
Proceedings of the Royal Society of Edinburgh, page 1 of 31

DOI:10.1017/prm.2023.125

Cavitation of a spherical body under mechanical
and self-gravitational forces

Pablo V. Negrón–Marrero
Department of Mathematics, University of Puerto Rico, Humacao PR
00791-4300, Puerto Rico (pablo.negron1@upr.edu)

Jeyabal Sivaloganathan
Department of Mathematical Sciences, University of Bath, Bath BA2
7AY, UK (masjs@bath.ac.uk)

(Received 29 June 2023; accepted 27 November 2023)

In this paper, we look for minimizers of the energy functional for isotropic
compressible elasticity taking into consideration the effect of a gravitational field
induced by the body itself. We consider two types of problems: the displacement
problem in which the outer boundary of the body is subjected to a Dirichlet-type
boundary condition, and the one with zero traction on the boundary but with an
internal pressure function. For a spherically symmetric body occupying the unit ball
B ∈ R

3, the minimization is done within the class of radially symmetric
deformations. We give conditions for the existence of such minimizers, for
satisfaction of the Euler–Lagrange equations, and show that for large displacements
or large internal pressures, the minimizer must develop a cavity at the centre. We
discuss a numerical scheme for approximating the minimizers for the displacement
problem, together with some simulations that show the dependence of the cavity
radius and minimum energy on the displacement and mass density of the body.
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1. Introduction

The study of the shape of self-gravitating bodies is extensive and dates back to the
time of Newton itself. It is well known that depending on the density of a dying
star, there are several possibilities for the resulting object: white dwarf, neutron star,
black hole, etc. The case of a black hole forming is also referred to as gravitational
collapse. The literature on these phenomena is extensive and we refer to [6] and [8]
for a historical account.

In this paper, we consider the problem of a self-gravitating spherical body. Apart
from its apparent ‘simplicity’, this problem plays an important role on the study
of the more complex phenomena described above. The proposed variational model
combines both mechanical and gravitational responses, the mechanical part based
on a model from non-linear elasticity which allows for the characterization of large
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2 P.V. Negrón–Marrero and J. Sivaloganathan

deformations. Under certain mathematically physical conditions, the extrema of
the corresponding energy functional can be characterized via the Euler–Lagrange
equations. This combined model has been used by [5], [6] and [8] among others.
In [5] the existence of solutions to the Euler–Lagrange equations, with a zero dead
load boundary condition on the outer boundary of the body, is established via the
implicit function theorem and is valid for ‘small bodies’ of arbitrary shape.

The work in [8] is for spherically symmetric deformations with a zero dead load
boundary condition on the outer boundary as well, and combines asymptotic anal-
ysis with numerics to get results for varying densities and reference configuration
body radius. They used a stored energy function of the form

W (F) =
μ

2

(
‖F‖2 − 3 − 2fα(detF)

)
+
β

2
(detF − 1)2 , (1.1)

where α � 0, β and μ are positive constants, and fα(d) = ln(d) − αd−α(d− 1)4.
This material corresponds to a ‘soft’ compressible material for α = 0 or small, and
to a ‘strong’ compressible material otherwise. For constant reference configuration
density ρ0, the authors in [8] show numerically that for α small there exists a critical
density ρ∗0 such that if ρ0 � ρ∗0, then the Euler–Lagrange equations (cf. (3.8)) can
have multiple solutions, most of them unstable, while if ρ0 > ρ∗0, then there are no
solutions, a result which could be interpreted as gravitational collapse. Moreover
for α large, there are solutions for all densities ρ0, which appear to be unique.

By adapting the techniques in [1] for polyconvex stored energy functions, the
authors in [6] show the existence of minimizers for the resulting energy functional,
now for large deformations and arbitrary bodies, and for both, zero dead load and
displacement boundary conditions. The stored energy functions used in [6] could
be classified as corresponding to ‘strong’ compressible materials (cf. eqns. (13) and
(14) in [6]).

In this paper, we look for minimizers of the energy functional for isotropic com-
pressible elasticity and taking into consideration the effect of a gravitational field
induced by the body itself. We consider both, the displacement problem in which
the outer boundary of the body is subjected to a Dirichlet-type boundary condi-
tion, and the one with zero traction on the boundary but with a specified internal
pressure function. For a spherically symmetric body occupying the unit ball B ∈ R

3

and with radially symmetric mass density, the minimization is done within the class
of radially symmetric deformations. Contrary to previous works, the deformations
we consider belong to W 1,p(B) with p < 3, and thus may develop singularities. For
the particular case of radially symmetric deformations, we study the occurrence
or initiation of a cavitation at the centre of the ball and its dependence on the
boundary displacement, internal pressure and gravitational-related constants.

In § 2 we introduce the basic model, energy functionals and admissible function
spaces, for radial deformations (cf. (2.5)) of a spherically symmetric body. These
deformations are characterized by a function r : [0, 1] → [0, ∞). For the displace-
ment problem, the boundary condition takes the form r(1) = λ. We now show in
§ 3 that under certain growth conditions on the stored energy function (cf. (3.1)
with H1–H3) and for any (radial) reference configuration density function ρ0 that
is bounded, non-negative and bounded away from zero, a minimizer of the energy
functional (2.7)–(2.9) exists over the admissible set (2.13).
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Cavitation of a spherical body under mechanical and self-gravitational forces 3

For the internal pressure problem, we consider an internal pressure function P :
[0, ∞) → [0, ∞) satisfying

P (A) = P∗ for 0 � A � ε, and A3P (A) → c as A→ ∞, (1.2)

where ε, c > 0 are constants. The motivation for this model comes from experiments
performed by Gent and Tompkins [7], where samples of polymers were left in a gas
under pressure, over a period of time (hours). The pressurizing gas then induces a
negative hydrostatic pressure inside the polymer. It was observed that upon release,
small holes formed inside the polymer if the initial confining pressure was sufficiently
large. Under the same growth conditions as in the displacement problem, we show
in § 3 that a minimizer of the energy functional1 (2.14)–(2.15), which includes the
model pressure function (1.2), exists over the admissible set (2.16).

Under the additional constitutive assumption (3.6), these minimizers satisfy the
Euler–Lagrange equations (3.8) where either r(0) = 0 or r(0) > 0 (cavitation) with
zero Cauchy stress at the origin in the displacement problem, and with zero modified
Cauchy stress2 at the origin for the internal pressure problem. In § 4 we show that
for λ or P∗ sufficiently large, these minimizers must satisfy r(0) > 0. The result for
the displacement problem is an adaptation to the problem with self-gravity of a
similar result in [11] for compressible inhomogeneous materials, while that for the
internal pressure problem is again an adaption to the self-gravity problem of the
corresponding problem treated in [12].

In § 5 we collect several results for the displacement problem with λ small where
the minimizers must have the centre intact. In addition we show in Theorem 5.3
that any minimizer which leaves the centre intact must have strains at the origin less
than the critical boundary displacement corresponding to a homogeneous isotropic
material made of the material at the centre of the original body. Once again this
result is an adaptation to the problem with self-gravity of a similar result in [11]
for compressible inhomogeneous materials.

Finally in § 6 we present a numerical scheme for the computation of the mini-
mizers of the energy functional for the displacement problem. This method is based
on a combination of a gradient flow iteration which works as a predictor, together
with a shooting method to solve the EL-equations, that works as a corrector. For
constant reference configuration densities, we present several simulations that show
the dependence of the cavity radius and minimum energy on the displacement λ
and density ρ0. In addition, we include a simulation for a spherical body with
composition resembling that of the planet Mercury.

2. Problem formulation

Consider a body which in its reference configuration occupies the region

B = {x ∈ R
3 : ‖x‖ < 1}, (2.1)

1The growth condition in (1.2) is essential to get that the internal pressure problem functional
is bounded below.

2The modified Cauchy stress corresponds to the usual or standard Cauchy stress plus a pressure
term corresponding to the specified internal pressure function P (·).
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4 P.V. Negrón–Marrero and J. Sivaloganathan

where ‖·‖ denotes the Euclidean norm. Let u : B → R
3 denote a deformation of the

body and let its deformation gradient be

∇u(x) =
du
dx

(x). (2.2)

For smooth deformations, the requirement that u(x) is locally invertible and
preserves orientation takes the form

det∇u(x) > 0, x ∈ B. (2.3)

Let W : B ×M3×3
+ → R be the stored energy function of the material of the body

where M3×3
+ = {F ∈M3×3 | detF > 0} and M3×3 denotes the space of real 3 by

3 matrices. Since we are interested in modelling large deformations, we assume for
fixed x ∈ B that the stored energy function W satisfies that W (x, F) → ∞ as either
detF → 0+ or ‖F‖ → ∞.

We assume that the stored energy function, in units of energy per unit volume,
describing the mechanical response of the body is given by

W (x,F) = Φ(x, v1, v2, v3), F ∈M3×3
+ , x ∈ B, (2.4)

for some function Φ : B × R
3
+ → R+ symmetric in its last three arguments, and

where v1, v2, v3 are the eigenvalues of (FtF)1/2, known as the principal stretches.
Note that for any fixed x, the material response W (x, ·) corresponds to an isotropic
and frame-indifferent material.

We now restrict attention to the special case in which the deformation u(·) is
radially symmetric, so that

u(x) = r(R)
x
R
, x ∈ B, (2.5)

for some scalar function r(·), where R = ‖x‖. In this case, one can easily check that

v1 = r′(R), v2 = v3 =
r(R)
R

. (2.6)

In this case, we assume that the dependence of Φ on x in (2.4) is only on R = ‖x‖.
We employ throughout this paper the following notation:

Φ(R, r(R)) = Φ
(
R, r′(R),

r(R)
R

,
r(R)
R

)
,

with similar notation for any partial derivative Φ,i = ∂Φ
∂vi

of Φ. We shall drop the
explicit dependence on R above, whenever Φ does not depend explicitly on R.
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The total stored energy functional due to internal mechanical and gravitational
forces (see [6]) is given, up to a multiplicative constant of 4π, by:

I(r) = Imec(r) − Ipot(r), (2.7)

where

Imec(r) =
∫ 1

0

Φ(R, r(R))R2 dR, (2.8)

Ipot(r) =
∫ 1

0

ρ0(R)
MR

r(R)
R2 dR, (2.9)

are the mechanical and gravitational3 potential energy functionals respectively.
Here ρ0 is the mass density of the body (mass per unit volume) in the reference
configuration, and

MR = 4π
∫ R

0

ρ0(u)u2 du,

is the mass of the ball of radius R in the reference configuration and centred at the
origin. We assume that

k0 � ρ0(R) � k1, 0 � R � 1, (2.10)

for some positive constants k0 and k1.

Remark 2.1. The function ρ0(·) is the so-called natural density which refers to the
density of the material in a stress-free configuration without gravity. On the other
hand, the current density is the mass density function due to the deformation
r(·) with gravity, and is given by ρ(r(R)) = ρ0(R)/[r′(R)(r(R)/R)2]. Thus, the
assumption that the current density is constant implies that r3(R) = KMR + r3(0)
for some positive constant K, which essentially determines the deformation.

Remark 2.2. We note that the stored energy function in (2.8) includes as a special
case that in which

Φ
(
R, r′(R),

r(R)
R

,
r(R)
R

)
= ρ0(R)φ

(
R, r′(R),

r(R)
R

,
r(R)
R

)
,

where now φ is the energy per unit mass, also called the specific energy density.

3The gravitational constant G in Ipot has been normalized to one.
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6 P.V. Negrón–Marrero and J. Sivaloganathan

In accord with (2.3), we have the inequalities

r′(R),
r(R)
R

> 0, 0 < R < 1. (2.11)

In the boundary displacement problem, we require that the deformation u satisfies
the boundary condition:

u(x) = λx, x ∈ ∂B,
where λ > 0 is given. For (2.5), this reduces to:

r(1) = λ. (2.12)

The (radial) boundary displacement problem now is to minimize the functional I(·)
over the set

Aλ =
{
r ∈W 1,1(0, 1) | r(0) � 0, r(1) = λ, r′(R) > 0 a.e., Imec(r) <∞}. (2.13)

Note that Aλ �= ∅ as rλ ∈ Aλ where rλ(R) = λR.
To state the internal pressure problem, we let P : [0, ∞) → [0, ∞) be a continu-

ous function satisfying (1.2), and let

HP (s) =
∫ s

0

P (t)t2 dt, s � 0. (2.14)

The internal pressure problem is now to minimize the functional given by

IP (r) = I(r) −HP (r(0)), (2.15)

over the set

A =
{
r ∈W 1,1(0, 1) | r(0) � 0, r′(R) > 0 a.e., Imec(r) <∞} . (2.16)

Note that A �= ∅ as r̂(R) ≡ R belongs to A. The term HP (r(0)) in (2.15) represents
the work done by the internal pressure to open up a cavity of size r(0).

Remark 2.3. Including a term like P∗ r′(R)(r(R)/R)2 inside the functional I, spec-
ifying a Cauchy stress of P∗ at the centre of the ball, would lead to a functional
unbounded from below (see [3]). Growth condition (1.2) not only yields a func-
tional bounded from below as we will show, but it is consistent with the original
experiments reported in Gent and Tompkins [7] for the so-called ideal gases.

The following result from [12, Lemma 4.1] will be useful for the analysis of this
problem in the next section.

Lemma 2.4. let P : [0, ∞) → [0, ∞) be a continuous function satisfying (1.2). Then
there exist constants α > 0 and β such that

1
3
P∗ min

{
s3, ε3

}
� HP (s) � α log(s) + β, s � 0.
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3. Existence of minimizers

In this section, we show that the functionals I(·) in (2.7) and IP in (2.15) have
minimizers over the sets Aλ in (2.13) and A in (2.16), respectively. We also give
physically reasonable conditions for these minimizers to satisfy the Euler–Lagrange
equations for the corresponding functionals. The proofs of the results in this section
are adaptations of the corresponding ones in [3] due to the presence of the potential
energy functional (2.9). We do emphasize that they are not direct consequence of
those in [6] as these are for maps in Sobolev spaces W 1,p with p > 3 and thus they
represent continuous deformations.

Throughout this section and the rest of the paper, we assume that the stored
energy function Φ in (2.8) satisfies that

Φ(R, v1, v2, v3) � φ(v1) + φ(v2) + φ(v3) + h(v1v2v3), R ∈ [0, 1], (3.1)

where φ, h : (0, ∞) → (0, ∞) are strictly convex and such that

H1: φ(v) � Cvγ for some positive constant C and 1 < γ < 3;

H2:
h(d)
d

→ ∞, as d→ ∞;

H3: h(d) � Kd−s, d > 0, for some positive constant K and s � γ∗ = γ/γ − 1.

If we let

δr(R) = r′(R)
(
r(R)
R

)2

,

then the specialization of equation (31) in [6] (which follows from the
Hardy–Littlewood–Sobolev inequality) to radial map (2.5), together with (2.10)
gives that

∣∣∣∣
∫ 1

0

ρ0(R)
MR

r(R)
R2 dR

∣∣∣∣ � C

(∫ 1

0

δr(R)−sR2 dR
)1/3s

, (3.2)

for some positive constant C independent of r ∈ Aλ or r ∈ A.
The following lemma will be needed to prove the next proposition.

Lemma 3.1. Let u : [0, 1] → R be a non-negative function. Then if φ satisfies H1,
there exist constants k1 > 0 and k2 such that

∫ 1

0

φ(u(R))R2 dR � k1

∫ 1

0

u(R)R2 dR+ k2.

Moreover, k1 can be chosen arbitrarily large by properly adjusting k2.
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Proof. It follows from H1 that φ(t)/t→ ∞ as t→ ∞. Thus, for any given k1 > 0,
there exists M > 0 such that φ(t) � k1t whenever t � M . Hence,

∫ 1

0

φ(u(R))R2 dR =
∫
{u<M}

φ(u(R))R2 dR+
∫
{u�M}

φ(u(R))R2 dR,

� k1

∫
{u�M}

u(R)R2 dR,

= k1

∫ 1

0

u(R)R2 dR− k1

∫
{u<M}

u(R)R2 dR.

But ∫
{u<M}

u(R)R2 dR � M

∫
{u<M}

R2 dR � M

∫ 1

0

R2 dR = M/3.

Combining this with the previous inequality, we get that

∫ 1

0

φ(u(R))R2 dR � k1

∫ 1

0

u(R)R2 dR− k1M

3
.

The result follows upon setting k2 = −(k1M/3). �

We now have the following:

Proposition 3.2. Under growth assumption (3.1) with H1 and H3, the functionals
I(·) and IP (·) are bounded below on Aλ and A, respectively.

Proof. Combining (2.10), (3.1) with H3, and (3.2) we get for some positive constants
K1, K2 that

I(r) � K1

∫ 1

0

δr(R)−sR2 dR−K2

(∫ 1

0

δr(R)−sR2 dR
)1/3s

,

for all r ∈ Aλ. Since s � 3
2 , the function g(x) = K1x−K2x

1
3s is bounded below for

x � 0, and the result for I(·) follows.
For the functional IP (·), in reference to (2.7) and (2.15), we can write that

IP (r) =
[
1
2
Imec(r) − Ipot(r)

]
+
[
1
2
Imec(r) −HP (r(0))

]
.

The first bracketed term can be bounded below as in the first part of this proof.
For the second bracket, we begin by noting that using (3.1) we get that

Imec(r) �
∫ 1

0

(φ(r′(R)) + φ(r(R)/R))R2 dR.
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Cavitation of a spherical body under mechanical and self-gravitational forces 9

Using lemma 3.1 twice, we can write∫ 1

0

φ(r′(R))R2 dR � k1

∫ 1

0

r′(R)R2 dR+ k2,

∫ 1

0

φ(r(R)/R)R2 dR � 2k1

∫ 1

0

(r(R)/R)R2 dR+ k̂2,

where k1 > 0 is chosen such that k1/2 > α with α is as in lemma 2.4. Combining
these inequalities with lemma 2.4, we get that

1
2
Imec(r) −HP (r(0)) � 1

2

[
k1

∫ 1

0

r′(R)R2 dR+ k2

]

+
1
2

[
2k1

∫ 1

0

(r(R)/R)R2 dR+ k̂2

]
− α log(r(0)) − β,

� 1
2

[
k1

(
r(1) − 2

∫ 1

0

r(R)R dR
)

+ k2

]

+
1
2

[
2k1

∫ 1

0

r(R)R dR+ k̂2

]
− αr(1) − β,

= (k1/2 − α)r(1) + (k2 + k̂2)/2 − β,

where we used, for the second inequality, that log(t) < t and that r(0) � r(1). The
result for IP now follows. �

Using this we can now establish the existence of minimizers for I over Aλ.

Theorem 3.3. Let the stored energy function Φ in (2.8) satisfy (3.1) with H1–H3.
Then there exists rλ ∈ Aλ such that

I(rλ) = inf
r∈Aλ

I(r).

Proof. Since Aλ �= ∅, it follows from proposition 3.2 that infr∈Aλ
I(r) ∈ R. Let (rj)

with rj ∈ Aλ for all j be an infimizing sequence, i.e.

inf
r∈Aλ

I(r) = lim
j→∞

I(rj).

Since (I(rj)) is bounded, it follows from the proof of proposition 3.2 that the
sequence (

K1

∫ 1

0

δrj
(R)−sR2 dR−K2

(∫ 1

0

δrj
(R)−sR2 dR

)1/3s
)
, (3.3)

is bounded. Hence, the sequence(∫ 1

0

δrj
(R)−sR2 dR

)
,

must be bounded as well, and thus from (3.2) that (Ipot(rj)) is bounded. From
this and the boundedness of (I(rj)), we get that (Imec(rj)) is bounded.
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From the boundedness of (Imec(rj)) and (3.1), we get that(∫ 1

0

h(δrj
(R))R2 dR

)
,

is bounded. Let ρ = R3 and uj(ρ) = r3j (ρ1/3). It follows now that

u̇j(ρ) =
duj

dρ
(ρ) = δrj

(ρ1/3),

and that the sequence (∫ 1

0

h(u̇j(ρ)) dρ
)
,

is bounded. It follows now from H2 and De La Vallée–Poussin Criterion that for
some subsequence (u̇k) of (u̇j), we have u̇k ⇀ w in L1(0, 1) for some w ∈ L1(0, 1),
and that (u̇j) is equi-integrable. Using H3 is easy to show that w > 0 a.e. Letting

u(ρ) = λ3 −
∫ 1

ρ

w(s) ds,

we get from the equi-integrability of (u̇j) that uk → u in C[0, 1]. Thus, rk → rλ in
C[0, 1] where rλ(R) = u(R3)1/3. From these we can conclude rk ⇀ rλ in W 1,1(ε, 1)
and that δrj

⇀ δrλ
in L1(ε, 1) for any ε ∈ (0, 1). By the weak lower semi-continuity

properties of Imec(·) (cf. [2]), we get that∫ 1

ε

Φ(R, rλ(R))R2 dR � lim inf
k

∫ 1

ε

Φ(R, rk(R)]R2 dR,

� lim inf
k

Imec(rk) <∞.

We get now from the Monotone Convergence Theorem and the arbitrariness of ε
that

Imec(rλ) � lim inf
k

Imec(rk). (3.4)

This together with the facts that rλ(0) � 0, r′λ(R) � 0 a.e., and rλ(1) = λ, shows
that rλ ∈ Aλ.

To get that rλ is a minimizer of I over Aλ, we still have to deal with the potentials
(Ipot(rk)). First note that∣∣∣Ipot(rk) − Ipot(rλ)

∣∣∣
=
∣∣∣∣
∫ 1

0

ρ0(R)MRR
2

rk(R)rλ(R)
(rλ(R) − rk(R)) dR

∣∣∣∣ ,
� ‖rλ − rk‖C[0,1]

[∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR
]1/2 [∫ 1

0

ρ0(R)MRR
2

r2λ(R)
dR
]1/2

, (3.5)

where in the last step we used a weighted Holder’s inequality with weight
ρ0(R)MRR

2. We now show that each of the two integrals on the right-hand side
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of this inequality are bounded. Upon recalling (2.10), we can take MR � CR2 for
some constant C. Hence,

∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR � (const)

∫ 1

0

R4

r2k(R)
dR = (const)

∫ 1

0

R2

δrk
(R)

r′k(R)dR,

� (const)
[∫ 1

0

R2

δrk
(R)γ∗ dR

]1/γ∗ [∫ 1

0

R2(r′k(R))γdR
]1/γ

.

However, by the weighted Holder’s inequality (with weight R2),

[∫ 1

0

R2

δrk
(R)γ∗ dR

] 1
γ∗

� (const)
[∫ 1

0

R2

δrk
(R)s

dR
] 1

s

,

with the sequence on the right-hand side bounded. From (3.1) and H1, it follows
that

C

∫ 1

0

R2(r′k(R))γdR �
∫ 1

0

R2φ(r′k(R)) dR � Imec(rk),

with the sequence on the right-hand side bounded. Combining these results, we can
conclude that the sequence

(∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR
)
,

is bounded. Using this in (3.5) we get that

∣∣∣Ipot(rk) − Ipot(rλ)

∣∣∣ � (const) ‖rλ − rk‖C[0,1] → 0,

as k → ∞, which together with (3.4) implies that

I(rλ) � lim inf
k

I(rk) = inf
r∈Aλ

I(r),

i.e. that rλ is a minimizer. �

We now give the corresponding result for the existence of minimizers for IP
over A.

Theorem 3.4. Let the stored energy function Φ in (2.8) satisfy (3.1) with H1–H3
and P (·) be a continuous function satisfying (1.2). Then there exists rP ∈ A such
that

IP (rP ) = inf
r∈A

IP (r).
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Proof. Since A �= ∅, it follows from proposition 3.2 that infr∈A IP (r) ∈ R. Let (rj)
with rj ∈ A for all j, be an infimizing sequence, i.e.

inf
r∈A

IP (r) = lim
j→∞

IP (rj).

Since (IP (rj)) is bounded, it follows from the proof of proposition 3.2 that the
sequence (rj(1)) is bounded, and that

(
K1

∫ 1

0

δrj
(R)−sR2 dR−K2

(∫ 1

0

δrj
(R)−sR2 dR

)1/3s
)
,

is bounded as well. Hence, the sequence (H(rj(0))) must be bounded, and

(∫ 1

0

δrj
(R)−sR2 dR

)
,

must be bounded as well, and thus from (3.2) that (Ipot(rj)) is bounded. From
this and the boundedness of (IP (rj)), we get that (Imec(rj)) is bounded. The rest
of the proof is similar to that of theorem 3.3 upon setting

u(ρ) = u(1) −
∫ 1

ρ

w(s) ds,

and rP (R) = u(R3)1/3, and by the continuity of the functional H(r(0)) over
C[0, 1]. �

For our next result, we shall need the following assumption on the stored energy
function Φ (cf. [4]): there exist constants M, ε0 ∈ (0, ∞) such that

∣∣∣∣ ∂Φ
∂vk

(R,α1v1, α2v2, α3v3)vk

∣∣∣∣ � M [Φ(R, v1, v2, v3) + 1] , (3.6)

for all R ∈ [0, 1], k = 1, 2, 3, and |αi − 1| < ε0 for i = 1, 2, 3. Henceforth, we use
the notation

T (R, r(R)) =
R2

r2(R)
Φ,1(R, r(R)), (3.7)

for the radial component of the Cauchy stress. The techniques in [3] can now be
adapted to show the following result.

Theorem 3.5. Assume that the function Φ satisfies (3.6) and (3.1) with H1–H3. Let
P (·) be a continuous function satisfying (1.2). If r is any minimizer of I over Aλ or
IP over A, we have that r ∈ C1(0, 1], r′(R) > 0 for all R ∈ (0, 1], R2Φ,1(R, r(R))
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is C1(0, 1], and

d
dR

[
R2Φ,1(R, r(R))

]
= 2RΦ,2(R, r(R)) +R2 ρ0(R)MR

r2(R)
, 0 < R < 1. (3.8)

For the functional I, the minimizer r satisfies (2.12) while for IP it must satisfy
that

T (1, r(1)) = 0. (3.9)

Moreover r(0) � 0 and if r(0) > 0, then

lim
R→0+

T (R, r(R)) = 0, for I, (3.10a)

lim
R→0+

[T (R, r(R)) + P (r(R))] = 0, for IP . (3.10b)

We note that using (3.8) together with definition (3.7), we get that

dT
dR

(R, r(R)) = 2
R2

r3(R)

[
r(R)
R

Φ,2(R, r(R)) − r′(R)Φ,1(R, r(R))
]

+R2 ρ0(R)MR

r4(R)
. (3.11)

If ρ(r) and p(r) denote the density and pressure (due to gravity), respectively, on
the deformed configuration, then

dp(r) =
ρ(r)(4πr2dr)

4πr2
gr = ρ(r)grdr,

where gr is the gravity at radius r in the deformed configuration. Since gr = Mr

r2

(setting the gravitational constant G to one), we get

dp(r) = ρ(r)
Mr

r2
dr.

Here Mr represents the mass within radius r in the deformed configuration. In
terms of the reference configuration, since Mr(R) = MR by conservation of mass,
we have

dp0(R) =
ρ0(R)

r′(R)(r(R)/R)2
MR

r2(R)
r′(R) dR = ρ0(R)

MRR
2

r4(R)
dR,

where p0(R) = p(r(R)). Integrating this expression from R to 1, and using that
p0(1) = 0, we get that

p0(R) = −
∫ 1

R

ρ0(U)
MUU

2

r4(U)
dU.

Using this we can write (3.11) now as

d
dR

[T (R, r(R)) − p0(R)] = 2
R2

r3(R)

[
r(R)
R

Φ,2(R, r(R)) − r′(R)Φ,1(R, r(R))
]
.

(3.12)
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By the Baker–Ericksen inequality, the right-hand side of this equation is positive
whenever r′(R) < r(R)/R.

The material of the body B is homogeneous if ρ0(R) is constant, still denoted by
ρ0, and

Φ(R, v1, v2, v3) = Φ̃(v1, v2, v3). (3.13)

In this case (3.8) reduces to

d
dR

[
R2Φ̃,1(r(R))

]
= 2RΦ̃,2(r(R)) +

4π
3
ρ2
0

R5

r2(R)
, 0 < R < 1, (3.14)

and (3.11) reduces to

dT̃
dR

(r(R)) = 2
R2

r3(R)

[
r(R)
R

Φ̃,2(r(R)) − r′(R)Φ̃,1(r(R))
]

+
4π
3
ρ2
0

R5

r4(R)
. (3.15)

4. Cavitation

In this section, we show that for large values of λ in the displacement problem, and
for large values of P∗ in the internal pressure problem, the corresponding minimizer
r of I(·) over Aλ or IP (·) over A has to have r(0) > 0.

We assume for some positive constants c0 and c1,

c0Φ̃(v1, v2, v3) � Φ(R, v1, v2, v3) � c1Φ̃(v1, v2, v3), (4.1)

for all R ∈ [0, 1] and where Φ̃ corresponds to an isotropic and frame-indifferent
material that satisfies (3.1) with H1–H3. We further assume that:

H4: For any η > 1,

v2

(v3 − 1)2
Φ̃
(

1
v2
, v, v

)
∈ L1(η,∞).

We now state and prove the above mentioned result for the displacement prob-
lem. The proof given here of this fact is an adaptation (to the problem with
self-gravity) of the technique used in [11] to establish a similar fact for compressible
inhomogeneous materials.

Theorem 4.1. Let r be a minimizer of functional (2.7) over (2.13) and assume
that (4.1) holds where Φ̃ satisfies (3.1) with H1–H4. Then for λ sufficiently large,
we must have that r(0) > 0.

https://doi.org/10.1017/prm.2023.125 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.125


Cavitation of a spherical body under mechanical and self-gravitational forces 15

Proof. We consider an incompressible deformation given by

rinc(R) = 3
√
R3 + λ3 − 1.

It follows that rinc ∈ Aλ for λ � 1. If rλ is any minimizer of I(·) over Aλ, then

ΔI = I(rinc) − I(rλ)

� c1

∫ 1

0

Φ̃(rinc(R))R2 dR− c0

∫ 1

0

Φ̃(rλ(R))R2 dR

−
∫ 1

0

ρ0(R)
MR

rinc(R)
R2 dR+

∫ 1

0

ρ0(R)
MR

rλ(R)
R2 dR.

By [10, Proposition 4.10] we have that for λ1 � λ2

rλ1(R) � rλ2(R), 0 � R � 1.

Hence, for λ0 fixed, we get that for λ � λ0,∫ 1

0

ρ0(R)
MR

rλ(R)
R2 dR �

∫ 1

0

ρ0(R)
MR

rλ0(R)
R2 dR.

It follows now that

ΔI � c1

∫ 1

0

Φ̃(rinc(R))R2 dR− c0

∫ 1

0

Φ̃(rλ(R))R2 dR

+
∫ 1

0

ρ0(R)
MR

rλ0(R)
R2 dR.

If rλ(0) = 0, it follows (cf. [3]) that∫ 1

0

Φ̃(rλ(R))R2 dR �
∫ 1

0

Φ̃(rh(R))R2 dR,

where rh(R) = λR. Hence,

ΔI � c1

∫ 1

0

Φ̃(rinc(R))R2 dR− c0

∫ 1

0

Φ̃(rh(R))R2 dR

+
∫ 1

0

ρ0(R)
MR

rλ0(R)
R2 dR.

Since the third integral on the right-hand side of this inequality is fixed, the result
now follows as in [12] using H2 and H4. �

We now state and prove the corresponding result for the internal pressure
problem. The proof given here of this fact is an adaptation to the problem for
inhomogeneous materials and with self-gravity, of the technique used in [11] to
establish a similar fact for compressible homogeneous materials.
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16 P.V. Negrón–Marrero and J. Sivaloganathan

Theorem 4.2. Let rP be a minimizer of (2.15) over the set (2.16) with P (·) satis-
fying (1.2). Assume that (4.1) holds where Φ̃ satisfies (3.1) with H1–H4. Then for
P∗ sufficiently large we must have that rP (0) > 0.

Proof. We consider an incompressible deformation given by

rε(R) = 3
√
R3 + ε3,

whwere ε is as in (1.2). It follows that rε ∈ A. If rP is any minimizer of IP (·) over
A, then

ΔIP = IP (rε) − IP (rP )

� c1

∫ 1

0

Φ̃(rε(R))R2 dR− c0

∫ 1

0

Φ̃(rP (R))R2 dR

−
∫ 1

0

ρ0(R)
MR

rε(R)
R2 dR+

∫ 1

0

ρ0(R)
MR

rP (R)
R2 dR

−HP (rε(0)) +HP (rP (0)).

Since rε(0) = ε, we have that HP (rε(0)) � 1/3P∗ε3. Moreover if rP (0) = 0, then
HP (rp(0)) = 0. Using these in the above inequality and the non-negativity of Φ̃, we
have that

ΔIP � c1

∫ 1

0

Φ̃(rε(R))R2 dR+
∫ 1

0

ρ0(R)
MR

rP (R)
R2 dR− 1

3
P∗ε3.

Thus, provided that the potential integral for rP (second term on the right) is
bounded by some constant independent of P∗, we get that the right-hand side of
the inequality above becomes negative for P∗ sufficiently large, contradicting the
minimality of rP . Thus, we must have that rP (0) > 0.

To show the uniform boundedness of the potential integral for rP , we argue by
contradiction. That is, assume that for a sequence of functions {Pk} with the stated
properties, we have that

∫ 1

0

ρ0(R)
MR

rPk
(R)

R2 dR→ ∞, k → ∞, (4.2)

where rPk
is a minimizer of IPk

with rPk
(0) = 0. From (3.2) (which holds for r ∈ A

as well) and (H3), we get

∣∣∣∣
∫ 1

0

ρ0(R)
MR

rPk
(R)

R2 dR
∣∣∣∣ � C

(∫ 1

0

Φ̃(rPk
(R))R2 dR

) 1
3s

. (4.3)

Thus, using (4.2) we get that

∫ 1

0

Φ̃(rPk
(R))R2 dR→ ∞, k → ∞. (4.4)
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It follows from (4.1) that

IPk
(rPk

) � c0

∫ 1

0

Φ̃(rPk
(R))R2 dR−

∫ 1

0

ρ0(R)
MR

rPk
(R)

R2 dR,

where we used that HPk
(rPk

(0)) = 0 because rPk
(0) = 0. Combining this with (4.3)

gives

IPk
(rPk

) � c0

∫ 1

0

Φ̃(rPk
(R))R2 dR− C

(∫ 1

0

Φ̃(rPk
(R))R2 dR

)1/3s

. (4.5)

If we let r̂(R) ≡ R, then as r̂ ∈ A, we get

IPk
(rPk

) � IPk
(r̂) = I(r̂). (4.6)

But by (H3) we have that 1/3s < 1, and thus by (4.4) and (4.5) that IPk
(rPk

) → ∞,
which contradicts (4.6). Thus, the potential integrals must be bounded uniformly
among minimizers with rP (0) = 0. �

5. No cavitation results

We now collect some results for the displacement problem under which the
minimizer of I(·) over Aλ for λ sufficiently small must satisfy that r(0) = 0.

We first consider the case of a homogeneous material for which (3.13) holds. The
functional I is now given by

I(r) =
∫ 1

0

[
Φ̃ (r(R)) − 4π

3
ρ2
0

R3

r(R)

]
R2 dR. (5.1)

We denote by λh
c the critical boundary displacement for the cavitation problem

considered in [3] with stored energy function Φ̃.

Theorem 5.1. Let r be a minimizer of (5.1) over Aλ. If λ < λh
c , then r(0) = 0.

Proof. To argue by contradiction, assume that r(0) > 0. For λ̂ = (λ+ λh
c )/2, we let

R0 = inf
{
R | r(R) = λ̂R

}
.

Since λ < λh
c and r(R)

R → ∞ as R→ 0+, we get that R0 is well defined and R0 > 0.
We define

r̂(R) =
{

λ̂R , R � R0,
r(R) , R > R0.
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If follows that r̂ ∈ Aλ. Now

ΔI = I(r) − I(r̂) =
∫ R0

0

[
Φ̃ (r(R)) − Φ̃

(
λ̂, λ̂, λ̂

)]
R2 dR

+
4π
3
ρ2
0

∫ R0

0

[
1

r̂(R)
− 1
r(R)

]
R5 dR,

�
∫ R0

0

[
Φ̃ (r(R)) − Φ̃

(
λ̂, λ̂, λ̂

)]
R2 dR,

as r̂(R) � r(R) for R � R0. Since λ̂ < λh
c and r(0) > 0, the results in [3] imply that∫ R0

0

Φ̃ (r(R))R2 dR >

∫ R0

0

Φ̃
(
λ̂, λ̂, λ̂

)
R2 dR,

and thus that ΔI > 0 which contradicts the minimality of r. �

We now consider inhomogeneous materials of the form

Φ(R, v1, v2, v3) = α(R)
∑

i

φ(vi) + β(R)
∑
i<j

ψ(vivj) + γ(R)h(v1v2v3), (5.2)

where α, β and γ are smooth positive functions over [0, 1], and φ, ψ, h are non-
negative convex functions, with h strictly convex satisfying H2 and H3. We let d0

be the value of the argument at which h assumes its global minimum value. Note
that h′(d) < 0 for d < d0.

Theorem 5.2. Let r be a minimizer of (2.7) over Aλ corresponding to the stored
energy function (5.2) with β ≡ 0 and γ ≡ 1. Assume that α′(R) � 0 for all R and
that φ′(t) � 0 for all t. Then if λ3 < d0 we must have that r(0) = 0.

Proof. As in the proof of theorem 5.1, we argue by contradiction. Thus, we assume
that r(0) > 0 and let λ̂ = (λ+ d

1
3
0 )/2. Define R0 and r̂ as in the proof of theorem

5.1. Then

ΔI = I(r) − I(r̂) =
∫ R0

0

[
Φ(R, r(R)) − Φ

(
R, λ̂R

)]
R2 dR

+
∫ R0

0

ρ0(R)MR

[
1

r̂(R)
− 1
r(R)

]
R2 dR,

�
∫ R0

0

[
Φ(R, r(R)) − Φ

(
R, λ̂R

)]
R2 dR,

as r̂(R) � r(R) for R � R0. Using the convexity of φ, and h in (5.2), we have now
that (see [3, p. 589]):[

Φ(R, r(R)) − Φ
(
R, λ̂R

)]
R2 � α(R)φ′(λ̂)(r(R)R2 − λ̂R3)′

+
1
3
h′(λ̂3)(r3(R) − λ̂3R3)′.
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It follows now, after integrating by parts, that

∫ R0

0

[
Φ(R, r(R)) − Φ

(
R, λ̂R

)]
R2 dR � −1

3
h′(λ̂3)r3(0) > 0.

Thus, ΔI > 0 which contradicts the minimality of r. �

For the stored energy function (5.2), it is easy to check that for some constant
C > 0, ∣∣∣∣∂Φ

∂R
(R, v1, v2, v3)

∣∣∣∣ � C Φ̃(v1, v2, v3), (5.3)

where

Φ̃(v1, v2, v3) =
∑

i

φ(vi) +
∑
i<j

ψ(vivj) + h(v1v2v3). (5.4)

We now denote by λh
c the critical boundary displacement corresponding to the

stored energy function Φ(0, v1, v2, v3). Note that any deformation with finite
Φ(0, v1, v2, v3) energy has finite Φ̃ energy as well. The following result is remi-
niscent to [11, Proposition 12]. It shows that any minimizer which leaves the centre
intact must have strains at the origin less than λh

c .

Theorem 5.3. Let r ∈ Aλ satisfy r(0) = 0 and that � ∈ (0, ∞] where

lim
R→0+

r′(R) = �.

If � > λh
c , then r can not be a minimizer of I(·) over Aλ.

Proof. The following proof is similar to the one of [11, Proposition 12] except for
the treatment of the gravitational potential and the specific dependence on R of
the stored energy function.

For ε ∈ (0, 1), we let

λ(ε) =
r(ε)
ε
.

From the given hypotheses, it follows that

λ(ε) → �, as ε→ 0+.

Assume for the moment that � is finite, and let rc be a cavitating extrema
corresponding to Φ(0, v1, v2, v3). We define

rε(R) =

⎧⎨
⎩αεrc

(
R

αε

)
, R ∈ [0, ε],

r(R), R ∈ (ε, 1],
(5.5)
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where αε is such that αεrc(ε/αε) = λ(ε)ε. That αε exists follows from the fact that
λ(ε) > λh

c for ε sufficiently small. Now

ΔI = I(rε) − I(r)

=
∫ ε

0

R2

[
Φ(R, rε(R))) − Φ(R, r(R))

]
dR

−
∫ ε

0

ρ0(R)
MR

rε(R)
R2 dR+

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR

With the change of variables R = εU with U ∈ [0, 1], we can rewrite the first term
above to get that

ΔI = ε3
∫ 1

0

U2

[
Φ(εU, rε(εU)) − Φ(εU, r(εU))

]
dU

−
∫ ε

0

ρ0(R)
MR

rε(R)
R2 dR+

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR

We first examine the gravitational integrals. For this, we use that ρ0(·) is non-
negative and bounded above, and that MR is bounded by a constant times R3.
Since

rε(ε)
ε

=
rc(ε/αε)
ε/αε

= λ(ε) → � as ε→ 0+,

we get that

ε

αε
→ μ,

where μ > 0 and rc(μ)/μ = �. Upon recalling that rc(S)/S is a decreasing function
of S, we have that:

∫ ε

0

ρ0(R)
MR

rε(R)
R2 dR = ε3

∫ 1

0

ρ0(εU)
MεU

rε(εU)
U2 dU

� K1ε
5

∫ 1

0

U4

rε(εU)/εU
dU � Kε5

5�
.

As r(0) = 0 and � > 0, the function r(R)/R is positive and continuous in [0, 1].
Thus, if v0 is its minimum value, we have that for some positive constant L:

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR = ε3

∫ 1

0

ρ0(εU)
MεU

r(εU)
U2 dU � Lε5

5v0
.

Thus, both gravitational potential terms go to zero faster than ε3.
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We now examine the mechanical potential terms in ΔI. For this, we note that

∫ 1

0

U2

[
Φ(εU, rε(εU)) − Φ(εU, r(εU))

]
dU

=
∫ 1

0

U2

{[
Φ(εU, rε(εU)) − Φ(0, rε(εU))

]

+
[
Φ(0, rε(εU)) − Φ(0, λ(ε))

]
+
[
Φ(0, λ(ε)) − Φ(εU, r(εU))

]}
dU (5.6)

where for simplicity, we have written

Φ (0, rε(εU)) ≡ Φ
(

0, r′ε(εU),
rε(εU)
εU

,
rε(εU)
εU

)
,

Φ(0, λ(ε)) ≡ Φ(0, λ(ε), λ(ε), λ(ε)).

From (5.3) and Taylor’s Theorem, we have that

∫ 1

0

U2[Φ (εU, rε(εU)) − Φ(0, rε(εU))]dU � C1ε

∫ 1

0

U3Φ̃ (rε(εU)) dU � C2ε,

where we used that rc has finite Φ̃ energy. Thus, the first bracketed term in (5.6)
goes to zero with ε. For the third term, we note that the functions r′(S) and r(S)/S
are C[0, 1] and positive. Hence, for some M > 0,

|Φ(εU, r(εU)| � M, ∀ U,

and since

Φ (εU, r(εU)) → Φ(0, �, �, �),

pointwise, we get by the Lebesgue-dominated convergence theorem that

∫ 1

0

U2Φ(εU, r(εU) dU →
∫ 1

0

U2Φ(0, �, �, �) dU,

as ε→ 0+. This together with λ(ε) → � yields that

∫ 1

0

U2

[
Φ(0, λ(ε)) − Φ(εU, r(εU)

]
dU → 0,

as ε→ 0+. Thus, the third term in (5.6) goes to zero with ε as well.
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For the second term in (5.6), note that with the change of variables Z = (ε/αε)U ,
we get

∫ 1

0

U2 Φ(0, rε(εU)) dU =
(αε

ε

)3
∫ ε/αε

0

Z2 Φ(0, rc(Z)) dZ

→ 1
μ3

∫ μ

0

Z2 Φ(0, rc(Z)) dZ =
∫ 1

0

U2 Φ(0, rc(μU)) dU.

It follows now that∫ 1

0

U2

[
Φ(0, rε(εU)) − Φ(0, λ(ε))

]
dR

→
∫ 1

0

U2

[
Φ(0, rc(μU)) − Φ(0, �, �, �)

]
dR < 0,

where the last inequality follows since � > λh
c and r̃(U) = μ−1rc(μU) is the mini-

mizer for the functional with stored energy Φ(0, v1, v2, v3) and boundary condition
r̃(1) = �. Collecting all of the intermediate results so far, we get that ε−3ΔI < 0
for ε sufficiently small, which contradicts the minimality of r.

The case � = ∞ can be handled in a similar fashion using a suitable incompress-
ible deformation on [0, ε] in (5.5). See [11, Proposition 12] for details. �

6. Numerical results

We now give some numerical examples illustrating several of the results from pre-
vious sections for the displacement problem. For the calculations, we employ a
combination of two numerical schemes: (the predictor) a descent method for the
minimization of (2.7) based on a gradient flow iteration; and (the corrector) a
shooting method that solves directly the Euler–Lagrange boundary value problem
(2.12), (3.8) and (3.10a). The use of adaptive ODE solvers in the shooting method
allows for a more precise computation of the equilibrium states, especially near
R = 0 where both strains in our problem tend to develop boundary layers.

A gradient flow iteration (cf. [9]) assumes that r depends on a flow parameter t,
and that r(R, t) satisfies

d2

dR2
(rt(R, t)) = − d

dR
[
R2Φ,1(R, r(R, t))

]
+ 2RΦ,2(R, r(R, t)) (6.1)

+R2 ρ0(R)MR

r2(R, t)
, 0 < R < 1, t > 0,

r(1, t) = λ, lim
R→0+

[
d

dR
(rt(R, t)) +R2Φ,1(R, r(R, t))

]
= 0, t � 0. (6.2)

(Here rt = ∂r
∂t .) The gradient flow equation leads to a descent method for the min-

imization of (2.7) over (2.13). After discretization of the partial derivative with
respect to ‘t’, one can use a finite element method to solve the resulting flow
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equation. In particular, if we let Δt > 0 be given, and set ti+1 = ti + Δt where
t0 = 0, we can approximate rt(R, ti) with:

zi(R) =
ri+1(R) − ri(R)

Δt
,

where ri(R) = r(R, ti), etc. (We take r0(R) to be some initial deformation satisfying
the boundary condition at R = 1 , e.g. λR.) Inserting this approximation into the
weak form of (6.1), (6.2), and evaluating the right-hand side of (6.1) at r = ri, we
arrive at the following iterative formula:

∫ 1

0

z′i(R)v′(R) dR+
∫ 1

0

[
R2Φ,1(R, ri(R))v′(R)

+
(

2RΦ,2(R, ri(R)) +R2 ρ0(R)MR

r2i (R)

)
v(R)

]
dR = 0, (6.3)

for all functions v with v(1) = 0 and sufficiently smooth so that the integrals above
are well defined. Given ri, one can solve the above equation for zi via some finite
element scheme, and then set ri+1 = ri + Δt zi. This process is repeated for i =
0, 1, . . ., until ri+1 − ri is “small’ enough, or some maximum value of ‘t’ is reached,
declaring the last ri as an approximate minimizer of (2.7) over (2.13).

In the shooting method technique, for given ν > 0, we solve the initial value
problem

d
dR

[
R2Φ,1(R, r(R))

]
= 2RΦ,2(R, r(R)) +R2 ρ0(R)MR

r2(R)
, 0 < R < 1, (6.4a)

r(1) = λ, r′(1) = ν, (6.4b)

from R = 1 to R = 0. The value of ν is adjusted so that

lim
R→0+

R2

r2(R)
Φ,1

(
R, ν,

r(R)
R

,
r(R)
R

)
= 0. (6.5)

In actual calculations, we solve (6.4) from R = 1 to R = ε, where ε > 0 is small,
and replace (6.5) with

ε2

r2(ε)
Φ,1

(
ε, ν,

r(ε)
ε
,
r(ε)
ε

)
= 0. (6.6)

This equation is solved for ν via a secant-type iteration, where the initial guess for
ν is computed using the approximate solution from the predictor step. The solution
of (6.6) requires repeated solutions of the initial value problem (6.4) from R = 1 to
R = ε. These intermediate initial value problems are solved with the routine ode45
of the MATLABTM ode suite.
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For the simulations, we consider the homogeneous case (5.1) for which the stored
energy function Φ̃ is given by

Φ̃(v1, v2, v3) =
κ

p
(vp

1 + vp
2 + vp

3) + h(v1v2v3),

with

h(d) = C dγ +Dd−δ,

where p < 3, C � 0,D � 0 and γ, δ > 0. The reference configuration is mechanically
stress-free provided:

D =
κ+ Cγ

δ
.

The mass density function ρ0 is taken to be constant. In this case, the differential
equation in (6.4a) reduces to (3.14). For the first set of simulations, we used the
following values of the mechanical parameters in Φ̃:

p = 2, κ = 1, C = 1, γ = δ = 2, (6.7)

with a value of ε = 0.001 in (6.6) and in the shooting method. The gradient flow
iteration was used as a predictor for the shooting method, with the integrals in
(6.3) computed over (ε, 1) as well.

In our first simulation, we show the approximate cavity radius as a function of ρ0

and λ, for values of ρ0 ∈ [0.5, 1.5] and λ ∈ [0.9, 1.2]. The resulting surface is shown
in figure 1. We note that for fixed values of ρ0, the cavity size is essentially zero
up to some certain value of λ (the critical boundary displacement corresponding to
ρ0), after which the graph becomes concave. This critical boundary displacement
appears to be an increasing function of ρ0. In figure 2, we show the corresponding
surface for the energies of the approximate minimizers. For fixed values of λ, the
energy is an increasing function of ρ0, while for ρ0 constant the energy is non-
monotone with respect to λ with a convex shape.

Our next simulations are for fixed values of λ and ρ0. In the first case λ =
1 and ρ0 = 1. In figure 3, we show the computed minimizer r compared to the
affine deformation λR. The value of r(0.001) is 7.7078 × 10−4 with an energy of
0.49074. Figure 4 shows plots of the strains r′(R) and r(R)/R, and the determinant
r′(R)(r(R)/R)2 in this case. Also in figure 5, we show the graph of the corresponding
Cauchy stress. We note the boundary layer close to R = ε in these plots. This
boundary layer is a numerical artefact since the numerical scheme tries to make
the Cauchy stress zero, while for this value of λ the value of r(0) should be zero.
Still in this case the numerical scheme converges to the solution with r(0) = 0 as
ε→ 0+ (cf. [10, Section 5]).

In our next simulation for the values (6.7), we take λ = 1.15 and ρ0 = 1. In
figure 6, we show the computed minimizer r which corresponds to a cavitating
solution. The value of r(0.001) is 0.48346 with an energy of 0.91034. Figure 7 shows
plots of the strains r′(R) and r(R)/R, and the determinant r′(R)(r(R)/R)2, and
in figure 8, we show the graph of the corresponding Cauchy stress. The boundary
layer in r(R)/R is now a ‘true’ one associated with the computed cavitating solu-
tion. Finally, in figure 9, we show a three-dimensional ‘cut’ of the deformed body
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Figure 1. Cavity surface.

Figure 2. Energy surface.
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Figure 3. Radial displacement for λ = 1 and ρ0 = 1.

Figure 4. Strains and determinant for λ = 1 and ρ0 = 1.

with the colouring given by the density in the deformed configuration which is
ρ0/[r′(R)(r(R)/R)2]. Note that the density in the deformed configuration is higher
near the centre, decreasing towards the outer radius.
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Figure 5. Cauchy stress for λ = 1 and ρ0 = 1.

Figure 6. Radial displacement for λ = 1.15 and ρ0 = 1.

Our next numerical example uses values characteristic of the composition of
the planet Mercury. Differential equation (3.14) now is over the interval [0, R0],
where R0 is the planet average radius, and the coefficient ρ2

0 in the last term must
be replaced with ρ2

0G, where G is the gravitational constant. In the normalized
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Figure 7. Strains and determinant for λ = 1.15 and ρ0 = 1.

Figure 8. Cauchy stress for λ = 1.15 and ρ0 = 1.

variables R↔ R/R0 and r ↔ r/R0, differential equation (3.14) becomes:

d
dR

[
R2Φ̃,1(r(R))

]
= 2RΦ̃,2(r(R)) +

4π
3

(ρ2
0GR

2
0)

R5

r2(R)
, 0 < R < 1. (6.8)
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Figure 9. Deformed configuration with colouring given by the density in the deformed
configuration for λ = 1.15 and ρ0 = 1.

Now using that G= 6.674 × 10−11 m3 kg−1 s−2, R0 = 2440 km and ρ0 = 7860 kg m−3

(for an iron planet), we get that

ρ2
0GR

2
0 = 24.5GPa.

For the mechanical parameters resembling an iron composition as used in [8], we
take

p = 2, κ = 80GPa, C = 60GPa, γ = δ = 2. (6.9)

In the simulation, we compared the energies of the solution of (6.8) with boundary
conditions (6.5) and r(1) = λ, to the solution of (6.8) with boundary conditions
r(0) = 0 and r(1) = λ. We denote these solutions as rZ (zero Cauchy stress at
origin) and rI (centre intact), respectively. For λ small, the solutions of these two
boundary value problems are equal. However for the simulations, the first boundary
value problem is solved on [ε, 1] with ε small, with (6.5) replaced by (6.6). This
causes an ‘artificial’ boundary layer close to R = ε for the strains corresponding to
rZ , which disappears as ε tends to zero and with rZ(ε) > 0 but small. The energies
of the rZ for small λ’s are consequently slightly larger than those corresponding to
rI . However, for values of λ larger, the energy of rZ is indeed lower than that of
rI , an indication that cavitation is energetically favourable. In figure 10, we show
a plot of the differences in these energies for a range of values of λ. We recall
that the horizontal axis in this graph is in normalized values. Thus, for instance,
a value of λ = 1 would correspond to 2440 km. The numerical results suggest a
critical boundary displacement (for the initiation of cavitation) at about λ = 1.145
or 2790 km approximately.
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Figure 10. Cavity size vs boundary displacement (in normalized variables) for parameter
values resembling the composition of the planet Mercury.

7. Final comments

The usual self-gravitating problem is that in which the centre of the body remains
intact (r(0) = 0) and no condition is explicitly prescribed on the outer boundary.
This is the problem considered in [8] and is a special case of one of the problems
treated in [6]. It is straightforward to check that our results hold in this case as
well where the admissible set is now given by

A =
{
r ∈W 1,1(0, 1) | r(0) = 0, r′(R) > 0 a.e. for R ∈ (0, 1), Imec(r) <∞}.

In particular, minimizers exist for all densities ρ0 and satisfy the Euler–Lagrange
equation (3.8) with natural boundary condition at R = 1 given by T (1, r(1)) =
0 (cf. (3.7)). In reference to the stored energy function (1.1) considered in [8],
growth condition (3.1) with H3 places our stored energy function under the ‘strong’
compressibility category. Thus, our result on the existence of minimizers with the
centre intact for all densities ρ0 is consistent with the results in [8] which in turn
suggest that there might be uniqueness of solutions of (3.8) in our problem as well.

Another interesting problem is that of a spinning body. In the three-dimensional
case, radial solutions to this problem are not possible and a full three-dimensional
variational problem must be considered. The two-dimensional problem of a spinning
disk can be studied with radial symmetry. However, for cavitation, one would have
condition H1 with 0 < γ < 2, and it is easy to check that in this case functional
(2.7) is in general unbounded below.
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