,a on Ḣα/2(BnR).
Since HW,α

β,a (V̄m) � HW,α
β,a (Vm) then V̄m is a minimizing sequence of HW,α

β,a on
Ḣα/2(Rn) as well. Now, under the conditions of the Theorem we know by proposi-
tion 2.9 that HW,α

β,a is bounded from below on Ḣα/2(Rn) and coersive (2.10), so
‖|V̄m‖|α/2 are uniformly bounded. Let φ̄mj be the normalized eigenfunctions of
LW − aV̄m. By lemma 2.6 we obtain that ‖∇φ̄mj ‖2 and

∫
Rn W |φ̄mj |2 and
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18 G. Wolansky

‖|φ̄Rj |2‖n/(n−2) are uniformly bounded on R
n. In addition, ‖φ̄mj ‖2 = 1 by definition.

In particular, φ̄mj are in the space H
1 (c.f Definition 1.1) . Using the first part

of Lemma 2.1 we obtain a subsequence (denoted by the index m ) along which
ρ̄m :=

∑k
j=1 βj |φ̄mj |2 converges in L

p(Rn) for any p < n/(n− 2) ≡ 2∗/2, while

V̄m = I
Bn

R
α (ρ̄m). Since n/2 � n/(n− 2) for n = 3, 4, lemma 1.4 implies the con-

vergence of V̄m to V̄ in L
q(Rn) for any 1 � q <∞. By lower semi continuity we

obtain that V̄ ∈ Ḣα/2(Rn) and
〈
V̄ , V̄

〉
α/2

� limm→∞
〈
V̄m, V̄m

〉
α/2

.
In addition, lemma 2.7 implies that Gβ,a(V̄m) converges to Gβ,a(V̄ ). This implies

HW,α
β,a (V̄ ) � inf

V ∈Ḣα/2(Rn)
HW,α
β,a (V )

so V̄ ∈ Ḣα/2(Rn) is, indeed, a minimizer. The proof of theorem 1.6 follows now
from lemma 1.5 and Corollary 2.5.

3. Further remarks

It is interesting to consider the dependence of the solution to the Choquard sys-
tem on the probability vector 
β. In particular, the relation between the critical
interaction strength a(β) at dimension n− 4 and the universal critical value āc
corresponding to the scalar case k = 1 (see (1.8)).

(a) Estimate on āc: In [8] the critical value in case α = n− 2 is implicitly given as
the L

2 norm of the solution of equation (1.8). However, these solutions are not
known explicitly. Here we introduce an estimate based on Hardy inequality

∫
Rn

|∇f |2 �
(
n− 2

2

)2 ∫
Rn

|f |2
|x|2

for any f ∈ C∞
0 (Rn). In particular it implies that the operator −Δ − V is

non-negative in R
n for any V � (n−2

2 )2|x|−2.
As discussed in §§ 1.1, the functional EWa is bounded from below on the

unit ball of L
2 iff a � āc. This implies, in particular, that if A > āc there

exists φ̃ ∈ H
1 for which

E0
a(φ̃) :=

1
2

∫
Rn

|∇φ̃|2 − A

4

∫
Rn

(
In−2 ∗ |φ̃|2

)
|φ̃|2 < 0 . (3.1)

Moreover, by Riesz’s rearrangement theorem we can assume that this φ̃ is
radially symmetric.

In particular, for any V � In−2 ∗ |φ̃|2

− Δ − (A/2)V �� 0. (3.2)

In the special case n = 4, I2 = (−Δ)−1 is the fundamental solution of the
Laplacian. Let ρ := |φ̃|2 be this radial function. Then U := I2 ∗ ρ is a solution
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of ΔU + ρ = 0. Thus

r−3
(
r3U

′)′

+ ρ(r) = 0. (3.3)

Let m(r) = 2π2
∫ r
0
s3ρ(s)ds. In particular, m(·) is non-decreasing on R+,

m(0) = 0, and m(r) � 1 by assumption. Integrating (3.3) we get

r3U
′
(r) = −(2π2)−1m(r) =⇒ U(r) = (2π)2

∫ ∞

r

m(s)
s3

ds � 2π2r−2.

Thus, taking V = 2π2r−2 in (3.2) we obtain a violation of the Hardy inequal-
ity if π2A is below the Hardy constant. Since the Hardy constant (n−2

2 )2 = 1
for n = 4 we get A > π−2 for any A > āc, that is

āc � 1
π2

if n = 4.
It is not clear, at this point, if the above estimate holds for general dimen-

sion, since In−2 = (−Δ)−1 only if n = 4. There is, indeed, an estimate of the
form

|x; Iα ∗ ρ(x)| > t| � c
(c
t
‖ρ‖2

)n/(n−α)

(c.f [16], eq. (2.12)) which, if ρ is radial, is equivalent to

Iα ∗ ρ(r) � cαω(n−α)/n
n ‖ρ‖1r

α−n

where ωn is the surface area of the unit sphere S
n−1. This suggests a

similar estimate for āc in for general n and α = n− 2 using Hardy inequal-
ity. However, there is now known estimate (as far as we know) for the
constant c.

(b) Relation between āc and aβ : The inequality a(β) � āc can be easily obtained
for the critical case for any α = n− 2, n � 3, and any 
β satisfying (1.10).
Indeed, using Definition 1.1 and the polar inequality

〈|φj |2, Iα ∗ |φi|2
〉

� 1
2
[〈|φj |2, Iα ∗ |φj |2

〉
+
〈|φi|2, Iα ∗ |φi|2

〉]
we obtain

E(α)
β,a (
φ) � 1

2

k∑
j=1

βj

[
〈〈φj , φj〉〉W − a

2
〈|φj |2, Iα ∗ |φj |2

〉]
=

k∑
j=1

βjE
W
a (φj)

where EWa as defined in (1.7). It follows that E(α)
β,a is bounded on ⊕kH1 if

EWa is bounded on H
1. Since EWa is bounded from below iff a � āc ([8]), the

inequality a(β) � āc follows.
In the case n = 3, α = 1 and n = 4, α = 2 we can say more about ac(β).

By definition, a > ac(β) iff HW,α
β,a is unbounded from below on Ḣα/2. Using
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(2.11) we obtain that ac(β) > O(|β|−1
∞ ) for n = 3 and ac(β) > O(|β|−1

2 ) for
n = 4.

For an interesting conclusion from the above estimate, let 
β be the uniform
vector 
β = 1k := k−1(1, . . . 1) ∈ R

k. Then |
β|2 = k−1/2 (resp. |
β|∞ = k−1) so

n = 4 ⇒ ac(1k) � O(k1/2)resp. n = 3 ⇒ (ac(1k) � O(k)

for large k.

(c) The following alternative definitions of Iα and (−Δ)α/2 is known [4, 16]:

Iα =
1

Γ(α)

∫ ∞

0

tα/2−1etΔ dt; (−Δ)α/2 =
1

Γ(−α)

∫ ∞

0

t−α/2−1
(
etΔ − I

)
dt

where etΔ is the heat kernel on R
n:

etΔ = (4πt)−n/2e−|x|2/4t.

We may, at least formally, substitute the kernel eΔΩt of the killing, Dirichlet problem
for the heat flow in a domain Ω ⊂ R

n in the above expression, and obtain (again, at
least formally. . .) an explicit expressions for IΩ

α and (−ΔΩ)α/2, introduced implicitly
in (1.26). Such a representation can provide some insight on the trace of IΩ

α for
α < 2.
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