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Tissue protein synthesis and nucleic acid concentrations in steers
treated with somatotropin
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The effect of injection with bovine somatotropin (bST) on the fractional rate of protein synthesis (FSR)
in tissues of beef steers was studied using a continuocus infusion of {1-“C|leucine. Minimum and
maximum FSR were calculated from free leucine specific radioactivity (SRA) in plasma or tissue
homogenate respectively. Tissue nucleic acid concentrations were also quantified. Tissue samples were
obtained from several muscles, sections of the small intestine and liver. In response to bST, both
minimum and maximum FSR increased in muscle but not liver or intestinal tissues. Absolute synthesis
rate increased in several muscles and small intestine tissues. Treatment with bST increased the relative
SRA of protein-bound leucine in muscles compared with liver; increased the amount of protein synthesis
per unit empty body-weight (EBW) in most muscles; and increased weight of small intestine relative to
EBW, suggesting a differential response between liver and the other tissues measured. Compositional
changes in response to bST occurred only in muscles. DNA concentration increased while protein: DNA
decreased in the gastrocnemius muscle and RNA:DNA increased in the longissimus dorsi. The
maximum percentage contribution of tissue protein synthesis to whole-body protein synthesis was 12:6,
257 and 20-5, and 13-0, 29-4 and 25-8 for liver, muscle, and small intestine in placebo-treated and bST-
injected steers respectively.

Protein synthesis: Somatotropin: Cattle

Exogenous somatotropin (ST) increases nitrogen retention in growing ruminants (Moseley
et al. 1982 ; Grantley-Smith et al. 1983 ; Eisemann et al. 1989). Positive N retention in tissues
occurs when synthesis of nitrogenous compounds exceeds degradation. An increase in
retention can result from a combination of changes in both synthesis and degradation.
Previous studies in cattle, using a continuous infusion of [1-**C]leucine to quantify whole-
body protein synthesis in response to bovine ST (bST), indirectly demonstrated an increase
in protein synthesis (Eisemann et al. 1986a, 1989). Whole-body measurements are a
composite of the net effect on a variety of tissues, but may hide interesting and important
differential effects on specific body tissues. Information on specific tissues is necessary to
understand the coordination of metabolism necessary for metabolic control.

Because of the potential for use of ST in production systems and its ability to alter
nutrient partitioning in growing animals, it is important to study further its mechanism of
action on body tissues. The objectives of the present study were to quantify the effects of
exogenous bST on fractional rate of protein synthesis (FSR) in several body tissues and on
tissue concentrations of protein and nucleic acids in cattle. The continuous infusion
approach was used to estimate FSR because of the size of the animals involved. This
technique has been widely used (for example, Simon e al. 1978, 1982, 1983; Lobley et al.
1980; Davis et al. 1981) and the limitations have been discussed relative to uncertainty of
the specific radioactivity (SRA) of the precursor pool for protein synthesis (for example,
Airhart et al. 1974; Waterlow et al. 1978).

* Present address: USDA, ARS, Subtropical Agricultural Research Station, PO Box 46, Brooksville,
Florida 34605, USA.
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Table 1. Composition of diet (g/kg dry matter®)

Ingredient

Cracked maize 3690
Wheat straw 1990
Cottonseed hulls 2079
Soya-bean meal 125-0
Molasses 77-0
Dicalcium phosphate 11-1
Limestone 55
Trace mineralized salt with selenium 55
Vitamins A, D and E T

* Dry matter content of 904 g/kg.
1 Added at 600 zg, 75 ug and 11 mg/kg respectively.

MATERIALS AND METHODS
Animals and diets

Ten Hereford x Angus steers (289 (SE 2) kg body-weight (BW)) were used in the experiment.
They were fed on a completely mixed, pelleted diet containing 10-42 MJ metabolizable
energy (ME)/kg dry matter (calculated ; National Research Council, 1976) and 127 g crude
protein/kg dry matter (Table 1). The diet was given at a daily rate of 0-98 MJ ME/kg
BW?. Feeding was by hand every 4 h. The amount of diet offered was adjusted weekly
according to BW.

Experimental design

Five steers received daily subcutaneous injections of bST and five steers received placebo
injections for 19 or 20 d before infusions. Sterile injections were given daily at 09.00 hours
in a volume of 14 ml. The bST dose was 29-2 TU/d (Miles Lot 14; Miles Laboratories,
Naperville, IL; 13 1U/mg protein). The bST was dissolved in buffer as previously
described (Eisemann et al. 19865). For logistical reasons the steers were paired across
treatments and the injection sequence was staggered for each pair of steers. Pairing was
based on BW and rate of gain throughout a 6-month preliminary period.

Leucine infusion and sampling

On day 18 of the treatment period, sterile catheters were inserted into both jugular veins
of each steer. The catheter used was a 300 mm section of tygon tubing (i.d. 127 mm,
o.d. 229 mm) previously treated with TDMAC-heparin complex (Polysciences Inc.,
Warrington, PA). On day 19 or 20, one steer of each pair was moved to a metabolism crate
for leucine infusion (only one steer could be infused/d). Sodium chloride was added to a
stock solution of L-[1-"*Clleucine (SRA 57 mCi/mmol; Amersham Corporation, Arlington
Heights, IL) to provide an infusate that had a final concentration of 0-15 M-NaCl. A syringe
infusion pump was used for a 380 min continuous isotope infusion (unprimed;
5-7 pCi/min) into one jugular vein. Blood was collected at 20 min intervals from the catheter
in the contralateral jugular vein. Protein-free plasma filtrates were prepared and analysed
for radiolabelled and total leucine to determine leucine SRA. These findings on whole-
animal leucine flux were previously reported (Eisemann et al. 1989).

After 380 min of isotope infusion, each steer was anaesthetized with sodium thiamylal
(Bio-Ceutic Laboratories Inc., St Joseph, MO) and samples from liver, duodenum,
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jejunum, ileum, biceps femoris, longissimus dorsi, triceps brachii, gastrocnemius and
semitendinosus were taken within an average of 7 min. Two sets of tissue samples were
taken, one for protein synthetic measurements and one for analysis of nucleic acid and
protein concentrations. Excised tissues were immediately washed with 0-15 M-NaCl,
wrapped in aluminium foil and frozen in liquid N,. For the jejunum, only protein and
nucleic acid concentrations were determined. For one steer on the bST treatment, there
was no sample of ileum for protein synthetic measurements. The isotope infusion was
maintained during the sampling period. At the end of sampling, the isotope infusion was
stopped and each steer was killed by intravenous injection of solution T-61 (containing
200 mg embutramide, 50 mg mebezonium iodide and S mg tetracaine hydrochloride/ml
with 0-6 ml dimethylformamide in distilled water).

Tissue SRA analysis

For liver and small intestine SRA measurements, duplicate samples were homogenized
(Polytron) in cold water (2 g tissue+ 15 ml water). Cold trichloroacetic acid (300 ml/i;
TCA) was added to a final concentration of 128 ml/l and the sample was homogenized
again. Sample tubes were placed in ice for 20 min before centrifugation at 12000 g for
20 min at 4°. The supernatant fraction was transferred to a separatory funnel, and the
precipitate was washed twice with 10 ml TCA (50 ml/1) and centrifuged as described
previously. All supernatant fractions were combined and norleucine was added as an
internal standard.

For muscle tissues, a 2 g sample in duplicate was initially homogenized in 35 ml 0-01 M-
phosphate buffer, pH 7-4. Sample tubes were placed in ice for 20 min before centrifugation
at 1400 g at 4° for 20 min. The precipitate was designated the insoluble (myofibrillar and
collagenous) protein fraction (Helander, 1957; Goldberg, 1968). Cold TCA (300 ml/I) was
added to the supernatant fraction and it was treated as previously described for liver and
small intestine. The protein precipitate from the supernatant fraction was designated the
soluble (sarcoplasmic) protein fraction. Both protein precipitates were washed twice with
10 ml TCA (50 ml/1) as previously described. All supernatant fractions following TCA
precipitation were combined.

Diethyl ether (3 vol.) was mixed with the combined supernatant fractions in a separatory
funnel and the aqueous phase was removed and applied to a cation-exchange column (Bio-
Rad Cation Exchange, AG 50W-X8, 100-200 mesh, H* form) to separate [1-'*C]leucine
from other radiolabelled compounds. The sample was sequentially followed by 8 ml
0-01 M-hydrochloric acid and 3 ml water. Amino acids were eluted sequentially with 2 ml | M-
ammonium hydroxide, 7 ml 2 M-NH,OH and 2 m! water. This procedure separates leucine
from its keto acid derivative (Eisemann ez al. 1986 a). The eluate was evaporated to dryness
at 85° under N, and reconstituted in 2 m] 0-1 M-HCL. After filtering, a 1 ml portion was used
to quantify radioactivity by liquid-scintillation counting; it was assumed that all **C in the
portion was associated with leucine. An external standard was used to correct for counting
efficiency. A second portion was used for quantification of leucine and norleucine by ion-
exchange chromatography using a five buffer analysis method (Beckman Instruments Inc.,
Palo Alto, CA).

Cold ethanol (950 ml/1; 25 ml), containing potassium acetate (10 g/1), was added to the
protein precipitate. The precipitate was homogenized, and sample tubes were placed in ice
for 10 min before centrifugation for 10 min at 1000 g. The supernatant fraction was
discarded. The precipitate was sequentially washed with 25 ml ethanol-diethyl ether (1:1,
v/v), 25 ml trichloromethane-ethanol-diethyl ether (1:2:2, by vol.), 25 ml diethyl ether and
10 ml diethyl ether twice. The protein precipitate was air-dried and stored at —20° until
leucine analysis.

ssaid Assanun abprique) Aq auljuo paysiignd 9900686 LNIE/6£01°01/B10°10p//:sd1y


https://doi.org/10.1079/BJN19890066

660 J.H. EISEMANN AND OTHERS

Approximately 15 mg protein precipitate were added to 11 ml 6 M-HCl with 10 gmol
norleucine added as an internal standard. Samples were frozen in a methanol-dry-ice bath
(—80°), tubes were evacuated and flushed with N, twice, and evacuated a final time. The
protein was hydrolysed for 24 h at 105°. After hydrolysis, samples were evaporated at 60°
under reduced pressure. Sample tubes were rinsed with water and evaporated twice more.
The final residue was reconstituted in 2 ml 0-1 M-HCl and filtered. A 1 ml portion was used
for liquid-scintillation counting. A second portion was diluted and analysed for leucine and
norleucine contents by ion-exchange chromatography (Beckman Instruments).

Tissue protein and nucleic acid analysis

For tissue protein and nucleic acid concentrations, a homogenate (100 g/1) was prepared
in 0-01 M-phosphate buffer containing 0-15 M-NaCl, 0:001 M-EDTA, and sodium azide
(0-2 g/1). Protein was analysed in the homogenate by the method of Lowry ez al. (1951).

For nucleic acid analysis, a portion of homogenate (100 g/1) was transferred to a
siliconized glass tube, perchloric acid (PCA) was added to a final concentration of 0-4 m.
Sample tubes were placed in ice for 15 min before centrifugation at 1000 g for 10 min at 4°.
The pellet was washed twice with 2 ml cold 0-4 M-PCA. The final pellet was resuspended
in 0-4 M-PCA and hydrolysed for 20 min at 100°. Sample tubes were placed in ice for
15 min, centrifuged at 1000 g for 10 min at 4° and the supernatant fraction was used for
analysis of DNA (Burton, 1956) and RNA (Ceriotti, 1955) concentrations. Standards for
DNA and RNA concentrations were hydrolysed as described previously.

Calculations
For plasma leucine SRA, the plateau value was determined by fitting values for each steer
to a single-component negative exponential function:

SD = Spmax(l _.e‘/‘pt), (1)
where S is the SRA of plasma amino acids, S,,,,, is the value of S, at plateau, A is the
rate-constant for the increase in plasma SRA during infusion and ¢ is time.

The equation described by Garlick er al. (1973) was solved using an iterative procedure

to calculate both minimum (k,,;,) and maximum (k,,,.) tissue rates of protein synthesis.

Ss_ A a —e™") k, 2

ST Ak, () (k) @
where Sy and S, are the SRAs of protein-bound and free leucine in tissues respectively, at
the end of infusion, k, is the FSR, and 1 is time. For k,,,., the value of A, the rate-constant
for the increase in SRA in tissues during infusion, was estimated as described by Garlick
2t al. (1973). Equation 2 was used to estimate the minimum k, substituting S, ., for S; and
estimating A; with A,

Statistics
Within a tissue, for each variable, a ¢ statistic was calculated comparing values from
olacebo- and bST-treated steers. The average value for each tissue across treatment was
compared using one-way analysis of variance with tissue as the main effect. Tissue means
wvere compared using Fisher’s least significant difference (1LSD).

RESULTS
Tissue protein and nucleic acid content
Tissue concentrations of protein, RNA and DNA were not changed with bST treatment
except for increased (P < 0-05) DNA concentration in the gastrocnemius (Table 2).
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Protein :nucleic acid and nucleic acid ratios were relatively insensitive to bST treatment
(Table 2). Protein: DNA decreased (P < 0-05) in gastrocnemius muscle, and RNA:DNA
increased (P < 0-05) in longissimus dorsi in bST-treated steers.

While treatment with bST had only minor impact within tissues, there were striking
differences in comparisons across tissue types across treatments (Table 2). Protein
concentration was higher (P < 0-05) in muscle and liver than in sections of the small
intestine and there were differences among muscles. RNA concentration was higher (P <
0-05) in liver and sections of the small intestine than in muscle, and DNA concentration was
highest in the small intestine, intermediate in liver and lowest in muscle (P < 0-05). Both
RNA and DNA concentrations differed (P < 0-05) across sections of the small intestine. As
a consequence, the protein:DNA and RNA:DNA ratios were highest in muscles,
intermediate in liver and lowest in small intestine (P < 0-05). Protein: RNA ratios in liver
and small intestine were similar and were lower than muscle ratios (P < 0-05).

The bST increased (P < 0-05) tissue weight of liver, longissimus dorsi, and small
intestine (Table 3). Empty BW (EBW) increased from 260-6 kg for placebo-treated steers to
273-0 kg for bST-treated steers (SE 4-0, P = 0-06). Carcass weight also increased (P < 0-05,
SE 2:7) and was 1759 and 184-8 kg for placebo- and bST-injected steers respectively.
Expressed as a percentage of EBW, the small intestine increased (P < 0-05) with bST
treatment (Table 3). Total tissue protein was not altered by treatment with bST. Total
RNA increased (P < 0-05) in longissimus dorsi and total DNA increased (P < 0-05) in
gastrocnemius muscle in response to bST (Table 3).

Tissue free leucine and SRA of free and bound leucine in tissues

For all muscles except biceps femoris, the tissue free leucine concentration decreased (P <
0-05) in bST-treated steers (Table 4). There was a trend for a decrease in the biceps femoris.
Treatment with bST did not alter leucine concentration or the protein-bound leucine: tissue
free leucine ratio in liver or small intestine. The protein-bound leucine :tissue free leucine
ratio increased (P < 0-05) in longissimus dorsi and gastrocnemius muscles from bST-
treated steers, and tended to be higher in other muscles. Across treatments, tissue free
leucine concentration was higher (P < 0-05) in small intestine than in liver or muscle tissue.
Protein-bound leucine relative to free leucine was highest in muscle, intermediate in liver
and lowest in small intestine (P < 0-05).

The relative SRA of free leucine (tissue free SRA:plasma SRA) was not altered by
treatment and ranged from 0-21 in ileal tissue to 0-56 in several muscles (Table 4). The
relative SRA of protein-bound leucine in individual tissues compared with the liver
increased (P < 0-05) with bST treatment in all muscle tissues (Table 4). Values ranged from
0-07-0-19 in muscle tissues to 2:0 or more in tissues from the small intestine.

Range of tissue fractional synthesis and absolute synthesis

The k., value was calculated for the soluble fraction of muscles and was not substantially
different from that for the insoluble fraction (Table 5). Means for the k,,,,, (%o/d) in the
soluble fraction of muscles for bST and placebo treatments respectively were: biceps
femoris 2:0, 1-8 (St 0-2) ; longissimus dorsi 2:4, 2-2 (SE 0-1); semintendinosus 1-8, 1:6 (Se 0-1);
gastrocnemius 2-6, 2-2 (SE 0-2); triceps brachii 2-7, 2-4 (S 0-2). All subsequent calculations
on muscle used k, values from the insoluble muscle fraction. The proportion of muscle
protein in the two fractions, averaged across all muscles, was 79 % in the insoluble and
21% in the soluble fraction. Approximately 6% of total protein is probably stromal
protein (Helander, 1957) which would precipitate with the myofibrillar fraction.

The k,,,,, and k,,,,, were calculated for the insoluble fraction of muscle by use of equation
2 and expressed as % /d (Table 5). The bST increased (P < 0-05) k,,,,;,, in all muscle tissues
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Table 5. Range of the fractional rate of tissue protein synthesis (k,) in steers injected with
placebo or bovine somatotropin (bST)?}

Minimum £, (%/d) Maximum k, (%/d)

Tissue bST Placebo SEY bST Placebo SEL
Liver 81 87 0-8 272 244 45
Biceps femoris [-2%* 06 o1 2:3% 16 02
Longissimus dorsi 1-2* 09 01 24 2-1 02
Semitendinosus 09 07 01 19 I-5 0-1
Gastrocnemius 1-3*% 10 0-08 2:6* 20 0-2
Triceps brachii 1-5* 1-1 0-08 2-8%* 22 0-09
Duodenum 210 185 14 109-0 88-0 14
Tleum

Mean 145 137 728 624

SE 1-1 1-0 88 79

Treatment means within each tissue differed significantly: * P < 0-05, ** P < 0-01.
1 For muscle, the values are for the insoluble fraction.
+ n S per treatment except for ileum with n 4 for bST, n 5 for placebo.

except semitendinosus, which tended to be higher. The bST increased (P < 0-05) the k..
in biceps femoris, gastrocnemius and triceps brachii. Treatment did not alter k_,,;, or k...
in liver or small intestine.

Absolute rates of tissue protein synthesis (g/d) increased (P < 0:05) with bST treatment
in biceps femoris, gastrocnemius and triceps brachii muscles whether calculated from k,;,
or k... estimates (Table 6). Protein synthesized by longissimus dorsi and small intestine
increased (P < 0-05) with bST when calculated from k,,, or k., only, respectively. In all
tissues, protein synthesized (g/unit RNA or DNA) was not altered by treatment with bST
for either method of calculation (Table 6). Treatment with bST increased (P < 0-05) the
amount of protein synthesized per unit EBW in biceps femoris and triceps brachii with both
methods of calculation, in longissimus dorsi using &, and in gastrocnemius using k...

Protein synthesized per unit DNA was similar across tissues except for liver, using the
k... estimate, or small intestine, using the &, estimate (Table 6), despite the variation in
DNA content of the tissues studied (Table 2). In contrast, protein synthesized per unit
RNA varied (P < 0-05) among tissues and was highest in the small intestine, intermediate
in liver, and lowest in muscle tissues. Overall, muscle tissues had lower RNA concentration
(Table 2), more total protein per unit RNA and synthesized less protein per unit RNA
(Table 6) than liver or small intestine tissues.

DISCUSSION
Tissue protein and nucleic acids

Measurements of tissue protein and nucleic acids were made to suggest cellular mechanisms
responsible for changes in FSR of tissue proteins, both in response to bST and in
comparisons across tissue types. Both protein and DNA concentrations were lower than
those reported by DiMarco et al. (1987) for liver and small intestine of cattle. Protein:
DNA ratios among muscles did not reflect the divergence previously reported (DiMarco et
al. 1987) and were similar to those reported by Lipsey et al. (1978) for semitendinosus, but
higher than those reported by Eversole ef al. (1981) for semitendinosus and Trenkle et al.
(1978) for longissimus muscles of cattle.
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Compositional changes in response to bST were variable and occurred only in some
muscle tissues (Table 2). The changes observed reflect a decrease in the DNA unit size
(protein: DNA ; Waterlow et al. 1978) in the gastrocnemius and an increase in the capacity
for protein synthesis in the longissimus dorsi (RNA:DNA).

Although the DNA unit size decreased in the gastrocnemius, the activity of DNA
(g protein synthesized /d per g DNA) was unchanged in any tissue (Table 6). A trend toward
an increase was apparent in all tissues except liver. Across tissues the DNA concentration
appeared to be related directly to FSR, whereas the DNA unit size was inversely related
(Table 2). A similar relationship between FSR and DNA unit size was reported in muscle
from rats (Waterlow et al. 1978).

There were no changes in RNA activity (g protein synthesized/d per g RNA) in any
tissue in response to bST (Table 6). Thus the effect of bST to increase protein synthesis is
probably initiated at the transcriptional level. A similar effect on RNA concentration and
activity was observed by Pell & Bates (1987) in lambs receiving somatotropin injections.
The changes observed in the concentration of RNA and in protein: RNA are in contrast
to those observed in muscle of rats as they mature (Waterlow et al. 1978 ; Lewis et al. 1984).
Rather, the capacity for protein synthesis declines with ageing whereas, in response to bST,
the cellular changes observed showed increased capacity.

Kinetic measurements

Although the free leucine concentration decreased in most muscles in response to bST, this
was not reflected in a treatment effect on tissue free leucine SRA (from values in Table 4).
However, bST proportionately increased the quantity of leucine in the protein-bound pool
compared with the tissue free pool. The tissue free leucine relative SRA (tissue free leucine
SRA :plasma SRA) was highest in muscles, intermediate in liver and lowest in intestine. This
is similar to that previously observed for muscle and liver in rats (Garlick ez al. 1973), pigs
(Simon et al. 1982, 1983) and lambs (Davis et al. 1981). In pigs (Simon et al. 1978, 1982,
1983) the relative SRA of intestinal tissues was more similar to that of liver. In all tissues
the free leucine SRA is lower than in plasma due to dilution with amino acids from protein
degradation. This source increases with increased fractional rate of protein turnover in a
tissue in conjunction with the size of the free amino acid pool. In addition, SRA in the small
intestine and to a lesser degree in the liver reflect dilution due to exogenous amino acids
(Waterlow et al. 1978). Per unit weight, the tissue free leucine pool was highest in the small
intestine where the protein-bound:free leucine ratio was lowest (Table 4).

The relative SRA of bound leucine (tissue-bound leucine SRA :liver-bound leucine SRA,
Table 4) showed a similar pattern in muscle and intestinal tissue to that observed by Simon
et al. (1983). The treatment response in muscle tissue suggests a greater stimulation by bST
in this tissue relative to liver. An increase in tissue weight as a percentage of EBW in the
intestine (Table 3) and amount of protein synthesis per unit EBW in some muscles (Table
6) support this concept also. This is predominantly with regard to synthesis of liver tissue
protein only because total protein synthesis (tissue+export) was not measured, although
probably some of the labelled protein was destined for export.

The FSR in specific tissues is presented as a range because of uncertainty in the SRA of
the true precursor pool (leucyl tRNA). The fact that the SRA of both plasma and tissue
free leucine was not changed by treatment with bST supports the assumption that the SRA
of leucyl tRNA maintained a similar relationship to the &, and k.. precursor estimates
respectively. Consideration of precursor SRA to estimate tissue protein synthesis and
existence of intracellular compartments have been discussed (for example, Fern & Garlick,
1973; Airhart et al. 1974; Khairallah et al. 1977; Everett et al. 1981). Because of the
complexity of this issue, it would be misleading to present a single estimate only.
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The range in k, (Table 5) is greater for liver and small intestine than for muscle tissues due
to the smaller free leucine relative SRA in these tissues (Table 4). From the k,,,, and k..,
values, estimates of the half-life of tissue proteins range from 2:5-8-6d in liver, 25-115d in
muscle and 0:6-51d in tissues of the intestine. Regardless of method, the general
interpretation is that exogenous bST increases k, in muscle tissues. The increase ranged
from 14 to 44% for k,,,, and from 29 to 100% for k,,,,. Pell & Bates (1987) used a
flooding-dose technique and reported an increase in FSR of non-collagen protein in biceps
femoris (30 %) and semitendinosus (6 %, not significant) muscles from lambs in response to
bST. Nnanyelugo & Chatterjee (1985) observed an increase in FSR in gastrocnemius
muscle when ST was given to restricted-fed rats and compared with restricted-fed controls.
Millward et al. (1976) suggested that the primary regulation of protein content in skeletal
muscle was through alterations in protein synthesis.

Although FSR was not affected in intestinal tissue, the absolute amount of protein
synthesized per d increased (Table 6). Thus, liver is the only tissue measured where neither
FSR nor absolute rate of protein synthesis increased in response to bST. This conclusion
is based predominantly on protein retained in the tissue and does not include export
proteins.

Our values for FSR (Table 5) are similar to those reported for growing heifers (Lobley
et al. 1980) and mature lambs (Bryant & Smith, 1982) and about half of those reported for
muscle of younger lambs (Davis et al. 1981; Pell & Bates, 1987) and pigs (Garlick et al.
1976; Simon ef al. 1982). The FSR in muscle from preruminant lambs was 22 % /d (Attaix
et al. 1988). The FSR in muscle of young rats (Garlick et al. 1973; Lewis et al. 1984) was
four to seven times higher than that reported for cattle. FSR in liver and intestine varied
less among species than that in muscle.

We chose to sample a variety of muscles to determine whether there was variation in
muscle response. Variation in FSR among muscles was reported in sheep (Bryant & Smith,
1982; Hunter et al. 1987) as was variation in response to bST (Pell & Bates, 1987). The
present study does not give strong support to a differential protein synthetic response to
bST among muscle tissues (Tables 5 and 6) except for the semitendinosus. Lack of response
in semitendinosus muscle is in agreement with findings obtained in sheep in response to bST
(Pell & Bates, 1987). Goldberg (1967) reported increased protein synthesis in red muscle
fibres compared with white muscle fibres. The semitendinosus probably had the highest
percentage of «, fibres of the muscles sampled (Suzuki et al. 1976).

The relative rate of protein turnover in different body tissues and the subsequent impact
on whole-animal protein turnover can be expressed in various ways. For example, liver,
small intestine, biceps femoris and longissimus dorsi all make a similar contribution to
EBW (Table 3), while the amount of protein synthesized per unit EBW is greatest in small
intestine, intermediate in liver and lowest in the muscle tissues (Table 6). Based on an
estimate for total muscle mass (Table 7), the minimum contribution of muscle to whole-
body protein synthesis was 14-18 % and the maximum contribution was 26-29 %. These
maximum estimates for muscle (26-29 %) and for liver (13 %) are slightly higher than those
obtained by Lobley ef al. (1980) in cattle, but similar to estimates in young lambs obtained
with the flooding-dose technique (Attaix ez al. 1988). The high contribution of tissues other
than muscle to total protein synthesis emphasizes the need to consider regulation of protein
turnover in non-muscle tissues as well as muscle tissues when studying regulation of protein
turnover during growth.

Findings reported in the present paper, demonstrating an increase in FSR (muscle) or
absolute synthesis rate (intestine), support previous indirect measurement of an increase in
whole-body protein synthesis in response to exogenous bST. Both the secretion rate and
metabolic clearance rate of ST decline with age (weight) in growing cattle (Trenkle and
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Table 7. Tissue protein synthesis as a percentage of whole-body protein synthesis, calculated
Jfrom both minimum and maximum fractional rates of tissue protein synthesis (k.), in steers
injected with placebo or bovine somatotropin (bST)t

Minimum £k, Maximum k;
Tissue bST Placebo  sE bST Placebo  sE
Liver 48 54 0-5 130 12:6 21
Muscle} 18-2* 143 09 29-4 257 16
Small intestine 62 53 04 258 20-5 2-8
Total 292 250 — 68-2 588 —

Treatment means within each tissue differed significantly: * P < 0-05.
+ Minimum whole-body protein synthesis (g/d) in these steers was calculated from:

(leucine irreversible loss —leucine oxidation, mmol/min) x 1440 min/d x 131 mg leucine/mmol

’

66 mg leucine/g protein

see Eisemann et al. (1989). Maximum whole-body protein synthesis was estimated from the minimal value by
assuming the constant-infusion method underestimated leucine flux by 18 % (Reeds et al. 1980).

1 Calculated from average minimum &, or maximum k, values and average protein concentration in the five
muscles sampled. Muscle weight was estimated as 40% of empty body-weight {(Lobley er al. 1980).

Topel, 1978). The FSR in muscle tissue (Waterlow et al. 1978; Lewis et al. 1984) decreases
with age to a greater extent than in liver (Waterlow et al. 1978 ; Goldspink & Kelly, 1984)
or intestinal (Goldspink et al. 1984) tissues in the rat. It is possible that a greater response
in FSR in muscle than the other two tissues in response to exogenous ST would occur both
due to a greater decline in FSR in this tissue or a selective response to bST, or both.
Considering FSR and absolute synthesis, the liver is the only tissue that did not increase
in response to bST, and yet the weight of the liver increased. This may reflect both less
stimulation of protein synthesis by bST and a change in degradation of protein, and
suggests that response in the liver may differ from that in muscle and small intestine.
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