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The ability to manipulate brain function through the communication between the
microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has
emerged as a potential option to improve cognitive and emotional health. Dietary
composition and patterns have demonstrated a robust capacity to modulate the micro-
biota-gut-brain axis.With their potential to possess pre-, pro-, post-, and synbiotic properties,
dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and
subsequent signalling to the brain. Despite this potential, few studies have directly examined
the mechanisms that might explain the beneficial action of dietary fibre and fermented foods
on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction.
Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole
food sources on cognitive and emotional functioning. Potential mediating effects of dietary
fibre and fermented foods on brain health via the microbiota-gut-brain axis are described.
Although more multimodal research that combines psychological assessments and biological
sampling to compare each food type is needed, the evidence accumulated to date suggests that
dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a
cost-effective and convenient approach to improve cognitive and emotional functioning
across the lifespan.
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Introduction

The interplay between diet and brain health is receiving
ever more attention(1–3). In tandem, over the past two

decades, the importance of the bidirectional communica-
tion between the gut microbiota (bacteria, viruses, fungi,
protozoa, archaea) and the brain has also surfaced,
positioning this community of microorganisms as an
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accessible target to alter brain function and behaviour. It
is nowwell-established that diet is a potent manipulator of
the gut microbiota, with the capacity to alter both
microbial abundance and functionality(4,5), and therefore
its potential to improve brain health, is emerging as a
plausible therapeutic intervention strategy(6). While sev-
eral dietary foods and patterns have been shown tomodify
the gut microbiota, dietary fibre and fermented foods with
their capacity to act as substrates for microbial digestion
and to supply live microorganisms as well as the asso-
ciated enzymatically converted food components, respec-
tively, have been identified as key modulators of the gut
microbiota and subsequent signalling to the brain(7–9).

Increasing attention is now given to the concept of a diet-
microbiota-gut-brain axis(7) with an appreciation that it is
not just what microbes are present in the gut but what they
are doing and how they interact with diet to affect host
health(10). Undigested fibre is a major energy source for the
gut microbiota and short-chain fatty acids (SCFAs) that are
produced upon gutmicrobial fermentation of fibre influence
cognitive and emotional responses of the host(11,12).
Similarly, fermented foods produced through enzymatic
conversion of food components by live microorganisms also
house a large community of microbes at the time of
consumption (e.g. kefir, kimchi)(13) that can increase gut
microbiota diversity(14,15). These new or expanded members
of the gut microbiota can subsequently produce neuroactive
metabolites (e.g. SCFAs, polyphenolic, tryptophan, bile,
gamma-aminobutyric acid (GABA)). Intriguingly, there is a
growing appreciation that, behaviourally, both food types
have been shown to benefit cognitive and emotional
processing(16–20), effects which are suggested to be mediated
via the microbiota-gut-brain axis(19,21). It is therefore worth
evaluating the relative efficacy of fibre and fermented foods
to alter brain functioning and signalling along the micro-
biota-gut-brain axis to inform future interventional research
and move toward personalised medicine approaches for
brain health management. Currently, there are very few
studies investigating the biological basis explaining the
beneficial actions of fibre and fermented foods(15,20). While
the studies that have been conducted provide tentative
evidence of the scope of influence that fibre and fermented
foods have on human health, it is clear that observational
and interventional studies directly/systematically evaluating
each food component on the microbiota-gut-brain axis are,
in general, lacking. In this narrative review, we evaluate the
differential neuroactive potential of dietary fibre and
fermented foods to modulate cognitive and emotional
functioning in humans. We further discuss possible path-
ways throughwhich fibre and fermented foods can act on the
brain via themicrobiota-gut-brain axis. Future directions for
the field and the therapeutic potential of fibre and fermented
foods to improve brain health are highlighted.

Fibre

The widely-adopted definition from Codex Alimentarius
defines fibre, natural and synthetic, as ‘carbohydrate
polymers with ten or more monomeric units, which are

not hydrolysed by the endogenous enzymes’(22). Although
the terms are often used interchangeably, prebiotics only
represent the subset of fibres that are ‘substrates that are
selectively utilised by host microorganisms conferring a
health benefit’(23).Whilemost prebiotics are dietary fibres,
not all fibres are prebiotics, nor are all prebiotics fibres.
Indeed, certain polyphenols and omega-3 fatty acids also
exhibit prebiotic-like effects on the gut microbiota(23,24),
although not being classed as dietary fibres. Despite the
large body of research examining the impact of fibre
supplements on the microbiota-gut-brain axis, whole
dietary approaches more closely resemble the variety of
foods that humans consume each day, particularly in
terms of the fibre delivery matrix. Therefore, only studies
that examine fibre from dietary sources, including whole
grains, legumes, fruits and vegetables, are included in this
review.

Dietary fibre and the gut microbiota

Fructo- and galacto- oligosaccharides, inulin and pectins
from plants, animal tissue, or food-borne microbes are
important energy sources for the gut microbiota(25).
Fermentation of dietary fibre increases the abundance of
Bifidobacterium and lactobacilli(26). It has been proposed
that roughly 30% of the dietary fibre found in grain
products is accessible for microbial metabolism, while
estimates suggest that 75–90% of fibres from fruits and
vegetables are metabolised by the gut microbiota(27,28).
However, insoluble fibres can increase faecal bulk to reduce
gut transit time, which also shapes gut microbiota
composition(29).

The gut microbiota is highly responsive to both acute and
chronic fibre intake. A dramatic restructuring of the gut
microbiota, including a significant alteration of over 25
bacterial genera, was observed after just 24 hours with an
intervention of reduced carbohydrate and fibre diet in
participants with obesity and metabolic dysfunction-asso-
ciated steatotic liver disease. Moreover, the carbohydrate
reduction expectedly decreased the abundance of fibre-
degrading bacteria (Lactococcus, Eggerrthella and
Streptococcus), which resulted in decreased levels of
SCFAs(30). On the other hand, observational data showing
a prolonged loss of fibre intake linked to the Western Diet
was associated with reduced fibre-fermenting Prevotella
strains in Asians who emigrated to the United States.
Further losses in the functional capacity to degrade complex
fibres were observed, alongside reductions in microbial
diversity that decreased with each generation(31). This data is
consistent with observational comparisons of individuals
from cultures who consistently consume higher quantities of
fibre. For example, children from rural Burkina Faso whose
staple diet includes larger quantities of cereals, legumes and
vegetables displayed a greater abundance of bacteria from
Prevotella and Xylanibacter genera and increased levels of
SCFAs than European children(32). An overall increased
microbial diversity has also been detected in observational
studies examining regular fibre consumers compared to non-
consumers(33,34). Fibre intake has further been shown to
manipulate gut microbiota functionality.
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Fermented foods

Fermented foods are defined as ‘foods made through
desirable microbial growth and enzymatic conversions of
food components’(35). Fermented foods have been cultur-
ally embedded as staple foods in nearly all societies since
the beginning of human civilisation.Given this rich history,
it is unsurprising that the process of fermentation is often
relatively simple and requires few ingredients and minimal
preparation/processing to achieve an end-product that
(1) naturally prolongs shelf-life, (2) reduces toxicity of raw
materials and increases digestibility, and (3) alters the
flavour profile(20,36). As such, fermented foods are an
affordable and convenient food option that are already
available and frequently consumed in most societies.

The primary microbes involved in fermented foods
include yeast, acetic acid bacteria, lactic acid bacteria
(such as Leuconostoc, members of the former genus
Lactobacillus, and Streptococcus), Propionbacterium freu-
denreichii, Bacillus, and moulds(36). There is an assumption
that the bacteria in fermented foods are probiotic, but this is
not necessarily so. Probiotics are defined as ‘live micro-
organisms, when administered in adequate amounts confer
a health benefit on the host’(37). Fermented foods house a
rich repertoire of microorganisms (some of which have the
potential to be probiotics), bioactive peptides, phytochem-
icals and peptides that can influence human health(20).
Predominantly by manipulating the composition and
enhancing microbial diversity, fermented foods can also
modulate the production of several metabolites with
neuroactive potential including SCFAs, polyphenolic,
tryptophan and bile metabolites(36,38,39).

Because the ingestion of live microbes may be an
important aspect underlying their health effects, for the
purpose of this review, we focus on fermented foods with
viable microorganisms at the time of consumption (e.g.
sauerkraut, kombucha, yogurt). Foods where the micro-
organisms have been deactivated through heat (tea, coffee,
bread, cocoa) or through the addition of vinegar (pickles)
are also interesting but outside of the scope of the current
narrative. Due to the known direct behavioural properties
resulting from acute consumption of alcoholic products
(e.g. memory lapse, reduced alertness, changes in affect),
alcohol is also not relevant to the current discussion.

Fermented foods and the gut microbiota

Observational reports demonstrate increased microbial
diversity with fermented food consumption(40,41). For
example, a higher alpha diversity and enrichment of
Lactobacillus, Ruminococcus and Eubacterium was
reported within an observational study comparing
Koreans who consume large amounts of fermented
legumes and high-fibre foods, including vegetables and
nuts/seeds, showing potential synergistic effects from
fermented food and fibre intake combinations(40).
Differences in beta diversity were also observed in another
observational study comparing regular fermented food
consumers to occasional consumers, alongside increased
abundances of Faecalibacterium prausnitzii, Prevotella
spp, Pseudomonas spp, Clostridiales, Enterobacteriaceae,

Lachnospiraceae and Bacteroides spp.(41). Conversely,
interventions with fermented foods largely fail to alter
microbial diversity(8,14,42,43). This discrepancy could be
due to a number of factors that include differences in the
food matrix of the fermented foods, minimal frequency/
quantity of fermented foods consumed, differences in
baseline microbial composition and provenance of raw
materials, heterogeneity in analysis techniques with 16S
rRNA sequencing being unable to capture changes at the
strain level, and, importantly, diversity of the fermented
foods selected for intervention. Moreover, the duration of
the intervention may be insufficient to significantly shift
the composition of gut microbiota, potentially masking
effects detected in observational studies that reflect
regular eating habits.

Cognition

Much of the evidence linking fibre intake to cognitive
performance comes from observational data investigating
whole dietary patterns such as fruit and vegetable intake,
often in older adults. Greater fibre intake was associated
with protection against age-related cognitive decline(44–49).
Similar beneficial effects of fibre on cognitive inhibition(50)

and reasoning(51) have been observed in children aged 6–9
years. Observational studies linking fibre to cognitive
performance in young-middle adulthood is lacking, but
the fact that higher intake of fruits and vegetables at 18–30
years was associated with better executive functioning,
attention and verbal memory in middle adulthood(52)

provides tentative support for a potential relationship.
Evidence from randomised-controlled trials (RCTs)

with fibre intervention is mixed, both in terms of study
quality and results obtained. A mixed-grain dietary
intervention for 9 weeks to high school students improved
sustained attention and inhibition alongside increased
plasma brain-derived neurotrophic factor (BDNF)
levels(53). In undergraduates, increased fibre intake from
various sources improved memory performance and
microbial richness(54). In adults aged 50–70, a berry
beverage containing 11 g of fibre and 795 mg of
polyphenols improved working memory performance(55).
However, administration of a whole grain rye bread diet
supplemented with resistant starch for 3 days to adults
aged 52–70 improved mood but failed to improve
cognitive performance despite increasing plasma
SCFAs(56). The discrepant RCT data suggests that
habitual intake/longer intervention may be needed to
capture/facilitate the effects of fibre on cognition, and that
elevated BDNF levels may mediate these effects.
Supporting evidence can be seen in the fact that 3 ounces
of almonds consumed daily for 6 months improved
learning, planning, working memory, and visual memory
in adults 50–75 years old, but no effects were seen after
3 months(57). However, this delayed effect could be due to
the accumulation of tocopherol, which is also related to
cognitive functioning(58,59). The combination of fibre with
other bioactives that are known to be associated with
healthier eating patterns, including fatty acids and
polyphenols(60–62), and also to influence cognitive function
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is problematic and requires unravelling to parse specific
mechanisms of action of fibre per Se.

The majority of RCTs with fermented food measure
age-related cognitive decline in older adults to which
fermented foods show a protective effect(63–68), which is
also reported in the observational literature(69,70). The
RCTs conducted in older adults largely lack biological
sampling with the exception of a small number of studies.
In older adults, elevated serum BDNF levels from
consumption of fermented soybean for 12 weeks pos-
itively correlated with improved attentional and memory
performance(63), but camembert consumption for
12 weeks failed to improve memory despite an increase
in serum BDNF levels(71), suggesting divergent results
from different food substrates. Such heterogenous results,
in general, are unsurprising given the broad definition of
fibre and fermented foods.

While studies that examine the effects of fermented
foods on cognitive processes in younger/middle-aged
adults are sparse, the fact that a fermented milk drink
altered brain activity in the frontal cortex of healthy
women with a mean age of 30(72) suggests potential effects
on executive functioning in addition to the observed
hippocampal effects. Moreover, in younger adults aged
25–45, 4-week kefir consumption improved performance
on hippocampal-dependent relational memory-associated
tasks, butmemory improvements were not correlated with
the increased Lactobacillus levels(73), suggesting indirect
effects of microbial signalling to the brain that were not
measured in that study.

Taken together, fibre intake appears to alter attention,
memory, and executive functioning when consumed
habitually for longer periods across the lifespan, although
more research in younger/middle-aged adults is still
warranted. For older adults, in which much of the data
is derived, fermented foods exhibit a protective effect
against global age-related cognitive decline, both over
time and following briefer interventions. Nevertheless,
additional effects of fermented foods on executive
functioning in younger/middle-aged adults cannot be
ruled out given the lack of studies that directly assess these
cognitive domains in younger populations. The effects of
fermented foods on cognitive processes in children and
adolescents also remain largely unknown. Moreover, the
lack of functional imaging data to determine a psycho-
physiological interaction for each food type precludes
neurological insights. Increased BDNF could be a
mediating signalling pathway, but formal exploration
within a statistical mediation model is needed wherein
BDNF is entered as a predictor to determine if it partially
or fully explains the relationship between fibre/fermented
foods on cognition. By determining the mechanism or
pathway through which an independent variable
influences a dependent variable, mediation models are
useful analyses for statistically disentangling causal
factors(74). Moreover, the relationship between peripheral
and central BDNF is disputed(75), thus warranting some
caution in interpreting effects on the brain.More attention
is required to parse the mechanisms from the gut to the
brain that are mediating such effects(76).

Emotion

Fibre consumption alone and as part of a healthy dietary
pattern has been consistently associated with better
mood in clinical and non-clinical populations(77–81), but a
systematic review and meta-analysis concluded that the
extant RCT data is inconsistent with observational
findings(18). Recently, it was shown that an 8-week diet
with a high potential prebiotic content improved anxiety,
stress, and sleep in adults compared to a probiotic alone,
a combination of the pre- and probiotic (synbiotic), or
placebo and diet as usual. The prebiotic diet comprised
a minimum of 5 g/d of asparagus, garlic, onion, oats,
whole wheat, chickpeas, or watermelon. The probiotic
contained Bifidobacterium bifidum (Bb-06),
Bifidobacterium animalis subsp. lactis (HNO19),
Bifidobacterium longum (R0175), Lactobacillus acidoph-
ilus (La-14), Lacticaseibacillus helveticus (R0052),
Lacticaseibacillus casei (Lc-11), Lactiplantibacillus plan-
tarum (Lp-115), Lacticaseibacillus rhamnosus
(HN001)(82). The beneficial effects observed in this study
may be attributed to the high dosage of prebiotic-specific
foods, meriting further attention. On the other hand,
very few studies have explored the link between
fermented foods and emotion, indicating a gap in
understanding their chronic effects on mood. In young
adults, higher frequency of fermented food consumption
from sources that included live and inactive fermented
foods in addition to non-fermented foods (i.e. yogurt,
kefir, soy beverages and foods, miso soup, sauerkraut,
dark chocolate, juices that contain microalgae, pickles,
tempeh, kimchi) over the previous 30 days was linked to
reduced social anxiety symptoms(83). Conversely,
Karbownik et al. discovered that higher total fermented
food consumption from a variety of sources (cheese,
yogurt, kefir, soured milk, kvass, unpasteurised beer,
fermented and pickled vegetables with brine) over the
previous 7 days was associated with increased depressive
and anxiety symptoms in healthy medical students, but
the inverse was found for medical students who reported
an ongoing psychiatric disorder(84). The difference in the
timeframe of the assessment of fermented foods intake
and the discrepancy in criteria for fermented foods might
explain the inconsistent results.

RCTs with fermented food intervention show incon-
sistencies in effects, which could be due to differences in
participant demographics. For example, fermented dairy
products for 2 weeks(73), 8 weeks(68), or 12 weeks(66) failed
to improve mood in healthy adults. However, yogurt and
the fermented dairy product, quark, improved mood only
in participants with poor health status (i.e. immune
depressed or chronic disease) and not for healthy
participants(85). Similarly, fermented kefir improved
mood in participants with overweight(86) and fermented
bonita fish broth improved fatigue andmood disturbances
in adults with chronic fatigue(87). Despite reports of
improvedmood in healthy women after consuming bonita
broth for 2 weeks(88), the results collectively suggest that
fermented foods have larger effects on mood for
individuals with compromised health status.
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Similar to the cognitive data, prolonged fibre intake is
likely to improve mood more than briefer periods of
intake. Moreover, research that examines the impact of
fibre and fermented foods on emotion in adolescence or
middle adulthood is currently lacking. Considering this is
a period with greater mood disturbances(89,90), more
research is urgently needed in this population. The effects
of fermented foods on mood in clinical and non-clinical
populations, especially over longer time periods, is still
largely unknown(91). However, it appears that fermented
foods may have preferential effects on individuals with
comorbid health conditions.

Signalling pathways

Few studies incorporate the assessment of potential
biological mechanisms to support behavioural findings,
which precludes insight into mediating pathways. Given
the demonstrated capacity for fibre and fermented foods
to concurrently modulate gut microbiota and the brain,
each food likely alters signalling pathways from the gut to
the brain. It is now accepted that the gut microbiota
communicates with the brain along several pathways
including immune, hypothalamic-pituitary-adrenal
(HPA) axis, serotonin/tryptophan/kynurenine, vagal,
neuroendocrine, and metabolome signalling(92) (see
Fig. 1). In the next sections we outline the effects of fibre
and fermented foods on each communication pathway,
prioritising evidence from humans where possible and
available, to determine potential mechanisms of action
underlying cognitive and emotional effects.

Immune system

The immune system is one of the most direct signalling
pathways along the microbiota-gut-brain axis and has been
shown to be fundamental in modifying behaviour across the
lifespan(93–95). The highest concentration of immune cells is
locatedwithin the gastrointestinal tract, and these cells are in
constant communication with the gut microbiota for the
identification of potentially harmful pathogens. In mice,
short-term exposure to aWestern Diet deprived of fibre was
sufficient to impair mucosal and systemic immunity, which
created a window for opportunistic pathogens to invade
intestinal tissue(96). Re-introduction of dietary fibre
re-programmed T cell metabolism and restored mucosal
and systemic immunity. In this same study, healthy adults
received a high-fibre diet comprised of a variety of food
sources for five days before receiving a low-fibre diet for an
additional five days. Not only did fibre deprivation reduce
the abundance of fibre-fermenting bacteria (Eubacterium
and bacteria from Lachnospiraceae family), but the main
butyrate producer in the humanmicrobiota (Agathobaculum
butyriciproducens and Faecalibacterium prausnitzii) was
decreased. These results were mirrored by a significant
peripheral reduction of systemic TH17 cells co-expressing
IL-17A and TNF-α and TH1 cells(96). However, the anti-
inflammatory effects of fibre have been shown to be
moderated by baseline conditions of the individual. For
example, Wastyk et al. found differential effects of fibre on

inflammation that was dependent on baseline inflammation
levels(15). Similarly, the efficacy of soluble fibre intake on
inflammationmarkerswas reduced in individualswith lower
microbiota richness(97).

In a recent RCT that compared administration of
fermented yogurt against heat-treated yogurt with
inactivated bacteria and two unfermented controls of
whole milk and chemically acidified milk for 16 weeks to
men with obesity, there were no differences between
fermented yogurt and controls on c-reactive protein
(CRP), IL-6, and TNF alpha levels(98). Despite these null
effects, it is worth noting the sophisticated design of this
study which incorporated several different fermented
controls in line with our previous recommendations to
enhance the scientific quality of future research(20). These
findings are also accordant with the results of a meta-
analysis on the effects of fermented food intervention on
inflammation in heterogeneous cohorts, which revealed
that there was no dose-dependent association between
fermented food consumption and inflammatory cytokine
profile (IL-6, TNF-α, CRP)(99). However, similar to
dietary fibre, these effects interact with other factors such
as age and food substrate. Differential results were shown
when the analysis was split between participants below or
above 50 years of age, such that fermented foods enhanced
CRP and IL-6 levels in participants under 50 but
significantly reduced IL-6 levels in participants over 50.
Fermented foods decreased TNF-α levels in both age
groups. The authors suggested the moderating effects of
age are likely due to increased inflammation associated
with aging. Furthermore, subgroup analyses of fermented
dairy products demonstrated a reduction in CRP and
elevation in IFN-γ, and no effect on other inflammatory
markers (IL-10, IL-6 and Il-12)(99). This may explain the
anti-inflammatory effects observed following a varied, but
predominantly yogurt, 10-week dietary intervention in
healthy adults(15). Pooling fermented foods for a meta-
analysis likely obscures physiological effects of each food
individually given their diverse substrate nature, bioactive
profile, and microbial consortia that they host.

Hypothalamic-pituitary-adrenal (HPA) axis and stress

The HPA axis and its hormone, cortisol, is activated in
response to acute and chronic stress and has been shown to
be crucially regulated by the microbiota-gut-brain
axis(100–102). Germ-free rodents, deprived of exposure to
microorganisms at birth and reared in sterile environ-
ments, display exaggerated HPA axis responsiveness to
stressors compared to colonised controls(103–106), and
Bifidobacterium infantis administration reverses this
response in a time-window dependent manner(103).
Additionally, administration of strains of Lactobacillus
and Bifidobacterium has been shown to attenuate anxiety
and depressive-like behaviour brought about by early-life
stress(107,108), indicating a key signalling pathway from the
gut to the brain(92).

In humans, responses to stressors can be evaluated from
naturally occurring acute and chronic stressors to provide
greater generalisability. Conversely, experimental induc-
tion of acute stress in a laboratory setting has the
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advantage of reducing extraneous factors, but insights
into chronic stress cannot be gained(109). Reductions in
salivary cortisol levels from fermented milk with
Lacticaseibacillus casei strain Shirota(110,111), but not from
Lactobacillus casei DN-114001 fermented milk(112), have
been observed in students undergoing academic exams
and in school-aged students consuming a West African
fermented milk product containing sugar and millet(113).
Despite this encouraging evidence, more studies are
needed that assess the impact of non-dairy fermented
foods on acute and chronic stress in heterogeneous
populations including older aged adults and patients with
clinical stress disorders.

Much of the evidence for a link between dietary fibre
and cortisol comes from observational or RCT studies
that examine dietary patterns as opposed to fibre alone.
For example, acute intake of low-fibre/high-sugar meal to
ethnic minority adolescents with obesity was related to
elevated cortisol levels compared to a low-sugar/high-
fibre meal(114). Chronic adherence to a healthy diet rich in
fibrous foods and polyunsaturated fats decreased cortisol
levels in response to an acute laboratory stressor in women

with overweight/obesity(115). Intriguingly, sweet, fatty and
snack food consumption frequency was positively linked
to cortisol levels in a large sample of children aged 5–10,
but fruit and vegetable intake had no effect(116).
Combined, these results suggest that the negative effects
of high-fat/sugar foods may have a greater impact on
cortisol levels than from fibre alone(117). While dietary
patterns more closely resemble actual eating patterns,
specificity in determining the mechanism of action of the
efficacious compound is needed to determine if the effects
observed are due to fibre or polyunsaturated fat intake.

Vagus nerve

The vagus nerve is the most direct pathway linking the gut
to the brain(118). Interestingly, specific probiotic bacteria,
such as Limosilactobacillus reuteri and Lacticaseibacillus
rhamnosus, that are present in some fermented foods have
demonstrated dependency on vagal signalling to exert
effects on the brain(119–121). Similarly, SCFAs have been
shown to stimulate vagal signalling(122,123), suggesting
another pathway through which fibre influences cognition.

Fig. 1. Fermented foods are rich in microorganisms, bioactive peptides, phytochemicals, and peptides that can modulate brain function through
enhancing microbial diversity leading to an enrichment of diverse microbial metabolites. Dietary fibre increases microbial richness, and neuroactive
SCFAs are produced as a result of microbial fermentation of dietary fibre. Both fermented foods and fibre support intestinal and BBB integrity to
prevent peripheral and central inflammation for optimal cognitive and emotional functioning. BBB: blood-brain barrier. GLP-1: glucagon-like peptide
1. IL: interleukin. PP: polyphenol. PYY: peptide YY. SCFA: short-chain fatty acid. Vit K, B: Vitamin K and B. Created with BioRender.com.
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In rodents, a high-fat, high-sugar carbohydrate diet
impaired vagus nerve signalling of satiety(124), and
administration of potato-derived resistant starch inhibits
remodelling of vagal satiety signalling from a high-fat
diet(125).

Short-chain fatty acids

Microbial fermentation of undigested dietary fibre stimu-
lates the formation of organic acids (lactic, succinic acid) and
SCFAs (acetate, propionate, and butyrate). There are
several pathways through which SCFAs influence brain
activity, indicating the prominence of this pathway between
fibre intake and the brain. First, SCFAs can modulate
concentrations of neurotransmitters (e.g. GABA, serotonin,
glutamate) and neurotropic factors(126) that are directly
involved in cognitive and emotional processes. Through
supporting the intestinal and blood-brain barrier (BBB),
SCFAs protect against neuroinflammation(11,127). Finally, a
combination of SCFAs (acetate, propionate, and butyrate),
but not butyrate alone(128), alters the HPA axis to attenuate
stress-induced cortisol increases(129), suggesting synergistic
effects of different SCFAs on stress. Fermented foods have
also been shown to alter SCFAs. For example, Spanish
residents who consumed greater amounts of cheese had
higher levels of all SCFAs(130). However, given that SCFAs
are produced as a result of fibre fermentation, fibre is likely
to have stronger effect on concentrations than fer-
mented foods.

Other signalling pathways

Enteroendocrine. Enteroendocrine L cells within the
intestinal epithelial cells secrete glucagon-like peptide-1
(GLP-1) and peptide YY (PYY) in the postprandial
state. Beyond their effects on satiety, gut-derived pepti-
des GLP-1 and PYY have be linked to cognitive and
emotional processing(131,132). Short- and long-term
dietary fibre intake concurrently increases self-report
feelings of satiety and the release of gut peptides GLP-1
and PYY(133–135). Moreover, SCFAs can alter the pro-
duction of GLP-1 and PYY, indicating indirect
pathways(136). GLP-1 can also be stimulated by certain
Lactobacillus strains present in fermented foods(137), but
further research is needed that assesses GLP-1 and PYY
release from whole foods in human participants.

Bile acids. Primary bile acids that are formed in the liver
from cholesterol breakdown are further transformed into
secondary bile acids by gut microbiota(138). Bile acids can
cross the blood-brain barrier to influence brain function.
Indeed, altered bile acid profiles have been shown in mild
cognitive impairment and Alzheimer’s Disease(139,140), but
bile acids have also shown neuroprotective effects on the
brain in preclinical models(141). The binding of dietary
fibre to conjugated bile acids prior to metabolism by the
gut microbiota hints at the connection between dietary
intake and microbial metabolites(142). Indeed, increased
secondary bile acid, taurolithocholic acid, was observed
following a four-week diet high in whole grains, legumes,
fruits, and vegetables in healthy adults(143). Although the

relationship between fermented foods and bile acids is
less established, fermented milk kefir increased secondary
bile acids that were decreased from high-fat diet in
rats(144).

Other metabolites

Polyphenols and polyamines. Fibrous and fermented
foods are rich sources of polyphenols, and fermentation
of plant and vegetables through lactic acid bacteria
enhances the conversion of phenolic compounds to bio-
logically active metabolites leading to an increase the
production of phenolic metabolites(145,146). Moreover,
polyamines (spermine, spermidine and putrescine),
which are also produced by the gut microbiota and
affect the brain(147), are found in plant-derived foods
linked to phenolic compounds(148,149). Gut microbiota
utilisation of polyphenols results in phenolic com-
pounds, which has shown associations with cognitive
resilience in rats(150). As such, it is still largely unknown
if polyphenols in fibrous and fermented foods are driv-
ing their beneficial impact on health.

Neurotransmitters. The gut microbiota indirectly and
directly stimulates the production of neurotransmitters to
influence central nervous system activity. There is a grow-
ing appreciation that tryptophan and its metabolic path-
ways to serotonin or kynurenine can be key signalling
pathways within the microbiota-gut-brain axis(151–153).
Although the gut produces the majority of serotonin(154),
it is unable to cross the BBB directly. However, dietary-
derived tryptophan is absorbed by the gut and then trans-
ported, along with its metabolite kynurenine, to the brain
to influence behaviour(155). A strain of Bifidobacterium
infantis, a bacterium present in fermented foods, has been
shown to elevate plasma tryptophan levels to increase sup-
ply to the central nervous system for serotonin
production(108). Evidence for neuromodulatory capacity of
dietary fibre and fermented foods in humans is sparse.
One study showed that Lacticaseibacillus casei fermented
milk product consumption for 8 weeks increased faecal
serotonin and decreased gastrointestinal distress without
altering serum tryptophan or kynurenine levels(111). High
dietary fibre intake positively correlates with indolepro-
pionic acid, a microbial metabolite of tryptophan(156), and
administration of whole grain rye lowered plasma sero-
tonin concentrations in healthy adults(157).

Like serotonin, dopamine produced within the gut(158)

cannot cross the BBB, but its precursor L-3,4-dihydrox-
yphenylalanine (L-DOPA) can via large neutral amino
acid transporters(159). Given the known relationship
between dopamine and cognitive and emotional
processing(160), and the fact that hyper-palatable foods
deprived of fibre consumed chronically blunts central
dopaminergic activity(161), it is necessary to understand
how the gut microbiota and brain communicate through
food-induced/microbiota mediated alteration of periph-
eral and central dopamine.

The primary inhibitory neurotransmitter, GABA, plays a
key role in affective and cognitive processing(162,163). GABA
is synthesised by bacterial strains found in fermented
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foods(164,165), and fermented foods that contain high levels of
lactobacilli frequently also contain millimolar levels of
GABA(166). Intriguingly, fermentation byLactiplantibacillus
plantarum VTT E-133328 of faba bean flour enhanced
GABA levels of the faba bean flour(167), indicating additive
effects from fermenting high-fibre foods.Notably, the ability
of GABA to cross the BBB in appreciable quantities is
disputed and further research inwarranted to understand the
contribution of peripheral v. central mechanisms(168).

The cholinergic neurotransmitter, acetylcholine, is
found in both the central and peripheral nervous system.
Acetylcholine is highly implicated in shaping emotional
and cognitive processes(169). Several bacteria commonly
found in fermented foods produce acetylcholine(170),
demonstrating the potential for fermented food inter-
ventions to modulate peripheral acetylcholine and
possibly its signalling to the brain. It was recently shown
that a cafeteria diet deficient in dietary fibre impaired
hippocampal-dependent memory and hippocampal
acetylcholine signalling in rats(171). It will be interesting
to test whether fibrous or fermented foods can rescue
deficits in acetylcholinergic signalling induced by the
Western Diet.

Vitamins and minerals. The effects of vitamin and min-
eral deficiencies on cognitive and emotional health are
well-defined(172). Vitamin K and several B vitamins are
produced by gut microbiota and host intake of these
vitamins increases microbial diversity and richness,
alongside an increase in the production of SCFAs(173).
Dietary fibre and substrates used for fermentation are
rich in vitamins, and fermentation further increases the
abundance of vitamins(174). Similarly, minerals, such as
magnesium and zinc found in both fibrous and fer-
mented foods, have limited bioavailability when
obtained from vegetable sources due to the presence of
phytates and oxalates(175), which form complexes with
minerals and limit their absorption. Fermentation
through different microorganisms improves their bio-
availability and absorption by breaking down phytate
and oxalate complexes with minerals(176,177). Like poly-
phenols, more granularity is needed to understand
mechanisms of action specific to the vitamin and min-
eral content present in fibrous and fermented foods.

Future directions

In addition to evaluating the unique effects of fermented
foods or fibre on the microbiota-gut-brain axis, we have
highlighted several gaps in the literature that are
summarised in Fig. 2 and described herein.

A review of the cognitive and emotional literature has
emphasised the need for multimodal outcomes that assess
behavioural changes on a full battery of cognitive tasks
and self-report measures of affect in addition to biological
samples within the same study design. To the best of our
knowledge, only two studies directly assess the impact of
fermented foods on brain functioning, and no studies used
imaging techniques to study the neurological effects of
fibre in humans. Combined methodology will shed light

on the biopsychological mechanisms necessary to inform
the development and selection of potential psychobiotic
treatments.

We continue to know very little about how genetic
backgroundsmoderate the effects of each food type on gut-
brain signalling. For example, some individuals exhibit
differences in the metabolism of fermentation byproducts
including biogenic amines such as histamine, which can
indirectly affect cognitive and emotional processing
through physical side effects and alterations of arousal(178).
Alternatively, fermented foods can also indirectly improve
brain activity through enhancing digestibility in individuals
with certain food intolerances by, for example, converting
lactose into lactic acid. Future studies should investigate
how individuals from different populations and genetic
backgrounds respond to interventions with fibre or
fermented foods. Baseline gut microbiota composition
and functionality is also highly individual, and baseline
differences in the fermentation and/or colonic absorption of
fibre can impact butyrate production(26,179). Employment
of a crossover design, where each participant serves as their
own control, is a possible solution to this confound. It is
imperative, however, to counterbalance experimental arms
in a crossover design and include a washout period to
ensure the absence of prolonged effects on the gut
microbiota that can spillover into the next experimental
arm. The duration of the intervention should also be
prolonged, because effects of fibre on cognition were
observed at six months, but not three months, which may
explain the discrepancies between observational and
interventional data(57). It is likely that longer interventions
are needed in healthy populations for which changes may
be small in effect size. Longer interventions are also useful
to allow for tolerance to a high-fibre and/or fermented food
diet that may initially cause gastric distress and therefore
affect cognitive/emotional measures. Testing in healthy
populations may further necessitate selection of behav-
ioural measures that can capture small changes alongside
utilisation of next generation sequencing of the microbiota
and metabolome (e.g. shotgun metagenomics) to detect
resolution at the strain level alongside functional
changes(180). Moreover, biomarkers are needed to identify
food consumption patterns and their potential downstream
metabolites that are produced as a consequence of intake
and can affect the overall health of the consumer(181).
Throughout the intervention, longitudinal captures of the
gut microbiota via repeat faecal sampling can provide
valuable information about the time course of effects.

A granular understanding of specific fibre subtypes on
health outcomes is needed for personalised/precision
approaches. However, the fact that fibrous foods can
simultaneously comprise fermentable soluble and insoluble
fibre provides a challenge. Collaboration with bioinforma-
ticians to establish an open-source database that catalogues
the constituents of each fibre is needed to advance
mechanistic insight. More specificity is similarly required
for fermented foods. There are several studies that evaluate
the effects of singular fermented foods, but heterogeneity in
the participants, length of the intervention, and outcomes
limits insights gained from aggregating data(21). In an RCT
where participants consumed a variety of fermented foods,
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a stronger correlation to alpha diversity from yogurt and
vegetable brine drink consumption was observed, but this
could be due to the higher consumptions rates of these items
relative to the other fermented food types (kefir, cottage
cheese, kombucha, and fermented vegetables)(15).
Exploitation of large datasets from individuals who
consume a variety of fermented foods is needed to avoid
floor effects and to achieve adequate statistical power
required to determine which fermented foods are superior
in modulating brain activity. It is worth noting that
metagenomics revealed that, of those studied, water kefirs,
sauerkrauts, and kvasses contained the greatest concen-
tration of potential health-associated gene clusters(182).
Combining in silico methods with functional behavioural
readouts is a promising approach to identify top-perform-
ing fermented foods to improve neurobehaviour. Another
limitation in the isolation of specific fermented foods is the
lack of validated, culturally sensitive and/or feasible tools
to measure fermented food intake(183,184). Specifically,
fermented foods are currently assessed via unvalidated
self-report measures of frequency or through self- or
dietitian-led food logging or food recall, which is onerous
for the participant and/or the researcher.

Towards new psychobiotic therapies

To date, only one study has directly compared the
differential effects of fibre and fermented foods in humans
within the same experimental design(15). In this study,
healthy adults were randomly allocated to consume a high

quantity of a variety of fibrous foods (n=18) or fermented
foods (n=18) for 10 weeks with no control group. Distinct
effects on the gut microbiome were found such that fibre
altered microbial functionality by decreasing the produc-
tion of branched-chain fatty acids (isobutyric, isovaleric,
valeric acid), while fermented foods increased alpha
diversity. Fermented foods further reduced inflammatory
markers, while fibre inflammatory effects were person-
dependent. Unexpectedly, no differences were observed
on self-reported perceived stress, wellbeing, fatigue, or
cognition(15), but this could be due to a reliance on self-
report measures of cognitive performance and the small
sample size that obscured effects.

The results from Wastyk et al. suggested potential
additive effects from combining fermented and fibrous
foods on the microbiota-gut-brain axis(15).When combined
with fermented foods, fibre can enhance the colonisation,
survival and function of the microbes within fermented
foods and from host microbes(185). Recently, we have
shown in our own lab that a combined diet rich in fibre and
fermented foods from a variety of food sources for four
weeks improved perceived stress in a dose-dependent
manner in healthy adults compared to a healthy diet in line
with Irish dietary guidelines(8). However, the combined diet
had only subtle effects on gut microbiota composition and
local gastrointestinal functional outputs, but this could be
due the short duration of the intervention. Similarly, an
inulin-enriched fermented yogurt decreased self-report
scores of anxiety and depression in menopausal women
compared to yogurt alone(186). Future work should

Fig. 2. Potential approaches to address challenges in nutrition studies for the microbiota-gut-brain axis. Created with BioRender.com.
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investigate whether consuming fermented and fibrous
foods within the same meal elicits additive benefits, both
acutely and chronically. The collective data provides
support for the use of psychobiotics(187), as a combination
of pre-, pro-, post-, and/or synbiotics, to treat disorders
related to dysfunction in cognitive and/or emotional
processes. Psychobiotics have already demonstrated effi-
cacy in attenuating depressive symptoms(188) and improv-
ing cognition in healthy populations(189) and populations
with cognitive impairments(190), but more research with
whole-food interventions in healthy and clinical popula-
tions is needed.

Conclusion

Taken together, both fibre and fermented foods exert
protective effects on cognitive and emotional processes.
Although only one study has investigated the differential
mechanisms of fibre and fermented foods on the micro-
biota-gut-brain axis(15), there is a growing interest in
understanding the role of the gut microbiota underlying
dietary patterns that have been shown to alter central
nervous system processes(191). Such advancements are
essential for development of future therapeutics to treat
brain dysfunction.

In considering future therapeutics, the challenge in
consuming high-fibre foods is reflected by reports of
inadequate consumption of fibre in nearly all Western
societies(192,193). For some, fermented foods could be an
alternative solution for individuals who struggle to
consume dietary fibre due to issues with taste and/or
tolerance, for example. It is worth highlighting the
encouraging work currently underway by Jeff Gordon
and colleagues. In this pioneering work, Gordon et al.
aims to treat cognitive dysfunction in children brought
upon by malnutrition to the gut microbiota in early life by
fibrous food formulations that are culturally appropriate,
environmentally sustainable, and affordable to
produce(194–196). This work suggests that the inexpensive
and ubiquitous nature of fibre and fermented foods is a
viable means of targeting brain health, at least partially
via the gut microbiota, to ensure optimal functioning
across all stages of life.
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