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A b s t r a c t . The correlation dimension L)(2) as a characteristic measure of the regular or chaotic 
behaviour of the solar dynamical system has been calculated. The algorithm suggested by Grass-
berger and Procaccia (1983) has been applied to time series of relative sunspot numbers and of 
areas of sunspots and faculae. In the first case, a correlation dimension D(2) ~ 1.5 has been found; 
in the other two cases, the algorithm was not convergent, the results obtained being not relevant, 
due to the too short series of data available. 

1. Introduction 

The question whether the solar cycle exhibits or not a stochastic behaviour, did 
not receive yet a definitive answer. 

A good "measure" of the global solar activity are the sunspot relative numbers, 
indicator introduced by R. Wolf. 
Although known as the "11-year cycle", the sunspot cycle presents long-term vari-
ations both in amplitude and period, which cannot be predicted at present. 

The cyclicity of solar activity is well explained by the linear dynamo theory, but 
the appearance of irregular minima (as those of Maunder, Sporer and the Medi-
aeval one) requires a nonlinear model. Zeldovich and Ruzmaikin (1983) suggested 
a nonlinear system of ordinary differential equations which have strange attrac-
tor solutions; these ones exist for dissipative dynamical systems and characterize a 
chaotic (but deterministic) evolution in the phase space. 

A quantitive characterization is given by the attractor's Hausdorff dimension, 
Lyapunov exponents and Kolmogorov-Sinai entropy. In this paper, a correlation 
dimension study will be applied to time series of relative sunspot numbers and of 
sunspots and faculae areas. The proportionality between the total magnetic flux 
in a sunspot and its area enables the use of the latter one as a crude estimate of 
the total magnetic flux at the surface of the Sun. Faculae are magnetic features 
characterizing convection's intensity in the layer below the photosphere. 

Other estimates of the attractor dimensions were made by Kurths (1987 a,b and 
1991) for sunspot numbers and for solar radio pulsations which often occur during 
solar flares. 

2. Estimation of the correlation dimension 

In the following, the Grassberger-Procaccia algorithm (1983) will be used to deter-
mine the correlation dimension by calculating the exponent of the spatial correlation 
function for three sets of experimental data. 

For a dissipative dynamical system evolving deterministically, its trajectory lies 
on a submanifold of the total phase space. 
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The Whitney theorem (1936) assesses that d-dimensional differentiate mani-
folds of the n-dimensional phase space, can be embedded into an (2c/+l)-dimensional 
space. 

The theorem, valid for d integer, has not yet been proved for the case of fractal 
sets (which are not manifolds). 

The technique of estimating the correlation dimension will be described in the 
following. 

A time series of a measured physical variable (χ,)ι<»<^ {Ν being the number 
of data) is used to reconstruct the attractor. 

This means a vector: 

Xi = (x(ti), x(U -f m),..., x(U + {d - 1 )m) (1) 

where i = 1,2,...,AT — ί ί - f l , d is the embedding dimension and in the time delay. 
The attractor thus reconstructed from a single time variable is a d-dimensional 

projection of the original one. The number of points inside a ball of radius r centred 
at a reference point Xj is counted and the q-th order correlation integral calculated: 

Cj*\r) = \ (1/7V) Σ [(l/N) Σ H(r - |x.· - xj])} 
«=1 j=ι 

-ι·, i / ( i - 0 
(2) 

(H(x) is the Ileaviside function, H(x) = 0 for χ < 0 and Ii(x) = 1 for χ > 0). The 
slope of the correlation integral defines the q-th order dimension 

DW = l i m 12L·! 
inCW(r) 

r—.0 Inr (3) 

Next step is incrementing d and calculating Cq
dzz2{r) a n d s o 011 until the slopes 

does not vary significantly. 

0,13) 

Fig.l. The typical InC-lnr dependence for the relative sunspot numbers 
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Then a graph of InC(r) is plotted against /nr, trying to identify a "scaling 
region", i.e. a straight line segment over a reasonable range of Inr. For q = 2, 
we obtain the so-called "correlation dimension" This quantity characterizes 
the distribution of the points on the set. The mathematical constraints arc: a long 
series of data is necessary to ensure the convergence of the algorithm ( D b e i n g 
an asymptotic measure), the necessity that points lie on the attractor (not being 
transient) and a good coverage of the whole attractor (Judd, 1991 and Eckmann 
and Ruelle, 1985). 

I used the Grassberger-Procaccia method for sunspot numbers recorded between 
1749-1991 (2904 data) and monthly averaged areas of sunspots and faculae, recorded 
between 1874-1954. The results are shown in Fig. 1-3. Similar results were obtained 
by Kurths (1987a) for sunspot numbers (see also Ruzmaikin 1983, 1990). 

Fig. 2. The dependence InC-lnr for sunspot areas 

3. Discussions 

For the sunspot numbers the correlation dimension of about 1.5 was obtained for 
d = 2,..., 12 after eliminating the regions affected by noise. 

I used as indicators sunspot and faculae areas because their magnetic flux gives 
a good characterization of the global solar activity; unfortunately, in these cases 
the algorithm was not convergent, due to the too short series of data. 

The graphic from Fig. 1 shows the dependence of the correlation dimension 
on the choice of the scaling region and the increasing degree of correlation with 
increasing r. 

The slopes seem to converge with increasing d but the time series is still too 
short to be sure that the value of D o b t a i n e d is an accurate one. For the same 
reason, we are not sure that a good coverage of the whole attractor is ensured. 

A low-dimensional attractor seems to exist in the phase space, but it must be emphasized that the existence of a chaotic attractor in the phase space of the 
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3. Discussions. 

For the sunspot numbers the correlation dimension of about 1.5 was obtained for 
d = 2,..., 12 after eliminating the regions affected by noise. 

I used as indicators sunspot and faculae areas because their magnetic flux gives 
a good characterization of the global solar activity; unfortunately, in these eases 
the algorithm was not convergent, due to the too short series of data. 

The graphic from Fig. 1 shows the dependence of the correlation dimension 
on the choice of the scaling region and the increasing degree of corrélation with 
increasing r. 

The slopes seem to converge with increasing d but the time scries is still too 
short to be sure that the value of D o b t a i n e d is an accurate one. For the same 
reason, we are not sure that a good coverage of the whole attractor is ensured. 

A low-dimensional attractor seems to exist in the phase space, but it must 
be emphasized that the existence of a chaotic attractor in the phase space of the 
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dynamical system has not yet a rigorous mathematical proof. 
A forthcoming paper will be completed with a calculus of maximum Lyapunov 

exponent and of the Kolmogorov entropy. 

Fig. 3. The dependence InC-lnr for faculae areas 
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