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THE ASYMPTOTIC GROWTH OF
INTEGER SOLUTIONS TO THE ROSENBERGER EQUATIONS

ARTHUR BARAGAR AND KENSAKU UMEDA

Zagier showed that the number of integer solutions to the Markoff equation with
components bounded by T grows asymptotically like C(logT)2, where C is explicitly
computable. Rosenberger showed that there are only a finite number of equations
ax2 + by2 + cz2 = dxyz with a, b, and c dividing d, and for which the equation
admits an infinite number of integer solutions. In this paper, we generalise Zagier's
techniques so that they may be applied to the Rosenberger equations. We also apply
these techniques to the equations ax2 + by2 + cz2 = dxyz + 1.

INTRODUCTION

The Markoff equation

(1) x2 + y2 + z2 = Zxyz

was studied by Markoff (1879) [7], who demonstrated a relationship between its integer
solutions and Diophantine approximation. The equation is also interesting as a Diophan-
tine equation. Its set of integer solutions is infinite and nontrivial, yet is easy to describe.
The Markoff equation is quadratic in each variable, so given a solution (x,y,z), we can
find a new solution (3yz — x,y, z). Using this map, permutations of the variables, and the
fundamental solution (1,1,1), we can construct the Markoff tree Wl of positive ordered
solutions, shown in Figure 1. Every nontrivial integer solution to equation 1 is derived
from a solution in this tree by applying a permutation of the variables and sign changes
in pairs (see, for example, [3]). The trivial solution is (0,0,0).

Zagier [11] considered the quantity

= #{(x,y;z)€DJl:z<T}

and proved
N(T) = C(logT)2 + O(logT(loglogT)2),

where C is explicitly computable and C « .180717104712. Note that there is a typo in
[11] - the seventh digit of C is omitted.
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Figure 1: The Markoff tree DJI.

There are several generalisations of the Markoff equation, including the Hurwitz
equations,

I / I T , -4- • • • -4- T = : CLJC\ * ' ' X**

investigated by Hurwitz [5]; equations studied by Mordell [8],

(3) x2 + y2 + z2 = axyz + b;

variations studied by Rosenberger [9],

(4) ax2 + by2 + cz2 = dxyz;

and a variation studied by Jin and Schmidt [6],

(5) ax2 + by2 + cz2 = dxyz + 1.

In these last two classes of equations, we further require that a, b, and c divide d.

Zagier's techniques are not applicable to the Hurwitz equations, equation 2 (see [1]).
The application to those equations studied by Mordell (equation 3) is straight forward
when it applies ([2]). In this paper, we shall generalise Zagier's techniques so that they
may be applied to the Rosenberger variations, equation 4. The application is not straight
forward, since we shall not be able to exploit the symmetry of the equation.

Every equation of the form equation 4 has the trivial solution (0,0,0). Rosenberger
showed that if such an equation includes a nontrivial integer solution and a ^ b ^ c, then
the equation is one of six equations. These six equations include the Markoff equation
equation 1, and

Ri :

R2:

Rz:

x2

x2-,

x2

+ y2

V2y2

+ y2

+
+
+

2z2 - Axyz

3z2 = 6xyz

bz2 = 5xyz.
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[3] Rosenberger equations 483

The last two equations are

R4 : x2 + y2 + z2 = xyz

Rs: x2 + y2 + 2z2 = 2xyz.

An integer triple (x, y, z) is a solution to the Markoff equation if and only if (3a;, 3y, 3z) is
a solution to R4. Thus, the Markoff equation and R4 are essentially the same. Similarly,
an integer triple (x, y, z) is a solution to R\ if and only if (2x, 2y, 2z) is a solution to R$.

Let
H{x,y,z) = \x\ + \y\ + \z\

be a height on integer triples. Let

Nm{T) = #{(x,y,z) e Z3 : {x,y:z) is a solution to R^ and H(x,y,z) <T}.

Our main result is the following:

THEOREM 0 . 1 . The number of integer solutions to the Rosenberger equation Rm
with height bounded by T grows asymptotically like

Nm(T) = Cmlog2T + O(logT(loglogT)2),

wiere Cx as 1.63142834189, C2 « 1.66271739346, and C3 as 3.52831194430.

We also have C4 = 18C as 3.25290788481, where C is the constant found by Zagier,
and Cb = C\.

In Section 5, we apply the technique to equation 5, though we leave checking many
details to the reader. We also discuss what portions of our results are applicable to
equations of the form

ax2 + by2 + cz2 = dxyz + e,

where the coefficients are integers, and a, 6, and c divide d.

1. T H E ROSENBERGER VARIATIONS

Let us write equation 4 in the following fashion:

(6) a\x\ + a2x\ + a3xl = dxix2x3.

From a solution x = (x\, x2,x3) to equation 6, we can generate three new solutions by
applying the automorphisms:

d
<f>i(x) = (—x2x3 -xux2,x3)

<f>2(x) = (xu —X1X3 - 12,2:3)
\ a2 1

<j>3(x)= (xux2,—xix2-x3).
\ a3 1
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We shall call a solution x a positive integral solution if all the components of x are positive
integers. If x is a positive integral solution, then so is </>j(x). One can see this by noting
that the product of Xj and (d/a,i)xjXk—Xi \sa.jX2j+akx\, which is clearly positive. If Xi = 0
for any i, then x = (0,0,0). Thus, every nontrivial integer solution can be obtained from
a positive integer solution by a couple of sign changes.

Note that we cannot have both H(&(x)) < H(x) and H(<f>j(x)) ^ H{x), for then
we would have

d

—XjXk $ Xi

—XiXk ^ Xj

a,

so
2a.jX2j

CLiX? + CLj

Thus, descent, when it occurs, is unique.
Since descent is unique and cannot continue indefinitely, there exists a fundamental

solution w from which we cannot descend. By investigating the properties of fundamental
solutions, Rosenberger concluded that there are only six equations of this form that have
an infinite set of integer solutions. Both of the equations Ri and R2 have the single
fundamental solution (1,1,1), and R3 has the two fundamental solutions (1,2,1) and
(2,1,1). Note that, for each of the fundamental solutions w for equations Ri, R2, and
R3, we have H(<fe(w)) = H(w) and H(^-(w)) > H(w) for j = 1 and 2.

We shall study the integer solutions to these Rosenberger variations by studying the
tree of solutions Ty for a positive integer solution y. This tree is rooted at y and is
generated as follows. For any x in Ty, there exists a permutation i, j , k of {1,2,3} such
that H(4>i(x)) ̂  H(x). The daughters of x are the nodes <£;(x) and <£fc(x). The tree
T(i,i,i) for Ri is shown in Figure 2. This tree contains every positive integer solution to

2. ZAGIER'S ARGUMENT

In this section, we condense and generalise Zagier's techniques. There are three main
ideas. The first is to compare the tree Ty with the Euclid tree. The Euclid tree <£ is the
tree rooted at (1,1) and generated by the branching operations Ci(a, b) = (a,a + b) and
a2(a. b) = (b,a + b). This tree contains all ordered coprime pairs twice and going down
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n ( )

. . fi,-^ (2857,11,65)
(3l l l'65X(3,769,65) ...

Figure 2: The tree of positive integer solutions to the equation x2 + y2 + 2z2 = 4xyz.

the tree is the Euclidean algorithm, hence the tree's name. We shall be interested in
Euclid trees &(a,p) rooted at an arbitrary pair (a, /?). Let

£«.,/?)(*) = #{(a , b) € <E(O,£) : a + b < t}.

It is well known that E^i)(t) grows asymptotically like (3/w2)t2 (see, for example, [4,
p. 266]). More generally, for /3 ^ a > 0,

as is shown in [11]. (Zagier's error term is slightly better than this, but this is enough
for our argument.)

To compare the trees, we define a map * from the tree Ty to the tree <£(<*,£). Our
definition is inductive. For each x € Ty, there exists an i € {1,2,3} such that i/((fo(x))
^ H(x). For x = y, we fix j and it. We let *(y) = (a,j9), *(0j(y)) = {/3,a + /3) and
*(0*(y)) = (a>a + P)- We define the rest of $ inductively. For all other x e Ty , there
exists a permutation (i,j, k) of (1,2,3) such that #(<fo(x)) < H(x) and f f ( ^ ^ ( x ) )
^ # (&(x ) ) . (This choice almost always gives i j ^ Xj ^ x*, but there are some excep-
tions.) If #(x) = s, then let

The map ty from T(i,i,i) for i?2 to the tree £(1,1) is shown in Figure 3.

The second main idea is an averaging technique. Averaging techniques are fairly
common - for example, Tate used the idea when defining canonical heights on elliptic
curves [10, p. 228]. If we fix a solution p = (j)\,P2,Pz) to equation 6, then the branch of
the tree Tp with Xi = p\ is given by alternately applying 4>2 and <j>3. The composition
<j>2<j>3 generates a linear action on (x2 )x3), which has the eigenvalue
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Figure 3: The tree 2̂ (1,1,1) for the equation x\ + 1x\ + Zx\ = 61x122:31 and the map ^ to
the Euclid tree <£(u).

and its multiplicative inverse, where mi = d/^/o^aJ. If this eigenvalue is not one, then in
the long run, the action looks like multiplication by this eigenvalue. Taking a cue from
Zagier, we therefore define

where m* =
Suppose now that x is a solution to equation 6 with i7(&(x)) < -ff(x). Let

=/f1** =/

(Note that Ẑ "1 exists, since fc is an increasing function in x.) Let x» be the vector
obtained from x by substituting xt with Xi.- Then x. satisfies the equation

(7) aixf, + ajxj + akx\ = dxitXjXk +

To see this, let us first let u{ = efi(-Xi-\ Uj = e-^1'' = •v/%~, and uk = e / t ( l i ) =
Then U{ = UjUk. We also note that u* is a root of the quadratic t2 — rriiX^t + 1, so the
other root is u'1 and the sum of the roots is u{ + u~l — miXim. Similarly, rrijXj = Uj + u~l

and mkxk = uk + uk'. Plugging these expressions for Xj,, Xj and xk into the expression

and simplifying, we get (4a1a2a3)/cf2. Thus, the map x -> (fk{xk), fj(xj)) is a good
approximation of the map ^. Let us make this last statement more precise.
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[7] Rosenberger equations 487

LEMMA 2 . 1 . For any x € Ty, let (i, j , k) be a permutation of {1,2,3} such that
H(4>i(x)) ^ H(x). Suppose there exist rt < 2a* such that T-JXJ > dXjXk. Then

Ki
Xi < xit < Xi H .

Xi

The constant Ki depends on i and the constants a,\, 02, 03, d, and u.

P R O O F : First, note that xim > i j . To see this, think of Xi and Xi, as roots of the
appropriate parabolas suggested by equations 6 and 7. The shapes of these parabolas are
identical, but the parabola for xt, is shifted down. Thus, the roots x* and x[ of equation 6
are between the roots X{, and x'it of equation 7. Since xt and xit are the larger roots of
their respective equations, we get z* < xit.

Let us now take the difference of equations 6 and 7. This gives

2 .
a-i^i, - a-iXi - axi.XjXk + d (P

4G| ( I2&3

40^203
< d?

<Xi +

Ki
<Xi-\ -.

Xi D

THEOREM 2 . 2 . Suppose w is a fundamental solution and that fm(wm) > 0 for
m — 1, 2, and 3. For each x € Tw, let {i,j,k) be a permutation of {1,2,3} such that
H(4>i(x)) ^ H(x). Suppose there exist rm < 2am such that, for all but finitely many
x e Tw, we have TiXi > XjXk- Then, for all but finitely many y € Tw, we have

Ny{T) = *]*£ +°{ymy)kyk))
where Hfafr)) ^ H(y) and, ify / w,

PROOF: Let us first note that for any x £ l y with i/(<fo(x)) ^ H(x), we have

d

—XjXk

In particular, x,, xk ^ 2ajXj.

Let (a,0) = (fk{yk),fj(yj))- Let * be the map from the tree Ty to the tree <S(Qi0).
Let x e Ty and suppose #(x) = (si,s2). We claim that fk{xk) < si and /,(x7) ^ s2;
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which we prove using induction. As a consequence of our choice of (a, /?), it is true for
the base case. Suppose it is true for x. Then, by Lemma 2.1,

fi(Xi) ^ fi(xim) = fj(Xj) + jk{xk) < Si + S2.

Thus, the inequalities are true for the two daughters of x, which completes the induction.
Now, suppose we order oi, 02, and a3 so that ai ^ a2 ^ 03. Then f\(x) < /2(x) ^ fs{x).
Suppose

Then

H (x) < T,

where in the last, we used that Xj and xk < 2atXi ^ 2a3Xi. Thus,

(8) Ny(T) > E(aJ>){MT/6a3)) = E(aJ)){log{T) + 0(1)).

By Lemma 2.1,

(9) fjixj) + /*(**) = fi(xim) < fi (it + 0 ( 1 ) J = /fa) + O ( ^ ) .

Let

(10) («'./5')

where c/(4a§) is a constant that bounds the functions implied by the big O in equation 9
for each of i = 1, 2, and 3. If y< is large enough, then a', /?' > 0. Since y ,̂ yk < 2a3yi, we
have that y< is large enough for all but finitely many y in Tw.

Since we shall choose permutations of {1,2,3} for each x € 1 y , let us fix i(y) so
that H(<j>ny)(y)) ^ H{y). Note that i i (y) ^ yi(y) for all x e Ty. Suppose $(x) = s. We
claim that fk{xk) - c/(yf(y)) ^ sx and fj(xj) - c/(y?(y)) ^ s2, which we again prove using
induction. Our choice of a', @' covers the base case. Suppose it is true for x. Then

(11) fi(Xi.) ^ fi(Xi) + ^ 2 -

Since Xj(y) ^ 2a$Xi. we get
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Thus

/ ( ) > M) = Mxi) + /*(**) - -£- > Si + s2.

This completes the induction step. Now, suppose H(x) < T. Then

xt<T

fi(xi) < fi(T) = log(T) + 0(1)

Si + s 2 < l o g ( T )

Thus,

Combining this with equation 8, we get

logTloglogr
N (T) =

 3 1 ° S T

y( ' 3(M) + O(l/?))(h(yk) O(i / 2 ) )

In most cases, we expect min{/jt(yfc), fj{yj)} = fkiVk)- In the rare cases that this is not
the case, we have y* ^ ^0-jVj, so

Thus, we get

N m =
 3 1 ° g r , Q( 1 Q S T ) ,

as claimed. D

This theorem is not particularly useful when y is small, since the first error term
dominates. However, we do immediately get the following result, which will be useful
later on.

COROLLARY 2 . 3 . Suppose w is a fundamental solution, fm(wm) > 0 for m = 1,
2, and 3, and y € Tw. Tien

Ny(T) = O{loglT).

Furthermore, the constant implied by the big O can be chosen so that it is independent
ofy (though it depends on w).

For y very large, the approximation in Theorem 2.2 is very good. Zagier's third main
idea exploits that feature. Let 1y([/) be the subtree of 1y that includes all x 6 Ty such
that H{x) < U. The boundary of1y{U) is the set dTy{U) of solutions x with H{x) > U
and &(x) € Ty(C/) for some i. Then, for U < T, we can write

(12) Ny(T) = Ny(U) +

We estimate this using Theorem 2.2 and its corollary. The details are in the next theorem,
which is the main result of this section.
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THEOREM 2 . 4 . Suppose w is a fundamental solution and that fm(wm) > 0 for
m = 1, 2, and 3. For each x € Tw, x j i w , let (i, j , k) be a permutation of {1,2,3} such
that H(4>i(x)) ^ H(x) and H(<^(x)) ^ # (&(x) ) . For x = w, let (i,j,k) = (3,2,1).
Suppose there exist rm < 2a™ such that, for all hut finitely many x € Tw, we iave
7-jXj > XjXk. Then for any y € Tw, the constant

r = 3 1 + iim 1 V />(»>)

exists and
Ny(T) = Cylog2T + 0(logT(loglogT)2).

PROOF: Let us use Theorem 2.2 and its corollary to expand equation 12 as

(13) Ny(T) = O{

where

Du"

Let g(ij,xk) be an arbitrary function on 1y and let Ty be a finite subtree of 1y that
contains y and is connected. Then

(15) ^2 g(xj,xk) = g{yj,yk) + ^2(g{xi,Xj) + g(xi,xk) - g(xj,xk)).

This result, which may be thought of as a version of Green's theorem, is easily proved
using induction. Using equation 15, we have

c 3 3 ^ fj{Xj) + fk{xk) - /fa)
U *2f{V)f{V) ^ ^

so

Cv
 s= lim

Then

r -r _A V̂
" *2 h

X€Ty
H(x.)>V
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[11] Rosenberger equations 491

where in the last line we have used the result in equation 9. To evaluate the tail of this
sum, we introduce the quantity

Wy(T) = # { x eZy:Xi< T}.

Since x{ < H(x) < 6a3x{, we know N^(T) = O(log2T) by Corollary 2.3. Note also that
0,1, < dxjXk < dx2, so both /i(xj) and fj(ij) are bounded below by a constant times

Xj. Note that fk(xt) ^ fk{wk) > 0, so it is bounded below. Thus,

5y x}WxJ

S TOx€Ty

For simplicity, let us set U' — \U/6a3\, where |_xj is the greatest integer function. Then,
we have

-o ^ , n*\og2n

This establishes that Cy exists and that Cu = Cy + O(l/U2). This also allows us to
estimate Dv, since

A, = 0 (JJC P ) =

To estimate Ey, we note that, by equation 15,
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We again note that O(\/fj{xj)) - 0( l / log(zj)) , so

J-l

= O{\ogU).

Combining these results in equation 13, we get

Ny(T) = Cy log2T + O(log2 U + ̂ ^ + log U log T log log T ) .

To make the error as small as possible, we choose U = (Vlog T) /(log log T), which gives

Ny(T) = Cylog2T + O(logT(loglogT)2). D

3. T H E ROSENBERGER VARIATIONS AGAIN

In this section, we establish the conditions of Theorems 2.2 and 2.4 for each of the
Rosenberger equations R\, R2, and R3.

Given a solution x to a Rosenberger equation, we often want to select the component
X{ of x such that #(<&(x)) ^ #(*) • This component is almost always the largest
component:

LEMMA 3 . 1 . Suppose x is a positive integer solution to the Rosenberger equation
Ru R2, or R3. Let (i,j,k) be the permutation of {1,2,3} such that H(cj>i(-x)) < H(x)
and Xj ^ xk. Then either

X{ ^Xj

or Xk = 1 in R3, and k = 1 or 2.

PROOF: Let

f(T) = atT
2 + ajx] + akx\ - dTxjXk.

Then f{x{) - 0. Let x\ be the other root of /(T). Since H(4>i{x)) ^ H(x), we know
x\ ^ X{. We consider

(16) f{Xj) = a,i2 + CLJX) + akx
2

k - dx)xk ^ (aj +a2 + a3- dxk)x).
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If xk ^ 2, then the right hand side of equation 16 is negative, so f(xj) < 0 and hence,
x'{ < Xj < Xi. If Xk = 1, then the right hand side is zero for equations Ri and i?2, so in
these cases, Xj ^ xt. If x3 = 1 in i?3, then k = 3 and

x̂  = 5x_,- - x,- ^ Xj,

which implies Xj > x ; . D

Note that, if Xi or x2 = 1 in R3, and H(<£3(x)) < H(x), then x3 is in fact not the
maximal component of x. This creates a minor wrinkle in the study of R3.

It will also be useful to note that, if Xj ^ Xj, xk, then

+ O2X2 + 03X3 = dXiX2X3

? + a2x2 + a3x2 ^ dxiXjXk
d

Xi £ • • XjXk-
0,1+0.2 + 0,3

For equations Ri and R2, this gives

(17) Xi

and for R3, this yields

(18) Xj ^ -

Let us now consider the various cases. For these cases, it will be more convenient to

set {x,y,z) = (xi,x2,x3).

EQUATION RI. Let us first suppose that t = 1. Then x ^ yz by equation 17. We can
improve on this bound by noting that y, z ^ 1, and observing that

(x - yz){x - Zyz) = x2 - Axyz + 3y2z2

= x2-x2-y2-2z2+3y2z2

If we have equality, then y = z = 1 and x = 1 or 3. If x = 1, then i ^ 1, and if x = 3,
then x = Zyz. Otherwise, x — yz > 0 so x - 3yz > 0. That is, x ^ 3̂ /2 for all x with
i = l. Hence, we may choose ri = 4/3 (in Theorem 2.4). By symmetry, we may also
choose r2 = 4/3.

If i = 3, then we may assume, without loss of generality, that y ^ x. By observing
how the tree of solutions begins (see Figure 2) and excluding (1,1,1), we may further
assume that y ^ 3 and x ^ 1. Now observe that

2(z - \xy) (z - \xy) = \x2{y2 - 9) + y2(x2 - 1) £ 0.
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Thus, since z ~£ xy > xy/3, we get z ^ (5/3)xy for all x ^ (1,1,1) with i = 3. This
yields r3 = 5/2.

EQUATION i?2- If i = 1, then x ^ y ^ 1 and x > z ^ 1, so

(x - yz)(x - 5yz) = 2y2(z2 - 1) + 3z2(y2 - 1) £ 0.

We have equality if and only if x = (1,1,1) or (5,1,1). If x = 1 then i ^ 1, and for

x = (5,1,1), x = 5yz. Otherwise, x > byz, so we may choose r\ = 6/5.

If i = 2, then y ^ x ^ 1 and y ^ z ^ 1, so

2(j/ - iz)(y - 2xz) = z2(y2 - 1) + 3z2(z2 - 1).

We have equality only if (x, y, z) = (1,1,1) or (1,2,1). If y = 1 then i ^ 2, and if j / = 2
then y = 2xz. Otherwise, y ^ 2xz, so we may choose r2 = 3.

We shall split the case when i = 3 up into two cases. First, let us suppose z ^ y ^ x
and x 7̂  (1,1,1). Then we may assume y ^ 2 and x ^ 1 (see Figure 3), so

(z - ixy) (z - ^xy) = ix2(y2 - 4) + 2y2(x2 - 0.

Thus, z ^ (3/2)xy. If z ^ x ^ y, then we may assume x ^ 5 and y ^ 1 (see Figure 3),
SO

3(z - Jxy) (z - 5x y) = x*tf _ i) + | y 2 ( x 2 _ 25) ^ 0

Thus, z ^ (9/5)xy. Combining these two inequalities, we get z ^ (3/2)xy whenever
i = 3 and x / (1,1,1). Thus, we may choose r3 = 4.

EQUATION fi3. If i = 1 and y ^ 2, then x ^ (5/7)yz by Lemma 3.1 and equation 18.
Note also that

(x - \yz) (x - \yz) = y2(z2 - 1) + \z\y2 - 4) £ 0,

so x > (9/2)yz. The solutions where y = 1 are all on the branch rooted at (2,1,1) and
generated by <f>\ and (fo:

(19) (2,1,1)—> (3,1,1) —• (3,1,2) —> (7,1,2) —> (7,1,5) —» . . . .

Every other solution on this branch, starting with (3,1,1), has i — 1. So let us write

We claim that xn ^ 3zn, and prove this using induction. It is clearly true for the case

when n = 0. Note that

; l , z n ) = (4xn - 5 z n , l , x n - z n ) ,
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and

4ln - bZn > 3(ln - Zn)

if and only if xn ^ 2zn. The latter is true by our induction hypothesis, so xn ^ 3zn for
all n. Combining this with the case when y ^ 2, we get x ^ 3yz whenever z = 1, and
hence we can choose ^ = 5/3. By symmetry, we may choose r2 = 5/3, too.

If i = 3 and y ^ 2, then z ^ (5/7)xy by Lemma 3.1 and equation 18. If y = 1, then
x is in the branch described above in equation 19. In a similar fashion, let us write

We claim that zn ^ (2/3) i n for n ^ 1. We note that (x1,1, z{) = (3,1,2), so the claim is
true in the base case. We note that

,l,Zn) = (5zn - !„ , 1, 4zn - Xn)

and

2
4 z n - z n ^ -(5zn - x n )

12zn - 3xn > 10zn - 2xn

2zn ^ zn.

The last is true since 2zn ^ (4/3)xn, by the induction hypothesis. Thus, if i = 3, then
z ^ {2/3)xy for x ^ (2,1,1) or (1,2,1). Hence, we may choose r3 = (15)/2.

4. CALCULATIONS

We calculate Cm using the formula for Cy in equation 14. For equation Rx, using
U = 106 we find

C(i,i,i) ~ 0.543809447296.

Calculations using U = 1010 appear to be accurate to 22 digits and take about a second of
computing time (using a 500Mhz Celeron). The constant C\ in Theorem 0.1 is obtained
by multiplying by 3, to account for the solutions with negative entries. For equation i?2i
using U - 106, we find

C(i,i,i) « .554239131152.

The constant C2 is 3 times this. Finally, for equation R3, we use U = 107 and find

C(i,2,i) ~ .588051990717.

The constant C3 is 6 times this, to account for solutions with negative entries and solutions

in the tree X(2,i,i)-
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5. APPLICATIONS TO OTHER EQUATIONS

There are several places within the above discussions where we have made use of
certain properties of the Rosenberger variations. Specifically, we made use of the follow-
ing:

(1) If x is a positive integral solution, than so is &(x) for i = 1, 2, and 3.

(2) Descent, when it occurs, is unique.

(3) If x is an integer solution and xt = 0 for some i, then Tx is finite.

For a particular equation of the form

(20) ax2 + by2 + cz2 = dxyz + e,

these properties are no doubt easy to verify, but general results seem overly complicated
and not worth pursuing. If the integer solutions in a tree of solutions for an equation of
the form equation 20 satisfy these properties, then we may apply Theorem 2.4 to that
tree, though some of our arguments may have to be modified (for example, if e is large
enough, then the inequalities in Lemma 2.1 change directions). These properties are easy
enough to check for the equations studied in [6], where e = 1. Thus, one need only check
the conditions of Theorem 2.4 and calculate Cu for large enough U. We have done this,
but spare the reader the details. The conditions of Theorem 2.4 are the most difficult
items to check. As a consequence, we have the following theorem:

THEOREM 5 . 1 . Let

N(T) = # { x = (x, y, z) € Z3 : ax2 + by2 + cz2 = dxyz + 1 and H(x) < T).

Then, for the equations listed in Table 1,

N(T) = Clog2T + 0(logT(loglogT)2)

where approximations for C are also given.

X2

X2

2x2

2 i 2

6 i 2 -
i 2

+ 5y2

+ 3y2

+ 7y2

+ 2y

\-\0y2

+ 2y2

Equation
+ bz2 = bxyz + 1
+ 6z2 = 6xyz + 1
+ 1422 = 14xyz + 1
+ Zz2 = 6xyz + 1
+ 15z2 = SOxyz + 1
+ 2z2 = 2xyz + 1

Fundamental
(4,1,2) anc

(2,1,
(2,1,

(1,1,
(1,1,
(3,2,

solution(s)

1(4,2,1)

1)
1)
1)
1)
2)

C
3.92062681166
2.22381295435
1.85092947320
3.04230700308
1.86988733010
3.69061353513

Table 1: Equations of the form of equation 5, together with the constants C, accurate to
12 places. The constant C was calculated using U = 106.
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For equations of the form

(21) i 2 + by2 + bz2 = 2bxyz + 1,

the conditions of Theorem 2.4 are probably satisfied for every fundamental solution

(1, y, y), but the number of fundamental solutions with height less than T grows asymp-

totically like O(T). In [2], such rapid growth was also noted for 6 = 1 in equation 21,

and for the equations

x2 + y2 + z2 = dxyz + e,

where {d, e) - (1, s2 + 4) or (2, s2 + 1) and s <E Z.
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