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Abstract. A parameter c0 ∈ C in the family of quadratic polynomials fc(z) = z2 + c is
a critical point of a period n multiplier if the map fc0 has a periodic orbit of period n,
whose multiplier, viewed as a locally analytic function of c, has a vanishing derivative
at c = c0. We study the accumulation set X of the critical points of the multipliers as
n → ∞. This study complements the equidistribution result for the critical points of the
multipliers that was previously obtained by the authors. In particular, in the current paper,
we prove that the accumulation set X is bounded, connected, and contains the Mandelbrot
set as a proper subset. We also provide a necessary and sufficient condition for a parameter
outside of the Mandelbrot set to be contained in the accumulation set X and show that this
condition is satisfied for an open set of parameters. Our condition is similar in flavor to one
of the conditions that define the Mandelbrot set. As an application, we get that the function
that sends c to the Hausdorff dimension of fc does not have critical points outside of the
accumulation set X.
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1. Introduction
Consider the family of quadratic polynomials

fc(z) = z2 + c, c ∈ C.

We say that a parameter c0 ∈ C is a critical point of a period n multiplier if the map fc0

has a periodic orbit of period n, whose multiplier, viewed as a locally analytic function of
c, has a vanishing derivative at c = c0. The study of critical points of the multipliers is
motivated by the problem of understanding the geometry of hyperbolic components of the
Mandelbrot set.
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As it was observed by Sullivan and Douady and Hubbard [4], the argument of
quasiconformal surgery implies that the multipliers of periodic orbits, viewed as analytic
functions of the parameter c, are Riemann mappings of the corresponding hyperbolic
components of the Mandelbrot set. Existence of analytic extensions of the inverse branches
of these Riemann mappings to larger domains can be helpful in estimating the geometry of
the hyperbolic components as well as the sizes of some limbs of the Mandelbrot set [8–10]
(see also [3]). Critical values of the multipliers are the only obstructions to the existence
of these analytic extensions.

It is of special interest to obtain uniform bounds on the shapes of hyperbolic components
within renormalization cascades. In particular, this motivates the study of the asymptotic
behavior of the critical points of period n multipliers as n → ∞. In [5], the current authors
approached this question from the statistical point of view and proved that the critical
points of the period n multipliers equidistribute on the boundary of the Mandelbrot set as
n → ∞.

More specifically, for each n ∈ N, let Xn be the set of all parameters c ∈ C that are
critical points of a period n multiplier (counted with multiplicities). Let M ⊂ C denote the
Mandelbrot set and let μbif be its equilibrium measure (or the bifurcation measure of the
quadratic family {fc}). Let δx denote the δ-measure at x ∈ C. Then the following theorem
is obtained.

THEOREM 1.1. [5] The sequence of probability measures

1
#Xn

∑
x∈Xn

δx

converges to the equilibrium measure μbif in the weak sense of measures on C

as n → ∞.

At the same time, it was shown in [1] that 0 is a critical point of infinitely many
multipliers of different periodic orbits, and hence, since 0 �∈ ∂M = supp(μbif), this implies
that as the period n grows to infinity, the critical points of period n multipliers accumulate
on some set X ⊂ C that is strictly greater than the support of the bifurcation measure μbif.

The purpose of the current paper is to study this accumulation set X which can formally
be defined as

X :=
∞⋂

k=1

( ∞⋃
n=k

Xn

)
.

We note that the study of the accumulation set X complements the statistical approach of
Theorem 1.1 in the attempt to understand asymptotic behavior of the critical points of the
multipliers.

The first result of this paper is the following.

THEOREM A. The accumulation set X is bounded, connected, and contains the Mandel-
brot set M. Furthermore, the set X \ M is nonempty and has a nonempty interior.
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FIGURE 1. The setX is numerically approximated by the union of the Mandelbrot set and the colored regions. The
algorithm for the construction of this picture, as well as the meaning of the colors, are explained in Appendix A.

Figure 1 provides a numerical approximation of the accumulation set X. We also note
that the last part of Theorem A complements the following result, previously obtained by
the authors in [5].

THEOREM 1.2. [5] If c ∈ C \ M is a critical point of some multiplier, then c ∈ X.
Equivalently, the following identity holds:

∞⋃
n=1

(Xn \ M) = X \ M.

We need a few more definitions to state our next result. For a periodic orbit O of some
map fc, let |O| stand for its period (that is, the number of distinct points in it).

We recall that a periodic orbit is called primitive parabolic if its multiplier is equal
to 1. As discussed in [5], for every c0 ∈ C and every periodic orbit O of fc0 that is not
primitive parabolic, the multiplier of this periodic orbit can be viewed as a locally analytic
function of the parameter c in the neighborhood of c0. We denote this function by ρO. If in
addition to that, ρO(c0) �= 0, one can consider a locally analytic function νO, defined in a
neighborhood of c0 by the formula

νO(c) := ρ′
O(c)

|O| ρO(c)
. (1)
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For each c ∈ C, let �c denote the set of all repelling periodic orbits of the map fc.
In particular, the locally analytic maps νO are defined for all O ∈ �c in corresponding
neighborhoods of the parameter c.

For each c ∈ C, we consider the set Yc ⊂ C, defined by

Yc := {νO(c) | O ∈ �c}.
Our second result is the following.

THEOREM B. The following two properties hold.
(i) For every parameter c ∈ C \ {−2}, the set Yc is convex; for c = −2, the set Y−2 is

the union of a convex set and the point − 1
6 .

(ii) For every parameter c ∈ C \ M, the set Yc is bounded. A parameter c ∈ C \ M
belongs to X if and only if 0 ∈ Yc.

We note that the relation between the setsYc andX, described in part (ii) of Theorem B,
resembles the relation between the filled Julia and the Mandelbrot sets, namely that c ∈ M

if and only if 0 belongs to the filled Julia set Kc of fc.
As an application of our results and the results of [6], we deduce that the Haus-

dorff dimension function cannot have critical points outside of the accumulation set
X. More specifically, let δ : C → R be the function that assigns to each parameter
c ∈ C the Hausdorff dimension of the Julia set of fc. It is known that the function δ

is real-analytic in each hyperbolic component [2] (including the complement of the
Mandelbrot set). In [6, Theorem 1.3], He and Nie give a necessary condition for a
hyperbolic parameter c ∈ C to be a critical point of the Hausdorff dimension func-
tion δ. Their result is stated for rational maps of degree d, rather than just quadratic
polynomials, and the proof is based on ideas from thermodynamical formalism. In the
special case of the quadratic family, we can restate their theorem in a concise form as
follows.

THEOREM 1.3. [6] If c ∈ C is such that fc is a hyperbolic map and c is a critical point
for the map δ, then 0 ∈ Yc.

Combining Theorem 1.3 with the main results of this paper, we obtain the following
corollary.

COROLLARY 1.4. The Hausdorff dimension function δ has no critical points in
C \ X.

Proof. According to Theorem A, any parameter c ∈ C \ X lies outside of the
Mandelbrot set M, and hence the function δ is real-analytic at c. Furthermore, part
(ii) of Theorem B implies that 0 �∈ Yc, and hence, it follows from Theorem 1.3 that
c is not a critical point of the map δ.

1.1. Open questions. Finally, we list some further questions that can be addressed in the
study of the geometry of the accumulation set X and the sets Yc.
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(1) Is the set X path connected (see Remark 4.9)? Is it simply connected?
(2) Does the boundary of the set X possess any kind of self-similarity? Is the Hausdorff

dimension of ∂X equal to 1 or is it strictly greater than 1?
(3) For which c ∈ C are the sets Yc polygonal? How are the points of the finite sets

Yc,n = {νO(c) | O ∈ �c, |O| = n} distributed inside Yc as n → ∞?
(4) What can we say about the geometry of the sets Yc when c ∈ ∂M? Are these sets

always unbounded?

2. On averaging several periodic orbits
In this section, we state and prove the so called averaging lemma which is the key
component of the proofs of Theorems A and B.

LEMMA 2.1. (Averaging lemma) For any real α ∈ [0, 1], a complex parameter c0 ∈ C

and any two distinct repelling periodic orbits O1 and O2 of fc0 , such that if c0 = −2,
then neither of the orbits O1, O2 is the fixed point z = 2, the following holds: there exist a
neighborhood U of c0 and a sequence of distinct repelling periodic orbits {Oj }∞j=3 of fc0 ,
such that the maps νOj

are defined and analytic in U, for all j ∈ N, and the sequence of
maps {νOj

}∞j=3 converges to ανO1 + (1 − α)νO2 uniformly in U.

We need a few preliminary propositions before we can pass to the proof of Lemma 2.1.
For any c0 ∈ C and a periodic orbit O of fc0 that is non-critical and not primitively

parabolic, let UO ⊂ C be a simply connected neighborhood of c0, such that ρO(c) �= 0 for
any c ∈ UO and let gO : UO → C be the analytic map defined by the relation

gO(c) := (ρO(c))1/|O|, (2)

where the branch of the root is chosen so that

arg(gO(c0)) ∈ (−π/|O|, π/|O|].
(A particular choice of the branch of the root is not important, but we prefer to make a
definite choice.)

For further reference, let us make the following basic observation.

PROPOSITION 2.2. For any c0 ∈ C, a non-critical periodic orbit O of fc0 and a
neighborhood UO ⊂ C, satisfying the above conditions, we have

d

dc
[log(gO(c))] = νO(c),

for all c ∈ UO.

Proof. This follows from a basic computation.

PROPOSITION 2.3. Assume z0 ∈ C is a periodic point that belongs to a repelling periodic
orbit O of period n for a map fc0 , where c0 ∈ C is an arbitrary fixed parameter. Let V ⊂
C be a simply connected neighborhood of z0, such that f ◦n

c0
is univalent on V and the

inclusion V � f ◦n
c0

(V ) holds. Then there exists a neighborhood U ⊂ C of c0, such that for

all c ∈ U , an appropriate branch φc of the inverse f
◦(−n)
c is defined on V, the inclusion
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φc(V ) � V holds, and for any z ∈ V , the analytic functions

hk,z(c) := [(f ◦(nk)
c )′(φ◦k

c (z))]1/(nk)

converge to gO uniformly in z ∈ V and c ∈ U , for appropriate branches of the roots as
k → ∞.

Proof. Since the inverse branch of f
◦(−n)
c0 , taking V compactly inside itself, is defined on

a domain that compactly contains V, it follows that the same holds for f
◦(−n)
c , where c is

any parameter from a sufficiently small neighborhood U of c0. For each c ∈ U , let φc be
such an inverse branch of f

◦(−n)
c .

According to Denjoy–Wolff theorem applied to the map φc, we conclude that for any
c ∈ U , the map f ◦n

c has a unique repelling fixed point zc that depends analytically on c
and coincides with z0, when c = c0. This implies that the map gO is defined for all c ∈ U .

For any c ∈ U and z ∈ V , consider the sequence of points zj = φ
◦j
c (z). Then the chain

rule yields

hk,z(c) =
( k∏

j=1

(f ◦n
c )′(zj )

)1/(nk)

.

At the same time, we observe that according to the Koebe distortion theorem, after possibly
shrinking the neighborhood U, there exists a constant K > 0, such that

|(f ◦n
c )′(zc)|

K
< |(f ◦n

c )′(w)| < K|(f ◦n
c )′(zc)| for c ∈ U , w ∈ φc(V ).

Finally, Denjoy–Wolff theorem implies that for any c ∈ U and z ∈ V , the sequence of
points zj converges to zc uniformly in z ∈ V as k → ∞. Hence, the geometric averages of
(f ◦n

c )′(z1), . . . , (f ◦n
c )′(zk) converge uniformly in z ∈ V , c ∈ U to (f ◦n

c )′(zc). The latter
implies

lim
k→∞ hk,z(c) = ((f ◦n

c )′(zc))
1/n = gO(c),

assuming that appropriate branches of the roots are chosen in the definition of hk,z(c).

PROPOSITION 2.4. Let c, z0 ∈ C be such that z0 is a repelling periodic point of fc.
Assume that (c, z0) �= (−2, 2). Then there exists a sequence z−1, z−2, z−3, . . . ∈ C, such
that the following hold simultaneously:

(i) the sequence z−1, z−2, z−3, . . . is dense in the Julia set Jc;
(ii) f (z−j ) = z1−j , for any j ∈ N;

(iii) z−j �= 0, for any j ∈ N.

Proof. Existence of a sequence that satisfies properties (i) and (ii) follows immediately
from the fact that the set of preimages of any point in the Julia set Jc is dense in Jc.
Indeed, from any point z−k , one can land in any arbitrarily small region of Jc by taking
an appropriate sequence of preimages of z−k . We can continue this process, making sure
that any arbitrarily small region of Jc is eventually visited by our sequence. Furthermore,
property (ii) implies that if z−k does not belong to the periodic orbit of z0, then for
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every j ≥ k, the element z−j is different from any other element of the entire sequence
z0, z−1, z−2, . . ., no matter how the sequence of preimages of z−k was chosen.

Property (iii) is equivalent to the property that z−j �= c for any j ∈ N ∪ {0}, since c is
the unique point that has only one preimage under the map fc, and that preimage is 0.

Let O be the periodic orbit of fc that contains z0. First of all, we note that c �∈ O.
Otherwise, if c ∈ O, then 0 ∈ O, since 0 is the unique preimage of c, and the orbit O is
super-attracting, which contradicts the assumption of the proposition.

Assume that the sequence, constructed in the first paragraph of the proof, violates
property (iii). Let j ∈ N be such that z−j = c. This number j is unique, since c �∈ O, so all
further preimages of c must differ from c. If z1−j �∈ O, then we can modify z−j by taking
it to be equal to another preimage of z1−j . After that, we can construct the remaining ‘tail’
of the sequence by the same process, as described in the first paragraph. Since z1−j �∈ O,
no further element of the sequence will ever return to z1−j , and hence, the sequence is
guaranteed to avoid the critical value c.

It follows from the construction described in the previous paragraph that the sequence
z−1, z−2, . . . satisfying properties (i)–(iii) can be constructed, if at least one point of
the periodic orbit O has a preimage under fc that does not belong to O and is not
simultaneously equal to c. This condition is always satisfied, unless z0 is a fixed point
whose two preimages are z0 and c. The latter happens only when c = −2 and z0 = 2.

Proof of Lemma 2.1. Let n1 and n2 be the periods of the periodic orbits O1 and O2

respectively. Let z1 and z2 be some periodic points from each of the orbits O1 and O2.
Since the orbits O1 and O2 are repelling, there exist a simply connected neighborhood U
of c0 and two neighborhoods U1 and U2 of z1 and z2 respectively, such that for all c ∈ U ,
the maps f

◦n1
c and f

◦n2
c are univalent on U1 and U2 respectively, and f

◦n1
c (U1) \ U1 and

f
◦n2
c (U2) \ U2 are two annuli.

According to Proposition 2.4, there exist k1, k2 ∈ N, w1 ∈ U2 and w2 ∈ U1, such
that

f ◦k1
c0

(w1) = z1, f ◦k2
c0

(w2) = z2,

(f ◦k1
c0

)′(w1) �= 0, and (f ◦k2
c0

)′(w2) �= 0.

Possibly, after shrinking the neighborhood U of c0, there exist a constant K > 1 and the
neighborhoods V1 � U2 and V2 � U1 of w1 and w2 respectively, such that for any c ∈ U

and j ∈ {1, 2}, the following hold (see Figure 2).

(a) f
◦kj
c is univalent on Vj and maps it inside Uj .

(b) The neighborhood f
◦kj
c (Vj ) contains a repelling periodic point of period nj for

the map fc. (For c = c0, this periodic point is zj , while for other c ∈ U , it is its
perturbation.)

(c) For any z ∈ Vj , we have

K−1 < |(f ◦kj
c )′(z)| < K . (3)

For any c ∈ U , let φ1,c and φ2,c be the inverse branches of f
n1
c and f

n2
c respectively,

such that φj ,c takes Uj into itself for j = 1, 2. Let N ∈ N be a sufficiently large number,
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FIGURE 2. Maps and domains from the proof of Lemma 2.1.

such that for any N1, N2 ≥ N and any c ∈ U , we have

φ
◦N1
1,c (V2) � f ◦k1

c (V1) and φ
◦N2
2,c (V1) � f ◦k2

c (V2). (4)

The existence of such a number N follows from property (b).
Assume N1, N2 ∈ N satisfy the condition N1, N2 ≥ N . Then for every c ∈ U , one may

consider the following composition of inverse branches of fc:

V1
φ

◦N2
2,c−−−−→ f ◦k2

c (V2)
f

◦(−k2)
c−−−−−−→ V2

φ
◦N1
1,c−−−−→ f ◦k1

c (V1)
f

◦(−k1)
c−−−−−−→ V1.

Let us denote this composition by hc : V1 → V1. By construction, this is a univalent
map, and the inclusions (4) imply that hc(V1) � V1. Then, according to the Denjoy–Wolff
theorem, the map hc has a unique fixed point zc in V1, which is a repelling periodic point
of period

M = n1N1 + n2N2 + k1 + k2

for the map fc. Let ON1,N2 denote the periodic orbit of this point when c = c0. Then the
map gON1,N2

is defined in U.
Consider the points

z′
c = φ

◦N2
2,c (zc) ∈ f ◦k2

c (V2),

z′′
c = f ◦(−k2)

c (z′
c) ∈ V2,

z′′′
c = φ

◦N1
1,c (z′′

c ) ∈ f ◦k1
c (V1).

Then, using the chain rule, we get

gON1,N2
(c) = [(f ◦M

c )′(zc)]1/M

= [(f ◦k1
c )′(zc) · (f ◦(n1N1)

c )′(z′′′
c ) · (f ◦k2

c )′(z′′
c ) · (f ◦(n2N2)

c )′(z′
c)]

1/M .
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After possibly shrinking the neighborhood U of c0, we may apply Proposition 2.3
for V = U1 and V = U2. Then, the previous identity can be rewritten in the notation of
Proposition 2.3 as

gON1,N2
(c)=[(f ◦k1

c )′(zc)]1/M · [hN1,z′′
c
(c)]n1N1/M· [(f ◦k2

c )′(z′′
c )]

1/M · [hN2,zc (c)]
n2N2/M .

(5)

Note that zc ∈ V1, z′′
c ∈ V2. Hence, applying inequality (3) and Proposition 2.3 to the

identity (5), we conclude that if N1, N2 → ∞ so that

n1N1

n1N1 + n2N2
→ α,

then

gON1,N2
(c) → s · (gO1(c))

α(gO2(c))
1−α , (6)

uniformly in c ∈ U , for appropriate fixed branches of the degree maps z �→ zα and z �→
z1−α , and some constant s ∈ C, such that |s| = 1.

Finally, the proof of Lemma 2.1 can be completed by taking logarithmic derivatives of
both sides in equation (6) and applying Proposition 2.2.

3. The sets Yc

We start this section by giving a proof of Theorem B. We note that our proof of part (ii) of
Theorem B, providing the necessary and sufficient condition for c ∈ C \ M to be contained
in X, seriously depends on the assumption that c �∈ M. Furthermore, the condition itself
seems to be wrong for some c ∈ ∂M, (cf. Remark 3.2). Indeed, the case c ∈ M appears to
be more delicate. In the second part of this section, we provide a sufficient condition for
c ∈ M to be contained in X. Later, in §4.3, we show that this condition is satisfied for any
c ∈ M.

3.1. Proof of Theorem B. To prove property (ii) of Theorem B, we need the following
lemma.

LEMMA 3.1. For any c ∈ C \ ∂M, the family of maps {νO | O ∈ �c} is defined and is nor-
mal on any simply connected neighborhood U ⊂ C, such that c ∈ U and U ∩ ∂M = ∅.
Furthermore, if c ∈ C \ M, then the identical zero is not a limiting map of the normal
family {νO | O ∈ �c}.
Proof. Fix c ∈ C \ ∂M and a neighborhood U as in the statement of the lemma. Since
U ∩ ∂M = ∅, all repelling periodic orbits of fc remain to be repelling after analytic
continuation in c ∈ U . This implies that all maps from the family

Gc := {gO | O ∈ �c}
are defined in the neighborhood U and are analytic in it. (We recall that the maps gO
were defined in equation (2) and are appropriate branches of the roots of the multipliers.)
Furthermore, for any c̃ ∈ U and O ∈ �c, we have |gO(c̃)| ≤ 2 maxz∈Jc̃

|z| = diam(Jc̃),
where Jc̃ is the Julia set of fc̃. Thus, the family Gc is locally uniformly bounded and
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hence normal in U. Since all maps from the family Gc are uniformly bounded away from
zero, Proposition 2.2 implies normality of the family {νO | O ∈ �c}.

If c ∈ C \ M, then without loss of generality we may assume that the domain U is
simply connected and unbounded. Since for all c̃ ∈ C sufficiently close to ∞, the Julia set
Jc̃ is contained in the annulus centered at zero with inner and outer radii being equal to√|c̃| ± 1, it follows that for every c̃ ∈ U sufficiently close to ∞ and for any O ∈ �c, we
have

2
√|c̃| − 2 < |gO(c̃)| < 2

√|c̃| + 2, (7)

which implies that none of the limiting maps of the family Gc is a constant map.
Then it follows that the identical zero is not a limiting map of the normal family
{νO | O ∈ �c}.
Proof of Theorem B. First, we observe that property (i) of Theorem B is an immediate
corollary from the averaging lemma (Lemma 2.1). Indeed, if c �= −2, then convexity of
Yc is obvious from Lemma 2.1. However, if c = −2, then according to the same lemma,
the set Y−2 is the union of a convex set and a single point ν{2}(−2), corresponding to the
periodic orbit O = {2}. A direct computation shows that

ρ{2}(−2) = 4, ρ′{2}(−2) = −2/3,

and hence ν{2}(−2) = −1/6.
We proceed with the proof of part (ii) as follows: for c ∈ C \ M, let U be a neighborhood

of c that satisfies the conditions of Lemma 3.1. First, we observe that according to Lemma
3.1, the family {νO | O ∈ �c}, defined on U, is locally uniformly bounded, and hence the
set Yc is bounded.

Necessary condition for c ∈ X: If c ∈ X, then there exists a sequence of points {ck}∞k=1
and a sequence of periodic orbits {Ok}∞k=1 ⊂ �c, such that

lim
k→∞ ck = c and ρ′

Ok
(ck) = 0 for any k ∈ N.

According to Lemma 3.1, after extracting a subsequence, we may assume that the sequence
of maps νOk

converges to some holomorphic map ν : U → C uniformly on compact
subsets of U. Since for any k ∈ N we have νOk

(ck) = 0, it follows by continuity that
ν(c) = 0. Finally, convergence of the maps νOk

to ν implies that

lim
k→∞ νOk

(c) = ν(c) = 0,

and hence 0 ∈ Yc.
Sufficient condition for c ∈ X: However, if 0 ∈ Yc, then either there exists a periodic

orbit O ∈ �c, such that νO(c) = 0, or there exists a sequence of periodic orbits {Ok}∞k=1 ⊂
�c, such that

lim
k→∞ νOk

(c) = 0.

In the first case, ρ′
O(c) = 0, so c ∈ X according to Theorem 1.2.
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In the second case, according to Lemma 3.1, after extracting a subsequence, we may
assume that the sequence of maps νOk

converges to some holomorphic map ν : U → C

uniformly on compact subsets of U. By continuity, we have ν(c) = 0, and, according to
Lemma 3.1, ν �≡ 0. Then it follows from Rouché’s theorem that for any sufficiently large
k ∈ N, there exists ck ∈ U , such that νOk

(ck) = 0 and limk→∞ ck = c. The latter implies
that c ∈ X, and completes the proof of Theorem B.

Remark 3.2. The above proof of part (ii) of Theorem B fails without the assumption
c �∈ M. Indeed, if c ∈ ∂M, then the neighborhood U from Lemma 3.1 does not exist.
Furthermore, even though ∂M ⊂ X (since ∂M is the support of the bifurcation measure
μbif) and −2 ∈ ∂M, the preliminary computations indicate that the set Y−2 seems to be
disjoint from 0. In the case c ∈ M \ ∂M, the above proof of the sufficient condition for
c ∈ X fails since the limiting map ν might turn out to be the identical zero.

3.2. A sufficient condition for c ∈ M to be contained in X. In this subsection, we prove
the following sufficient condition for c ∈ C \ {−2} to be contained in X.

LEMMA 3.3. Let c ∈ C \ {−2} be an arbitrary parameter. If there exist finitely many
repelling periodic orbits O1, O2, . . . , Ok ∈ �c, such that 0 is contained in the convex hull
of the points νO1(c), . . . , νOk

(c), then c ∈ X.

When c ∈ C \ M, the sufficient condition, given by Lemma 3.3, is an immediate
corollary of Theorem B, but we will use Lemma 3.3 for c ∈ M \ ∂M.

First, to prove Lemma 3.3, we need the following proposition.

PROPOSITION 3.4. Let c ∈ C be an arbitrary parameter and let O1, O2, . . . , Ok ∈ �c

be a finite collection of repelling periodic orbits. If α1, . . . , αk ∈ R are such that∑k
j=1 αj �= 0, then the map

ν :=
k∑

j=1

αjνOj
,

defined in a neighborhood of the point c, is not a constant map.

Proof. Since for every j = 1, . . . , k, the multipliers ρOj
are algebraic (multiple-valued)

maps, it follows from equation (1) that the map ν has a single-valued meromorphic
extension to any simply connected domain U ⊂ C that avoids finitely many branch-
ing points of the maps ρOj

. Note that none of the branching points lie on the real
ray (−∞, −3), since (−∞, −3) ∩ M = ∅. Furthermore, since for any parameter c̃ ∈
(−∞, −3) the corresponding Julia set Jc̃ lies on the real line, it follows that all maps ρOj

take real values when restricted to the ray (−∞, −3). Choose the domain U so that it is
unbounded and (−∞, −3) ⊂ U . Then for any j = 1, . . . , k, we have the same asymptotic
relation

ρOj
(c̃) ∼ ±(−4c̃)|Oj |/2,
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as c̃ → −∞ within the domain U. A direct computation yields that νOj
(c̃) ∼ 1/(2c̃), and

hence

ν(c̃) ∼
∑k

j=1 αj

2c̃
,

as c̃ → −∞ within the domain U. Since
∑k

j=1 αj �= 0, the latter implies that ν is not a
constant map.

Proof of Lemma 3.3. Since the convex hull of the points νO1(c), . . . , νOk
(c) contains zero,

it follows that there exist real non-negative constants α1, . . . , αk , such that
∑k

j=1 αj = 1
and the analytic map

ν :=
k∑

j=1

αjνOj
,

defined in some neighborhood of the point c, satisfies ν(c) = 0.
Since c �= −2, it follows from the averaging lemma (Lemma 2.1) that there exists a

sequence of periodic orbits {O′
m}∞m=1 ⊂ �c and a neighborhood U ⊂ C of the point c,

such that all maps νO′
m

are defined and analytic in U and

νO′
m

→ ν as m → ∞, uniformly on U .

According to Proposition 3.4, the map ν is not the identical zero map. Now, since ν(c) = 0,
it follows from Rouché’s theorem that for any sufficiently large m ∈ N, the map νO′

m
has a

zero at some point cm ∈ U , and the points cm can be chosen so that limm→∞ cm = c. The
latter implies that c ∈ X.

4. Proof of Theorem A
In this section, we complete the proof of Theorem A.

4.1. The set X is bounded. First, we prove the following.

LEMMA 4.1. The set X is bounded.

Proof. For a fixed parameter c0 ∈ C \ M, the Julia set Jc0 of the map fc0 is a Cantor set,
and all periodic orbits of fc0 are repelling. For any periodic orbit O of fc0 , the locally
defined map gO can be extended by analytic continuation to an analytic map of a double
cover of the complement of the Mandelbrot set M (see [5, §4.1] for details). This means
that if

φM : C \ M → C \ D
is a fixed conformal diffeomorphism of C \ M onto C \ D and λ0 ∈ C \ D is a fixed point,
such that φ−1

M
(λ2

0) = c0, then the map

λ �→ gO(φ−1
M

(λ2)),
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defined for all λ in a neighborhood of λ0, extends to a global holomorphic map

γO : C \ D → C \ D.

Now assume that the statement of Lemma 4.1 does not hold. Then there exists a
sequence of parameters {λn}n∈N and a corresponding sequence of periodic orbits {On}n∈N,
such that

lim
n→∞ λn = ∞ and γ ′

On
(λn) = 0 for every n ∈ N. (8)

Since the family of maps {γO} omits more than three points, which is normal by Montel’s
theorem (cf. [5, Lemma 4.7]), it follows that after extracting a subsequence, we may
assume that the sequence of maps γOn

converges to a holomorphic map γ : C \ D → C \ D
uniformly on compact subsets. Since for any c̃ ∈ C sufficiently close to ∞ and anyO ∈ �c0

inequality (7) holds, we conclude that γ , as well as each γOn
, are non-constant maps that

have a simple pole at infinity. However, equation (8) implies that γ has at least a double
pole at infinity, which provides a contradiction.

Next, we proceed with proving the remaining statements of Theorem A.

4.2. The set X \ M. First we study the set X \ M, that is, the portion of the set X that is
contained in the complement of the Mandelbrot set. We note that even though numerical
computations from [1], together with Theorem 1.2, suggest that this set is non-empty, a
rigorous computer-free proof of this fact has not been provided so far. We fill this gap by
proving the following lemma.

LEMMA 4.2. The set X \ M has non-empty interior.

The idea of the proof of Lemma 4.2 is to show that the sufficient condition from
Lemma 3.3 is satisfied for all c in a neighborhood of the parabolic parameter c0 = −3/4.
The rest of the proof is technical. We will need explicit formulas for the maps νO,
corresponding to periodic orbits O of periods 1, 2, and 3.

PROPOSITION 4.3. Let c0 ∈ C and a corresponding periodic orbit O of fc0 be such that
the map ν := νO is defined in a neighborhood of the point c = c0. Then the following
holds.

(i) If |O| = 1, then

ν(c) = 2

4c − 1 − √
1 − 4c

,

where the two branches of the root correspond to the two different periodic orbits of
period 1.

(ii) If |O| = 2, then

ν(c) = 1
2c + 2

.
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(iii) If |O| = 3, then

ν(c) = 12c3 + 37c2 + 32c + 7 − (c2 + 6c + 7)
√−4c − 7

6(4c + 7)(c3 + 2c2 + c + 1)
,

where the two branches of the root correspond to the two different periodic orbits of
period 3.

Proof. When |O| = 1, that is, O is a fixed point z, solving the equation fc(z) = z yields

ρc0,O(c) = 2z = 1 + √
1 − 4c.

Then after a direct computation, we get

ν(c) = ρ′
c0,O(c)

ρc0,O(c)
= 2

4c − 1 − √
1 − 4c

.

When |O| = 2, there is only one periodic orbit of period 2. Its multiplier is the free term
of the polynomial

p(z) = 4(f ◦2
c (z) − z)

fc(z) − z
= 4z2 + 4z + 4(c + 1).

Now, a direct computation yields the formula for ν(c) in part (ii) of the proposition.
Finally, in the case |O| = 3, there are two periodic orbits of period 3 and according to

[11], the multiplier ρ = ρ(c) of each of these orbits satisfies the equation

c3 + 2c2 + (1 − ρ/8)c + (1 − ρ/8)2 = 0.

After solving this equation for ρ, we obtain

ρ(c) = 8 + 4c − 4c
√−4c − 7.

Then a direct computation yields the formula for ν(c) in part (iii) of the proposition.

Proof of Lemma 4.2. We consider the maps νO in a neighborhood of the point c = −3/4
for periodic orbits O of periods 1, 2, and 3. The parameter c = −3/4 is the point at which
the hyperbolic component of period 2 touches the main cardioid of the Mandelbrot set. In
particular, all considered functions are defined and analytic in a neighborhood U of that
point.

For each c ∈ U , let Hc denote the convex hull of the finite set {νO(c) | |O| = 1, 2, 3}. It
follows from Proposition 4.3 that νO(−3/4) is equal to:
• −1 or −1/3, when |O| = 1;
• 2, when |O| = 2;
• −10/183 ± (49/183)i, when |O| = 3;
and hence H−3/4 contains 0 in its interior. By continuity, it follows that the convex hull Hc

contains 0 for all c in some open complex neighborhood V of the point −3/4. Since c =
−3/4 is a parabolic parameter, it follows that V \ M is a nonempty open set. According to
Lemma 3.3, we observe that V \ M ⊂ X, which completes the proof of Lemma 4.2.

Next, we prove the following lemma.
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LEMMA 4.4. For any point c0 ∈ X \ M, there exists a continuous path γ : [0, 1] → C,
such that γ (0) = c0, γ ([0, 1)) ⊂ X \ M, and γ (1) ∈ ∂M.

Proof. Step 1: First, we prove this lemma under the assumption that c0 ∈ X \ M is such
that there exists a periodic orbit O of the map fc0 , for which νO(c0) = 0. We fix this
periodic orbit O and let O2 be the unique periodic orbit of period 2 for the map fc0 . Note
that according to Proposition 4.3, we have νO2 �= 0, and hence O �= O2. Then for each
t ∈ R, we consider the map

νt := (1 − t)νO + tνO2 , (9)

defined in a neighborhood of the point c0.
Observe that for each t ∈ R, the map νt extends to a multiple valued algebraic map. The

set of all poles and branching points of νt is contained in a finite set Q ⊂ C, which is the
union of all poles and branching points of the two (global) multiple valued algebraic maps
νO and νO2 . Since these points are some parabolic parameters and centers of appropriate
hyperbolic components, it follows that the set Q is contained in M. Moreover, the set Q is
independent of t.

According to Proposition 3.4, for any t ∈ R, the map νt is not identically zero, and
hence for any c ∈ C \ Q, t0 ∈ R and a branch ν̃t0 of νt0 , such that ν̃t0(c) = 0, there exists a
continuous (not necessarily unique) local curve t �→ c(t), defined for t in a neighborhood
of t0 and satisfying ν̃t (c(t)) = 0 and c(t0) = c, where ν̃t is a branch of νt that is a local
perturbation of ν̃t0 . (If ν̃′

t0
(c) = 0, then there can be finitely many such local curves.) We

observe that any such curve (that is, the image of the map c) that lies outside of M is
contained inX. Indeed, for each t, the branch ν̃t , satisfying ν̃t (c(t)) = 0, can be represented
locally as ν̃t = (1 − t)νÕ + tνO2 , where Õ is a periodic orbit of fc(t), obtained as analytic
continuation of the orbit O. Hence, it follows from part (i) of Theorem B that 0 ∈ Yc(t)

and then part (ii) of Theorem B implies that c(t) ∈ X.
We apply the above observation in the case of c = c0 and t0 = 0 and let c̃ : [0, s) →

C \ M be a maximal continuous curve satisfying the following conditions:
(i) s ∈ (0, +∞];

(ii) c̃(0) = c0, and for any t ∈ [0, s) we have νt (c̃(t)) = 0, where νt is viewed as the
analytic continuation of the local map of equation (9) along the curve c̃ from c̃(0) to
a neighborhood of c̃(t).

(Here, ‘maximal’ means that there is no other curve ĉ in C \ M, satisfying the same two
properties, and defined on a longer interval [0, ŝ) � [0, s), so that ĉ(t) = c̃(t) for any t ∈
[0, s).)

First, it follows from Proposition 4.3 that the map ν1 = νO2 does not vanish on C, and
hence s ≤ 1. We want to show that the limit

lim
t→s− c̃(t)

exists and is finite. The above discussion implies that c̃([0, s)) ⊂ X, and hence according
to Lemma 4.1, the set c̃([0, s)) is bounded, thus, c̃(t) accumulates on some bounded set
A as t → s−. Let c1 ∈ A be an arbitrary limit point of c̃(t) as t → s−. Then since the
branches of νt converge to the corresponding branches of νs uniformly on compact subsets
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of C \ Q, it follows that either c1 ∈ Q or ν̃s (c1) = 0 for some branch ν̃s of νs . Since both
the set Q and the set of zeros of a (global) algebraic map νs are finite sets, it follows that
A is a discrete set. Finally, since c̃ is a continuous function, the set A must be connected,
and hence consists of a single point. This implies that the limit limt→s− c̃(t) exists, and
the curve c̃ extends continuously to the closed interval [0, s0].

Now the proof of Step 1 can be completed by observing that c̃(s) ∈ ∂M, because
otherwise, if c̃(s) ∈ C \ M, then c̃(s) �∈ Q and the curve c̃ can be continued beyond the
parameter s; hence, c̃ is not maximal. The required curve γ is obtained from the curve
c̃|[0,s] by an appropriate reparameterization.

Step 2: Now we assume that the point c0 ∈ X \ M is not a critical point of the multiplier
of any periodic orbit. Our goal is to show that there is a path that lies in X \ M and joins
c0 with a critical point of the multiplier of some periodic orbit. Together with Step 1, this
will complete the proof of the lemma.

Note that since c0 ∈ X \ M, there exists a sequence of periodic orbits {Oj }j∈N of fc0

and a sequence of parameters {cj }j∈N ⊂ C \ M, such that limj→∞ cj = c0, and for each
j ∈ N, we have νOj

(cj ) = 0.
Fix an arbitrary simply connected open domain V � C \ M, such that c0 ∈ V . Since

algebraic extensions of the local maps νOj
do not have branching points outside M, it

follows that each of the maps νOj
has an analytic extension to the domain V. For the rest

of the proof, we will identify the maps νOj
with these analytic extensions. According to

Lemma 3.1, the family of maps {νOj
}j∈N is normal in V, so after extracting a subsequence,

we may assume that the sequence of maps {νOj
}j∈N converges to some analytic map

ν : V → C uniformly on compact subsets of V. By continuity, it follows that ν(c0) = 0.
However, Lemma 3.1 implies that the map ν is not an identical zero, and hence c0 is an
isolated zero of the map ν.

Consider a neighborhood U � V , such that c0 ∈ U and ν does not vanish on the
boundary ∂U . Let r ∈ R be defined as

r := min
z∈∂U

|ν(z)| > 0. (10)

Then there exists N ∈ N, such that for any j ≥ N , we have

max
z∈U

|ν(z) − νj (z)| < r/2. (11)

For each t ∈ [0, 1], consider the map

νt := (1 − t)ν + tνON
,

which, by construction, is defined and analytic in V. Similarly to the proof of Step 1, there
exist s ∈ (0, 1] and a maximal continuous curve c̃ : [0, s) → V , such that c̃(0) = c0 and
νt (c̃(t)) = 0 for any t ∈ [0, s). Conditions (10) and (11) imply that for each t ∈ [0, 1],
the map νt does not vanish at any point of ∂U , and hence c̃([0, s)) ⊂ U . In particular,
the image c̃([0, s)) is bounded, and the same argument as in Step 1 implies that the map
c̃ extends continuously to the parameter t = s. Since νt → νs uniformly in U as t → s

and νs does not vanish on ∂U , it follows that νs(c̃(s)) = 0 and c̃(s) ∈ U . Finally, since
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U ⊂ C \ M, maximality of the curve c̃ implies that s = 1, and thus the curve c̃ connects
the point c0 = c̃(0) with a point c̃(1), which is a zero of the function νON

.
To complete the proof of the lemma, we will show that the curve c̃([0, 1]) lies inX \ M.

Observe that for each t ∈ [0, 1], the sequence of maps νt ,j = (1 − t)νOj
+ tνON

converges
to νt uniformly in U as j → ∞. Therefore, for all sufficiently large j ∈ N, there exists a
point ct ,j ∈ U , such that

νt ,j (ct ,j ) = 0 and ct ,j → c̃(t) as j → ∞.

The first condition together with both parts of Theorem B implies that ct ,j ∈ X \ M for all
sufficiently large j. Finally, since the set X is closed, it follows from the second condition
that c̃(t) ∈ X \ M, which completes the proof of the lemma.

4.3. The set X ∩ M. Here we turn to the study of the portion of the set X that is
contained in the Mandelbrot set. We show that the whole Mandelbrot set is contained
in X.

LEMMA 4.5. The inclusion M ⊂ X holds.

Before proving Lemma 4.5, we need several additional results.
For any c ∈ C and any k ∈ N, let �k

c be the set of all periodic orbits of period k for the
map fc. (In particular, �k

c may contain a non-repelling orbit, if it exists.)

LEMMA 4.6. Let c0 ∈ C be an arbitrary parameter that is neither parabolic nor critically
periodic. Then for any k ∈ N, and the corresponding function Fk(c) := f

◦(k−1)
c (c), the

following holds:

F ′
k(c0)

kFk(c0)
=

∑
m∈N,m|k

∑
O∈�m

c0

m

k
νO(c0), (12)

where the summation goes over all m ∈ N, such that m divides k, and over all periodic
orbits O ∈ �m

c0
.

Proof. For every k ∈ N, it follows from Vieta’s formulas that Fk(c0) is the product of
all fixed points of the map f ◦k

c0
, counted with multiplicities. Since c0 is a non-parabolic

parameter, all of these fixed points have multiplicity one, and hence we have

Fk(c0) = 2−2k ∏
m∈N,m|k

∏
O∈�m

c0

ρO(c0). (13)

Since the parameter c0 is not critically periodic, we have Fk(c0) �= 0, and for any periodic
orbit O of fc0 , the map νO is defined and analytic in some fixed neighborhood of the
point c0. This implies that both the left hand side and the right hand side of equation
(12) are defined. Finally, the identity (12) can be obtained from equation (13) by a direct
computation.

Next, we prove a slightly refined version of the averaging lemma.
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PROPOSITION 4.7. Under the conditions of Lemma 2.1, if the periods of the periodic orbits
O1 andO2 are relatively prime, then the sequence of repelling periodic orbits {Oj }∞j=3 from
Lemma 2.1 can be chosen so that |Oj | = j for any j ≥ 3.

Proof. Here we refer to the proof of the averaging lemma (Lemma 2.1). Define n1 := |O1|
and n2 := |O2|. It was shown that there exist constants k1, k2 ∈ N (that depend on c0, O1,
and O2), such that the sequence of orbits {Oj }∞j=3 can be chosen to satisfy the following:

|Oj | = n1N1,j + n2N2,j + k1 + k2,

for some N1,j , N2,j ∈ N, where

N1,j , N2,j → ∞ and
n1N1,j

n1N1,j + n2N2,j
→ α as j → ∞. (14)

To prove the proposition, it is sufficient to show that for every α ∈ [0, 1], there exist two
sequences {N1,j }∞j=3, {N2,j }∞j=3 of positive integers that satisfy condition (14) and such
that

j = n1N1,j + n2N2,j + k1 + k2

for all sufficiently large j ∈ N.
It follows from elementary number theory that for every sufficiently large j ∈ N, the

Diophantine equation

j = n1N1 + n2N2 + k1 + k2 (15)

has a solution (N1, N2) = (K1, K2) ∈ N2 in positive integers. Furthermore, the set of all
pairs (N1, N2) ∈ N2, satisfying condition (15), can be described as

Nj = {(K1 − sn2, K2 + sn1) | s ∈ Z, and K1 − sn2, K2 + sn1 > 0},
so the set of all fractions

n1N1

n1N1 + n2N2
= n1N1

j − k1 − k2
,

such that (N1, N2) ∈ Nj , will consist of the real number n1N1/(j − k1 − k2) and all other
rational numbers from (0, 1) that differ from the first number by an integer multiple of θj =
n1n2/(j − k1 − k2). Now, since θj → 0 as j → ∞, it follows that for every sufficiently
large j ∈ N, one can choose a pair (N1,j , N2,j ) ∈ Nj so that condition (14) holds.

Proof of Lemma 4.5. First, observe that Theorem 1.1 and the fact that sup(μbif) = ∂M

imply the inclusion ∂M ⊂ X. Thus, we only need to show that the interior of M is
contained in X. Let c0 ∈ M be a non-critically periodic interior point of the Mandelbrot
set. We note that c0 belongs to either a hyperbolic or a queer component, in case if the
latter ones exist. For each k ∈ N, consider the map Fk : C → C defined by the formula

Fk(c) := f ◦(k−1)
c (c).

Since c0 ∈ M, the sequence {Fk(c0)}∞k=1 is bounded, and hence there exists a subsequence
{km}m∈N ⊂ N, such that the limit limm→∞ Fkm(c0) exists and is equal to some number
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w ∈ C. We may assume that w �= 0. Otherwise, if w = 0, then take the subsequence {km +
1}m∈N instead of the subsequence {km}m∈N. Since c0 is an interior point of M, the family
of maps {Fkm}m∈N is normal, when restricted to some open neighborhood U of c0, so after
further extracting a subsequence, we may assume that the sequence of functions {Fkm}m∈N
converges to some holomorphic function F : U → C on compact subsets of U.

Let us assume that c0 �∈ X. Then, according to Lemma 3.3, there exists a closed
half-plane H ⊂ C such that 0 ∈ ∂H and for any repelling periodic orbit O ∈ �c0 , we have
νO(c0) ∈ H . For any z ∈ H , let dist(z, ∂H) denote the Euclidean distance from z to the
boundary line ∂H of H. Then, under the above assumption, the following holds.

PROPOSITION 4.8. Assume the set M \ X is nonempty and c0 ∈ M \ X. Let the half-plane
H and the sequence {km}m∈N be the same as above. Then for any ε > 0, there exists M =
M(ε) ∈ N such that for any m ≥ M and any periodic orbit O ∈ �c0 of period |O| = km,
the inequality

dist(νO(c0), ∂H) < ε

holds. �

Proof. According to Lemma 4.6,

lim
m→∞

∑
j∈N,j |km

∑
O∈�

j
c0

j

km

νO(c0) = lim
m→∞

F ′
km

(c0)

kmFkm(c0)
= lim

m→∞
F ′(c0)

kmw
= 0,

where F is the limiting map of the sequence of maps {Fkm}m∈N, and w = F(c0) �= 0. Note
that for all but possibly one non-repelling orbit Ô of fixed period ĵ , the terms in the above
summation belong to H. As km → ∞, the contribution (ĵ/km)νÔ of this non-repelling
orbit in the summation goes to zero. Then it follows that

lim
m→∞ dist

( ∑
O∈�

km
c0

νO(c0), ∂H

)
= 0,

which implies Proposition 4.8.

Finally, we complete the proof of Lemma 4.5 by observing that under the above
assumption where c0 �∈ X, according to Lemma 3.3, the half-plane H can be chosen so
that for at least one repelling periodic orbit O1 ∈ �c0 , the value νO1(c0) lies in the interior
of H. Let O2 ∈ �c0 be any other repelling periodic orbit whose period is relatively prime
to the period of O1. Then, according to Lemma 2.1 and Proposition 4.7 with the parameter
α fixed at α = 1/2, it follows that for each sufficiently large m ∈ N, there exists a periodic
orbit O ∈ �c0 of period km, such that

dist(νO(c0), ∂H) > 1
3 dist(νO1(c0), ∂H).

The latter contradicts Proposition 4.8, and hence the assumption c0 �∈ X was false. Since
c0 was an arbitrary non-critically periodic parameter from the interior of M, and critically
periodic parameters form a nowhere dense subset of M, this completes the proof of
Lemma 4.5.
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Proof of Theorem A. The proof is a combination of several lemmas. We have M ⊂ X due
to Lemma 4.5. The set X is bounded according to Lemma 4.1. From Lemmas 4.4 and 4.5,
it follows that the set X is connected. Finally, Lemma 4.2 implies that the set X \ M has
nonempty interior.

Remark 4.9. We note that Lemmas 4.4 and 4.5 would imply path connectedness (instead
of just connectedness) of the set X if the MLC conjecture holds. At the same time, it
seems that the MLC conjecture is much stronger than the conjecture that the set X is path
connected. For example, the latter conjecture could be established without the MLC, if
one can improve Lemma 4.5 by showing that there is a Jordan domain U ⊂ C such that
M ⊂ U ⊂ X. Figure 1 and the discussion in Appendix A suggest that computer-assisted
methods can be used in the attempt to construct such a domain U.
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A. Appendix. Pictures
Theorems A and B provide efficient algorithms for constructing numerical approximations
of the accumulation set X and the sets Yc. For example, to approximate numerically the
set X, we first observe that according to Theorem A, the inclusion M ⊂ X holds, so one
only has to decide for each point c ∈ C \ M whether it belongs to X or not. The latter can
be done by means of Theorem B, which provides an easy to check sufficient condition for
c ∈ X. More specifically, for each c ∈ C \ M, one should compute the points νO(c), where
O runs over different periodic orbits of the map fc. If at some point 0 falls into the convex
hull of the computed points, then c ∈ X. The periodic orbits of fc can in turn be computed
by Newton’s method (see [7] for a precise algorithm).

Figure 1 is obtained by checking all periodic orbits of periods up to and including eight.
The color of a point corresponds to the smallest period, up to which the periodic orbits
need to be checked to confirm that c ∈ X. The dark red strip in Figure 1, corresponding to
period 8, is quite thin, so we hope that the picture gives a reasonably good approximation
of the accumulation set X in Hausdorff metric; however, we do not know how to estimate
the discrepancy. In particular, it is not clear whether the described algorithm can be used
to numerically understand the fine structure of the boundary ∂X.

Part (i) of Theorem B also allows to estimate numerically the sets Yc. Indeed, for any
c ∈ C \ {−2}, an approximation of Yc can be constructed by taking the convex hull of the
points νO(c), where O runs over different periodic orbits of the map fc. Figure 3 provides
several pictures of the sets Yc, where the parameter c takes different values on the real
line. In particular, Figures 3(a) and 3(f) correspond to the centers of the main cardioid and
the hyperbolic component of period 2 respectively, and Figures 3(b) and 3(c) correspond
to the parameter c lying slightly to the left and respectively slightly to the right of the cusp
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FIGURE 3. Approximations of the sets Yc as c changes along the real axis: (a) c = 0; (b) c = 0.24; (c) c = 0.26;
(d) c = 0.42; (e) c = −0.71; (f) c = −1.

of the main cardioid. The blue dots are the values of νO(c), for all repelling periodic orbits
O of periods up to and including eight. We do not know how accurate these pictures are,
since inclusion of periodic orbits of higher periods can potentially change the convex hulls
significantly.
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