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Abstract. Suppose we are given complex manifolds X and Y together with
substacks S and S ′ of modules over algebras of formal deformation A on X and A′

on Y , respectively. Also, suppose we are given a functor � from the category of open
subsets of X to the category of open subsets of Y together with a functor F of prestacks
from S to S ′ ◦ �. Then we give conditions for the existence of a canonical functor,
extension of F to the category of coherent A-modules such that the cohomology
associated to the action of the formal parameter � takes values in S. We give an
explicit construction and prove that when the initial functor F is exact on each open
subset, so is its extension. Our construction permits to extend the functors of inverse
image, Fourier transform, specialisation and micro-localisation, nearby and vanishing
cycles in the framework of D[[�]]-modules. We also obtain the Cauchy–Kowalewskaia–
Kashiwara theorem in the non-characteristic case as well as comparison theorems for
regular holonomic D[[�]]-modules and a coherency criterion for proper direct images
of good D[[�]]-modules.

2010 Mathematics Subject Classification. Primary: 32C38, 46L65; Secondary:
18E30, 46A13.

1. Introduction. On a complex manifold X we consider the sheaf DX of
differential operators and the sheaf DX [[�]] (noted D�

X for short) of formal differential
operators on a parameter �. For the main results on modules over DX we refer to [5]
and for those on modules over D�

X we refer to [8] and [2]. The notion of algebras of
formal deformation and the main results that we need here were obtained in [8].

Our first motivation was to understand the behaviour of a coherent D�

X -module
near a submanifold Y . The natural tool is to define conveniently a functor of
inverse image generalizing the D-module case. Alternatively, one can also look for
a generalization of the functor of specialization. Recall that inverse image on the
category of D-modules is not exact, unless we assume in addition that the objects are
non-characteristic. On the other hand, specialization is an exact functor on the Serre
subcategory of specializable D-modules.
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To treat inverse image turned out to be not too hard because one finds a natural
candidate to play the role of transfer module as we shall see later. On the other hand,
D�

X is not provided with a natural equivalent to the Kashiwara–Malgrange V -filtration,
and specialization is far from being a mere copy of the D-module case so that the study
of its properties takes an important place in this work.

For a given sheaf A of coherent rings one denotes by Modcoh(A) the abelian
category of coherent left A-modules. Let � be a unital commutative Noetherian ring
with finite global dimension.

The general problem then became the following:
Given two complex manifolds X and Y , together with two �-algebras of formal

deformation A on X , and A′ on Y , given a right exact (respectively exact) functor F
from a given full Serre subcategory S of Modcoh(A) to a given full subcategory S ′ of
Mod(A′), find the natural subcategory containing S to which F extends canonically as
a right exact (respectively exact) functor, let us say, F�.

For each n ∈ �0 and for each left A-module, consider the quotient Mn =
M/�

n+1M and, for n ≤ k, denote by ρk,n the projection Mn → Mk. If one assumes
that, for each n, Mn ∈ S, then the natural candidate F�(M) will be the projective limit

lim←−
n

F(Mn) (1)

of the associated projective system (F(Mn), F(ρk,n))n. This construction will be the
heart of our study.

To be rigorous, we will resort to the framework of stacks, and the reason is that we
will be interested in Serre subcategories whose objects are defined by local properties.
Recall that stacks provide the framework where the notion of sheaves of categories
takes a sense. However, throughout this work, we only deal with the easiest example
of stacks consisting precisely of sheaves of categories, since they are substacks of
modules over a sheaf of �-algebras and the restriction morphisms are nothing more
than the usual restriction of sheaves to open subsets. In particular, all these stacks are
�[[�]]-linear, where � denotes the central formal parameter in each of the algebras.

Recall that one denotes by Op(X) the category of open subsets of X where
the morphisms are defined by the inclusions. Let M od(A) denote the stack U 	→
Mod(A|U ), U ∈ Op(X). Given an abelian substack C of M od(A), a full substack C ′

of C is said to be a full Serre substack if, for each U ∈ Op(X), C ′(U) is a full Serre
subcategory of C(U).

Accordingly, in the sequel, S will denote a full Serre substack of the stack
M odcoh(A) : U 	→ Modcoh(A|U ). For the sake of simplicity, and whenever there is
no ambiguity, we shall often say that a coherent A|U -module defined on U ∈ Op(X)
belongs to S if it belongs to S(U).

Let us now outline the main result of this work.
Assume that we are given a full Serre substack S of M odcoh(A) and a full Serre

substack S ′ of M od(A′). Consider the category ModS(A) of Modcoh(A) characterized
by the property that, for each n, the kernel and the cokernel of the action of �

n+1

belong to S(X). Assume that we are given a functor � from Op(X) to Op(Y ) such that
�(X) = Y, and that � transforms any open covering of any � ∈ Op(X) on an open
covering of �(�). Denote by �∗S ′ the prestack U 	→ �∗S ′ = S ′(�(U)) and assume
that we are given a �[[�]]-linear functor of prestacks F : S → �∗S ′. This means,
in particular, that for each pair V, U ∈ Op(X) with V ⊂ U we have the following
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commutative diagram of functors of categories whose vertical arrows are the restriction
functors:

S(U)
F(U)−−→ S ′(�(U))

↓ ↓
S(V )

F(V )−−→ S ′(�(V )).

Here we prove the following (Theorem 4.24): If, for each U ∈ Op(X), F(U) :
S(U) → S ′(�(U)) is right exact (respectively exact), then under a condition on the
vanishing of the cohomology for S ′(V ), with V running on the objects of Op(Y )
(Condition 2.20), automatically fulfilled by coherent modules, by (1) we obtain a
canonical functor F� : ModS (A) → Mod(A′). Moreover, F� is right exact (respectively
exact).

Namely, when S ′ is a substack of coherent A′-modules, then F� takes values in
ModS ′ (A′). Moreover, if each F(U) is exact, this extension is, in a certain sense, unique
up to isomorphism.

The term ‘canonical’ means that our construction is indeed functorial in S,S ′,�
and F (cf. Remark 4.25).

After the preliminary results in Sections 1 and 2, we prove Theorem 4.24 in Section
3 using the following key facts:

� A right exact functor combined with the action of �
n+1 transforms, for each n, exact

sequences of A-modules into right exact sequences of A′
n-modules.

� The exactness of �(K, ·) for K belonging to adequate basis of the topologies on the
manifolds for the categories that we consider.

� The exactness of projective limit on the category of projective systems satisfying the
Mittag-Leffler condition.

In Section 4 we use Theorem 4.24 to treat the case of A = D�

X (respectively A′ =
D�

Y ). The situation is then simpler because the modules D�

X/�
n+1D�

X are free over
A0 
 DX , so technically we are bound to extend a right exact functor F defined on a
Serre substack S of coherent DX -modules.

In this way we obtain a natural setting for the extensions of the functors of inverse
image, direct image by a closed embedding, specialization, nearby and vanishing cycles,
Fourier transform and micro-localization for D�

X -modules, which are performed in
Section 5. Namely, in the case of the extended inverse image functor for a morphism
f , when we restrict to the Serre substack of non-characteristic modules, we prove a
formal version of the Cauchy–Kowalewskaia–Kashiwara theorem (Theorem 5.8). We
also generalize the functor extraordinary inverse image using the concept of duality
introduced in [2] and prove in Proposition 5.7 and Corollary 5.9 that the property of
holonomicity (as well as that of regular holonomicity) is stable under inverse image
(respectively extraordinary inverse image).

Moreover, for the extension of the specialization, micro-localization, vanishing
and nearby cycles functors, when we restrict to the category of regular holonomic D�

X -
modules in the sense of [2], we obtain comparison theorems which are the formal
version of the results proved by Kashiwara in [4] (Theorems 5.36 and 5.43, and
Corollaries 5.37 and 5.44).

Remaining natural questions are the (left) derivability of F� as well as the extension
of left exact functors.
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For the first, a difficulty in constructing an F�-projective subcategory comes
certainly from the behaviour of the (left exact) functor lim←− for which we don’t have
in general enough injectives. This functor also lacks good properties with respect to
the usual operations in sheaf theory. Therefore, even if there exists an F-projective
subcategory P , to our knowledge there is no canonical way of constructing an F�-
projective subcategory.

In what concerns direct images, which are defined as the composition of derived
functors, one being left exact, the other being right exact, our method no longer applies
except in particular cases such as closed embeddings. But there is another way, since
we show that in the case of inverse image the extended functor can be given using
a convenient transfer module as in D-module theory. Once having available a good
notion of transfer module, we can also obtain a natural extension of the functor of
direct image. In this setting, we prove a formal version of the theorem of coherency of
proper direct image for good D�-modules (Theorem 5.18).

So as a by-product of our general construction together with the results of [2], the
so-called Grothendieck′s six operations are generalized to the formal case.

Convention 1. The results in the first three sections, with few exceptions, hold in the
more general context of Hausdorff locally compact topological spaces. For simplicity,
in view of our motivations, we stay in the complex analytical setting.

2. Review on modules over formal deformations. In this section we recall the basic
material that we need from [8].

Let X be a complex manifold of finite dimension dX .
Let � be a unital commutative Noetherian ring with finite global dimension. Recall

that, for brevity, one denotes �[[�]] by ��.
Given a sheaf R of �-algebras on X , we denote by Mod(R) the category of left

R-modules by D(R) the derived category of Mod(R), and by D∗(R) (∗ = +,−, b) the
full triangulated subcategory of D(R) consisting of objects bounded from below (resp.
bounded from above, resp. bounded) cohomology.

Recall that a full subcategory S of an abelian category C is thick if for any exact
sequence

Y → Y ′ → X → Z → Z′

in C with Y, Y ′, Z, Z′ in S, X belongs to S.
Equivalently, S is a full abelian subcategory such that, given a short exact sequence

0 → X ′ → X → X ′′ → 0 in C, when two of the objects X ′, X or X ′′ are in S then the
third also belongs to S. Moreover, if S contains all subobjects and quotient objects of
its objects, then S is called a Serre subcategory.

LetS be a full thick subcategory of C and let Db(C) be the bounded derived category
of C. One denotes by Db

S (C) the full triangulated subcategory of Db(C) consisting of
objects with cohomology inS. In the cases listed below, we recall classical abbreviations.

EXAMPLE 2.1.

� The subcategory Modcoh(R) of coherent modules over a coherent ring R is
thick, and the associated category is denoted by Db

coh(R).
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� The subcategory Mod�−c(�X ) of �-constructible sheaves of �-modules is a
thick subcategory of Mod(�X ) and the associated category is denoted by
Db

�−c(�X ).
For a complex manifold X , the following are Serre subcategories of Modcoh(DX ):

� The subcategory Modgood(DX ) of goodDX -modules and the associated category
is denoted by Db

good(DX ).
� The subcategory Modhol(DX ) of holonomic DX -modules and the subcategory

Modrh(DX ) of regular holonomic DX -modules and the associated categories
are respectively denoted by Db

hol(DX ) and Db
rh(DX ).

� The subcategory NC(f ) of non-characteristic DX -modules with respect to a
given holomorphic function f : Y → X , where Y is another complex manifold
and the associated category is denoted by Db

NC(f )(DX ).
� The subcategory Modsp(DX ) of DX -modules specializable along a given

submanifold Y and the associated category is denoted Db
sp(DX ).

Given a sheaf M of �X [�]-modules, set Mn = M/�
n+1M and for n ≥ k let ρk,n :

Mn → Mk denote the canonical epimorphisms. One says that M is �-torsion free if
� : M → M is injective and one says that M is �-complete if the canonical morphism
M → lim←−

n≥0

Mn is an isomorphism.

A family B of compact subsets of X is said to be the basis of compact subsets of
X if for any x ∈ X and any open neighbourhood U of x, there exists K ∈ B such that
x ∈ Int(K) ⊂ U .

In the following we shall consider a �-algebra A on X and a section � of A
contained in the centre of A. Set A0 = A/�A.

Consider the following conditions:
1. A is �-torsion free and �-complete.
2. A0 is a left Noetherian ring.
3. There exists a basis B of open subsets of X such that for any U ∈ B and any

coherent (A0|U )-module F we have Hn(U ;F) = 0 for any n > 0.
4. There exists a basis B of compact subsets of X and a prestack U 	→

Modgood(A0|U ) (U open in X) such that
(a) for any K ∈ B and an open subset U such that K ⊂ U , there exists K ′ ∈ B

such that K ⊂ Int(K ′) ⊂ K ′ ⊂ U ;
(b) U 	→ Modgood(A0|U ) is a full subprestack of U 	→ Modcoh(A0|U );
(c) for an open subset U and M ∈ Modcoh(A0|U ) if M|V belongs to

Modgood(A0|V ) for any relatively compact open subset V of U , then M
belongs to Modgood(A0|U );

(d) for any U open in X , Modgood(A0|U ) is stable by subobjects (and hence by
quotients) in Modcoh(A0|U ),

(e) for any K ∈ B, any open set U containing K , any M ∈ Modgood(A0|U ) and
any j > 0, one has Hj(K ;M) = 0;

(f) for any M ∈ Modcoh(A0|U ), there exists an open covering U = ⋃
i Ui such

that M|Ui ∈ Modgood(A0|Ui ),
(g) A0 ∈ Modgood(A0).

We shall say that A is an algebra of formal deformation if A and A0 satisfy either
Assumption 2.2 or Assumption 2.3 given below.

Assumption 2.2. A and A0 satisfy conditions (1), (2) and (3) above.
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Assumption 2.3. A and A0 satisfy conditions (1), (2) and (4) above.

In particular, with Assumption 2.2 or Assumption 2.3, A and An are left
Noetherian rings, for every n ≥ 0 (see Lemma 1.2.3 and Theorems 1.2.5 and 1.3.6
of [8]).

One defines a right exact functor assigning the object M/�
n+1M ∈ Mod(An) to

M ∈ Mod(A). Its left derived functor is given by

grn
�

: Db(A) → Db(An),

M 	→ M
L⊗A An.

Recall that the functor gr0
�

was defined and studied in [8] and noted by gr�.
For M ∈ Mod(A) one sets:

nM = ker(M �
n+1→ M).

Recall that a coherent A-module is a locally finitely generated A-module M such
that, for any open subset U ⊂ X and for each locally finitely generated submodule M′

of M|U , locally M′ admits a finite free presentation.
If M is a coherent A-module then nM and Mn are coherent An-modules.
Recall that, for each n ≥ 0, the category Mod(An) and the full subcategory of

Mod(A) whose objects are those M such that �
n+1M 
 0 are equivalent. Moreover:

LEMMA 2.4. ([8], Lemma 1.2.3) Let n ≥ 0. An An-module M is coherent as an
An-module if and only if it is so as an A-module.

Suppose that the property (4) in Assumption 2.3 holds. Denote by Db
good(A0)

the full triangulated subcategory of Db(A0) consisting of objects with cohomology in
Modgood(A0). One says that M ∈ Db

coh(A) is good if gr�(M) ∈ Db
good(A0). One denotes

by Db
good(A) the full subcategory of Db

coh(A) consisting of good objects.

THEOREM 2.5. ([8], Theorem 1.3.6) For any good A-module M and any K ∈ B, we
have Hj(K ;M) = 0 for any j > 0.

THEOREM 2.6. ([8], Theorem 1.3.6) An A-module M is coherent if and only if it is
�-complete and �

nM/�
n+1M is a coherent A0-module for any n ≥ 0.

For a sheaf R of �[�]-algebras, set Rloc := R ⊗�X [�] �X [�, �
−1]. Following [8],

M ∈ Db(R) is said to be a cohomologically �-complete object if RHomR(Rloc,M) 

RHom�X [�](�X [�, �

−1],M) = 0. We shall use for short the symbol c�c to distinguish
cohomologically �-complete objects.

REMARK 2.7. The category of c�c objects is a full triangulated subcategory of
Db(R). Namely, if in a distinguished triangle two of the terms are c�c, then the third is
also c�c.

Recall that any M ∈ Db
coh(A) is c�c.

For convenience, we denote by C the subcategory of c�c-modules of Mod(�X [�]).

LEMMA 2.8. C is a full abelian thick subcategory of Mod(�X [�]).

Proof. By the remark above it remains to prove that C is closed under kernels
and cokernels. Given a morphism f : A → B in C, the mapping cone M(f ) is c�c in
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Db(�X [�]), so from the distinguished triangle

kerf [1] → M(f ) → cokerf
+1→

we derive a distinguished triangle:

RHom�X [�](�X [�, �
−1], kerf [1]) → RHom�X [�](�X [�, �

−1], M(f )) →

→ RHom�X [�](�X [�, �
−1], cokerf )

+1−→ .

Besides, �[�, �
−1] is a �[�]-module with projective dimension ≤ 1, so

RjHom�X [�](�X [�, �
−1], cokerf ) = 0, for j �= 0, 1

RjHom�X [�](�X [�, �
−1], kerf ) = 0, for j �= 0, 1.

The result follows from the long exact sequence attached to the preceding triangle. �
THEOREM 2.9 ([8], Theorem 1.6.4). Let M ∈ Db(A) and assume that M is c�c

and gr�(M) is an object of Db
coh(A0). Then M is an object of Db

coh(A) and we have the
isomorphisms

Hi(M) 
 lim←−
n≥0

Hi(grn
�
(M)). (2)

THEOREM 2.10 ([8],Theorem 1.6.6). Assume that Aop/�Aop is a Noetherian ring.
Let M be a c�c A-module with no �-torsion such that M/�M is a flat A0-module. Then
M is a flat A-module.

PROPOSITION 2.11 ([8], Corollary 1.5.9). The functor gr� is conservative in the
category of c�c objects. In particular, it is conservative in Db

�−c(��

X ) → Db
�−c(�X ) and in

Db
coh(A) → Db

coh(A0).

PROPOSITION 2.12 ([8], Corollary 1.5.7). Assume thatM ∈ Mod(A) is �-complete
and �-torsion free. Assume that there exists a basis B of open (respectively of compact)
subsets � such that Hi(�;M) = 0 for i > 0. Then M is c�c.

PROPOSITION 2.13 ([8], Proposition 1.5.10). If M ∈ Db(A) is c�c, then
RHomA(N ,M) is c�c, for any N ∈ D(A).

PROPOSITION 2.14 ([8], Proposition 1.5.12). Let f : X → Y be a morphism of
complex manifolds, and suppose that M ∈ Db(A) is c�c. Then Rf∗M is also c�c.

Let now f : Y → X be a morphism of complex manifolds, and let us consider the
canonical morphisms:

fπ : X ×Y T∗Y → T∗Y and fd : X ×Y T∗Y → T∗X .

Recall that f is said to be non-characteristic for an object F ∈ Db(�X ) if

f −1
π (SS(F)) ∩ ker fd ⊂ Y ×X T∗

X X,

where SS(F) denotes the micro-support of F . We refer to [6] for a detailed study of the
notion of micro-support.
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We shall also need, in addition, the result mentioned below.

PROPOSITION 2.15. Let f : Y → X be a morphism of complex manifolds.
(i) Assume that a c�c object M ∈ Db(�X [�]) is non-characteristic for f . Then

f −1M is c�c.
(ii) For every M ∈ Db(�X [�]), one has gr�(f −1M) 
 f −1gr�(M).

Proof.
(i) By [6, Proposition 5.4.13(ii)], the result follows from the isomorphism

RHom�Y [�](�Y [�, �
−1], f !M) 
 f !RHom�X [�](�X [�, �

−1],M).

(ii) It is clear. �
For M ∈ Mod(A) one denotes by M�−tor the submodule of M consisting of

sections locally annihilated by some power of � and by M�−tf the quotient M/M�−tor.
Thus, the following sequence:

0 → M�−tor → M → M�−tf → 0 (3)

is exact.
M ∈ Mod(A) is said to be an �-torsion module ifM�−tor 
 M andM is �-torsion

free if and only ifM 
 M�−tf . In particular, for each n ≥ 0,Mn is an �-torsion module
since �

n+1Mn = 0.
Note that M�−tor is also the increasing union of the nM’s. If M is coherent, the

family {nM}n is locally stationary, so locally there exists N ≥ 1 such that �
NM�−tor = 0

and both M�−tor and M�−tf are coherent A-modules.
In particular, an �-torsion A-module is coherent as an A-module if and only if,

locally, it is coherent as an An-module for n big enough.
If M is a coherent A-module, then each Mn is coherent as an A-module, thus as

an An-module.

LEMMA 2.16. Let 0 → M′ → M → M′′ → 0 be an exact sequence in Mod(A),
and suppose that M′′ is �-torsion free. Then for each n ≥ 0, the associated sequence of
An-modules:

0 → M′
n → Mn → M′′

n → 0 (4)

is exact.

Proof. For each n ≥ 0, applying grn
�

to 0 → M′ → M → M′′ → 0, we deduce the
long exact sequence

0 →n M′ →n M →n M′′ → M′
n → Mn → M′′

n → 0.

By assumption nM′′ = 0 and the result follows. �

COROLLARY 2.17. Let M be an A-module. Then for each n ≥ 0, the following
sequence is exact:

0 → M�−torn → Mn → M�−tf n → 0. (5)
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Let M ∈ Mod(A), let n′ ≥ n − k and denote by �k : Mn′ → Mn the morphism
defined by the multiplication by �

k. Observe that the action of �
k in Mn coincides with

the composition of the chain of morphisms

Mn
�k−→ Mn+k

ρn,n+k−−−→ Mn.

LEMMA 2.18. For each n ≥ k ≥ 1 and each n′ ≥ n − k one has an exact sequence:

Mn′
�k−→ Mn

ρk−1,n−−−→ Mk−1 → 0. (6)

Proof. Clearly ker(ρk−1,n) = �
kM/�

n+1M = �k(Mn′). �

LEMMA 2.19. Let M be an �-complete A-module. Then M is �-torsion free if and
only if for every n ≥ 0 the sequence below is exact:

0 → M0
�n−→ Mn

�−→ Mn. (7)

Proof. If M �-torsion free, (7) is clearly exact since, for m, m′ ∈ M, the equality
�

nm = �
n+1m′ entails m = �m′.

Conversely, assume that for every n ≥ 0 we have the exact sequence (7). Thus,
given (vn)n ∈ M such that �vn = 0, ∀n, it follows that vn = �nu0n for some (unique)
u0n ∈ M0 and we may choose un ∈ Mn such that vn = hnun, ∀n. On the other hand,
vn = ρnn′ (vn′),∀n′ ≥ n, hence vn = ρnn′ (�n′

un′ ) = �
n′
ρnn′ (un′ ) = 0 since we may take n′ ≥

n + 1. �
Given a full substack C : U 	→ C (U) of M od(A) of abelian subcategories, we

shall consider the following condition defining a full Serre substack S of C .

Condition 2.20. For each U , M belongs to S (U) if and only if, for each x ∈ U ,
there exists a neighbourhood V ⊂ U of x such that for any submodule N of M
belonging to C (V ) (and hence for any quotient N of M belonging to C (V )) if K ∈ B
is contained in V , then

Hj(K ;N ) = 0, for any j > 0. (8)

In particular, if C = M odcoh(A), then S = C .

LEMMA 2.21. Let M ∈ Mod(A) and suppose that M0 belongs to S (X). Let (Vi)i

be an open covering of X where Condition 2.20 is satisfied by M0. Then if K ∈ B is
contained in Vi, one has:

1. Hj(K ;Mn) = 0,∀j > 0, n ≥ 0;
2. Hj(K ; lim←−

n

Mn) = 0,∀j > 0. In particular, if M is �-complete, one also has

Hj(K ;M) = 0,∀j > 0.

Proof. (1): Let us consider, for each n ∈ �, the exact sequence:

hnM/hn+1M → Mn
ρ0,n−→ Mn−1 → 0.
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Since hnM/hn+1M is the image of the morphism �n : M0 → Mn, then it is also a
quotient of M0. Thus, starting with M0, the result follows by induction on n.

(2): By (1), when B is a basis of open sets, the statement is clear. When B is a basis
of compact sets, we may consider a fundamental system of compact neighbourhoods
K̃ ∈ B of K in Vi. For any j, we have Hj(K, lim←−

n

Mn) 
 lim−→̃
K

Hj(K̃, lim←−
n

Mn).

Since the map Hj(K̃, lim←−
n

Mn) → Hj(K, lim←−
n

Mn) factors by

Hj(K̃, lim←−
n

Mn) → Hj(K̃, lim←−
n

(Mn|K̃ ) → Hj(K, lim←−
n

Mn),

it remains to observe that Hj(K̃, lim←−
n

Mn|K̃ ) = 0, for j > 0, as a consequence of (1) and

of [6, Exercise II.12.b]. �

3. The category ModS (A). In this section we prepare the notions needed for
our main result (cf. Theorem 4.24). Since we shall deal with subcategories of sheaves
whose objects are described by local properties, the convenient language is that of
stacks. Moreover, since on each open subset U ⊂ X we deal with categories of sheaves
which are abelian subcategories of modules over some sheaf of rings defined on X ,
and the restriction morphisms are the usual restriction of sheaves to open subsets, our
stacks are in fact sheaves of categories. A fortiori we deal with �-linear stacks. For the
background on stacks we refer to [7].

Let A be an algebra of formal deformation on a complex manifold X, and let
there be given and fixed in the sequel a �[[�]]-linear full Serre substack S : U 	→ S(U)
of M odcoh(A). By convenience, for each n ∈ �0, we shall denote by Sn the substack of
M odcoh(An):

U 	→ Sn(U) := S(U) ∩ Mod(An|U ).

Hence, for each open subset U ⊂ X and each n ∈ �0, Sn(U) is a full Serre
subcategory of Modcoh(An|U ).

Convention 3.1. In view of our applications, if there is no ambiguity, given an
open subset U ⊂ X and M ∈ Modcoh(A|U ), we shall often use the notation M ∈ S
(resp. M ∈ Sn) to mean that M ∈ S(U) (resp. M ∈ Sn(U)). Furthermore, we denote
by Db

S (A) the full triangulated subcategory of Db(A) consisting of objects with
cohomology in S.

According to the above convention:

DEFINITION 3.2. We denote by ModS (A) the full subcategory of Modcoh(A)
consisting of A-modules M such that:

For each n ≥ 0, the complex grn
�
(M) belongs to Db

S (A), that is, both nM and Mn

are objects of Sn.

Since each M ∈ ModS (A) is coherent, the sequence (nM)n is locally stationary, in
other words M�−tor is locally annihilated by a fixed power �

N .

PROPOSITION 3.3.
1. S(X) is a subcategory of ModS (A).
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2. Let M be an �-torsion A-module such that M ∈ ModS (A). Then M ∈ S(X).

Proof.
(1): Let M ∈ S(X). For n ∈ �0 we have the exact sequences:

0 → �
n+1M → M → Mn → 0

and

0 →n M → M → �
n+1M → 0,

thus nM and Mn belong to S(X).
(2): We have M 
 M�−tor, hence we can cover X by open subsets U and choose

positive integers NU such that �
NU +1M|U = 0. Thus, M|U 
 MNU |U ∈ SNU (U) ⊂

S(U) so M ∈ S(X) since S is a stack. �

PROPOSITION 3.4. Let M be a coherent A-module. Then the following properties are
equivalent:

(1) M is an object of the category ModS (A);
(2) M0 ∈ S0;
(3) Mn ∈ Sn, for each n ≥ 0.

Proof.
(1 ⇒ 2): By definition.
(2 ⇒ 3): By Lemma 2.18 we have an exact sequence

Mn−1
�−→ Mn

ρ0,n−→ M0 → 0.

SinceM0 ∈ S0, we can proceed by induction to conclude thatMn ∈ Sn for every n ≥ 0.
(3 ⇒ 1): The statement being of local nature, we may assume the existence of

N ≥ 0 such that M�−torN 
 M�−tor.
Assume that Mn belongs to S for any n ≥ 0 and let us prove that nM belongs

to S.
Note that nM 
n M�−tor and that, by Corollary 2.17, for each n ≥ 0,M�−torn ∈ S.

Taking N big enough as above implies that M�−tor belongs to S, so by Proposition 3.3,
M�−tor ∈ ModS (A). Therefore nM ∈ S. �

PROPOSITION 3.5. ModS (A) is a Serre subcategory of Modcoh(A).

Proof. Consider an exact sequence in Modcoh(A)

0 → M1 →
f

M2 →
g

M3 → 0.

One has a distinguished triangle

grn
�
(M1) → grn

�
(M2) → grn

�
(M3)

+1−→,

so grn
�
(Mi) ∈ Db

S (A) if it is so for grn
�
(Mj) and grn

�
(Mk), with i �= j, k, for every n ∈ �0.

Therefore, it remains to prove that if M2 is an object of ModS (A) then M1 and
M3 belong to ModS (A). To prove this we consider the long exact sequence

0 →n M1 →n M2 →n M3 → M1,n → M2,n → M3,n → 0.
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The assumption on S entails that nM1,M3,n ∈ Sn. By Proposition 3.4, we also have
nM3 ∈ Sn and the proof follows. �

Hence, in view of (3), an A-module M is an object of ModS (A) if and only if
M�−tor and M�−tf are objects of ModS (A).

4. Extension of functors. Let now X , A and S be as in Section 3. In the sequel
we shall assume that S satisfies the following.

Assumption 4.1. For each open subset U ⊂ X , S(U) = ⋃
n Sn(U).

Let Y denote another complex analytic manifold and A′ an algebra of formal
deformation on Y . For simplicity we still denote by � the fixed section in the centre of
A′, thus both A and A′ are �[[�]]-algebras. Let us denote by B′ the corresponding basis
of neighbourhoods in Y . For a substack S ′ of M od(A′), for each n ∈ �0, according to
the notations of Section 3, we shall denote by S ′

n the substack:

S ′
n : V 	→ S ′

n(V ) = S ′(V ) ∩ Mod(A′
n|V ).

From now on we consider fixed a full abelian substack C ′ of M od(A′) as well as a full
Serre substack S ′ of C ′.

Firstly assume that we are given a �[[�]]-linear functor F : Mod(A) → Mod(A′).
Then, naturally, one defines a new functor F�, formal extension of F , by setting the
following.

DEFINITION 4.2. F� is the functor from Mod(A) to Mod(A′) :
(1) for M ∈ Mod(A),

F�(M) = lim←−
n≥0

F(Mn),

(2) given a morphism f : M → N in Mod(A),

F�(f ) : F�(M) → F�(N )

is the morphism associated to the morphisms

F(Mn)
F(fn)−−→ F(Nn),

where Mn
fn−→ Nn is induced by f .

Our goal now is to discuss the properties of F� when F is a functor from S to S ′

(in a sense to be clarified) and regarding its restriction to ModS (A). For that we need
to state additional assumptions.

Assumption 4.3. Henceforward we assume that S ′ plays the role of S in Condition
2.20 with respect to C ′ and B′.

Assumption 4.4. We fix a functor φ from the category Op(X) of open subsets of X
to the category Op(Y ) satisfying the following conditions:

� �(X) = Y ;
� For any open subset � ⊂ X and any open covering (Ui)i of �, (�(Ui))i is an

open covering of �(�).
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Let us denote by �∗S ′ the prestack defined by assigning to each open subset U ⊂
X the subcategory �∗S ′(U) := S ′(�(U)) of Mod(A′|�(U)), the restriction morphism
associated to U ⊃ V being the sheaf restriction from �(U) to �(V ).

Let now F be a �[[�]]-linear functor of prestacks: F : S → �∗S ′. In particular,
to each U ∈ Op(X), F assigns a �[[�]]-linear functor F(U) : S(U) → S ′(�(U))
compatible with the restriction morphisms in Op(X).

Whenever there is no ambiguity, we shall write F instead of F(X). We shall keep
this simplified notation up to the end of this section whenever there is no risk of
confusion.

According to the preceding conventions, given M ∈ S if �
n+1M = 0, then

�
n+1F(M) = 0, hence F |Sn takes values in S ′

n.
Let now U ∈ Op(X) and let us consider M ∈ ModS(U)(A|U ).
For n > k ≥ 0 denote by F(U)(ρk,n) the image of the epimorphism ρk,n : Mn →

Mk by F(U).
We obtain a projective system of A′|�(U)-modules (F(U)(Mn), F(U)(ρk,n)) and,

by Definition 4.2, an extended functor F(U)� : ModS(U)(A|U ) → Mod(A′|�(U)) given
by F(U)�(M) := lim←−

n≥0

F(U)(Mn). Recall also that the functor lim←− on the category of

projective systems of Mod(A′) commutes with restriction to open subsets, hence if we
start with M ∈ Mod(A′), for each open subset U ⊂ X ,

F�(M)|�(U) 
 (F |U )�(M|U ).

PROPOSITION 4.5. Let M be an �-torsion A-module in ModS (A). Then we have
F�(M) 
 F(M) in Mod(A′).

Proof. In accordance with Proposition 3.3, M ∈ S, hence we have a natural
morphism F(M) → F�(M). We shall see that this morphism is locally an isomorphism.
We can cover X by open subsets U ⊂ X and consider a family of positive integers NU

such that �
NU +1M|U = 0. By the assumption, {�(U)} is an open covering of Y . Since,

for each n ≥ NU , Mn|U 
 MNU |U 
 M|U , we obtain:

F�(M)|�(U) := lim←−
n≥0

F(Mn)|�(U) 
 F(U)(MNU |U ) 
 F(U)(M|U ) 
 F(M)|�(U),

which ends the proof. �
As a consequence, by the assumption on S we conclude:

F�|S 
 F.

REMARK 4.6. The existence of � is the main tool to prove Proposition 4.5, which
is a key property in the sequel. � would also be used if, with our machinery in
hand, we went on constructing the stack M odS (A) defined by U 	→ ModS (A)(U), the
category ModS (A)(U) being defined in U in a similar way to Definition 3.2. Indeed,
we might define F� not only as a morphism of categories but as a functor of prestacks
M odS (A) → �∗M od(A′). However, in view of the applications, it is enough to work
with F� defined as a morphism of categories (cf. Definition 4.2).
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4.1. The case of right exact functors. In the sequel we will assume that F(X) is
right exact.

LEMMA 4.7. Let M ∈ ModS (A). For each y ∈ Y, if K ∈ B′ is contained in a
neighbourhood V of y satisfying Condition 2.20 with respect to F(M0), then one has
Hj(K ; F(Mn)) = 0 for any j > 0 and n ∈ �0.

Proof. In accordance with the right exactness of F(X), for each n ∈ �, the sequence:

F(hnM/hn+1M) → F(Mn)
F(ρn−1,n)−−−−→ F(Mn−1) → 0

is exact and F(hnM/hn+1M) is a quotient of F(M0).
The proof then proceeds by induction as in Lemma 2.21(1). �
Let M ∈ ModS (A) and let us now denote by �n : F�(M) → F(Mn) the canonical

projection.

LEMMA 4.8. For each n ≥ 1, the sequence

F�(M)
�

n+1−−→ F�(M)
�n−→ F(Mn) → 0. (9)

is exact.

Proof. Using Lemma 2.18 and considering sufficiently small � in a basis B′ in the
conditions of Assumption 2.2 or Assumption 2.3, it follows that, for any N ≥ n, the
sequence

�(�; F(MN))
F(�n+1)−−−−→ �(�; F(MN))

F(ρn,N )−−−→ �(�; F(Mn)) → 0 (10)

is exact. In this way we obtain an exact sequence of projective systems satisfying the
Mittag-Leffler condition, so applying the functor lim←−

N

we obtain an exact sequence:

lim←−
N

�(�; F(MN)) → lim←−
N

�(�; F(MN)) → �(�; F(Mn)) → 0. (11)

If B′ is the basis of open sets, this immediately entails the exactness of (9). If B′ is the
basis of compact sets, we prove the exactness in the stalks.

Let y ∈ Y, and let us consider a fundamental system of open neighbourhoods
{�l}l∈� of y and a fundamental system of compact neighbourhoods {Kl}l∈� of y, with
Kl ∈ B′ and

Kl+1 ⊂ �l ⊂ Int(Kl). (12)

Applying lim−→
l

to the sequence obtained by replacing � by Kl in (11), we obtain an

exact sequence:

F�(M)y
�

n+1−−→ F�(M)y
�n−→ F(Mn)y → 0,

as desired. �
As a consequence, we have the following.

COROLLARY 4.9. Let M ∈ ModS (A). Then F�(M) is an �-complete A′-module.
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As a consequence of Corollary 4.9 together with Lemma 2.21 we conclude:

PROPOSITION 4.10. Let M ∈ ModS (A). Then F�(M) satisfies the vanishing
condition (8) on Condition 2.20 for sufficiently small K ∈ B′.

THEOREM 4.11. The functor F� is right exact.

Proof. Let M′ → M → M′′ → 0 be an exact sequence in ModS (A). It gives an
exact sequence of projective families with elements in S ′:

F(M′
n) → F(Mn) → F(M′′

n) → 0, for n ≥ 0. (13)

Thus, for every sufficiently small set � in a basisB′ in the conditions of Assumption
2.2 or Assumption 2.3, we get a projective system of exact sequences,

�(�; F(M′
n)) → �(�; F(Mn)) → �(�; F(M′′

n)) → 0, (14)

where each term satisfies the Mittag-Leffler condition. The proof then proceeds by the
same argument as in Lemma 4.8. �

COROLLARY 4.12. For M ∈ ModS (A) the sequence below is exact:

F�(M�−tor) → F�(M) → F�(M�−tf ) → 0. (15)

PROPOSITION 4.13. Let us assume that S ′ is a subcategory of Modcoh(A′). Then, for
every M ∈ ModS (A), F�(M) belongs to ModS ′(A′).

Proof. In view of Proposition 3.4 and Lemma 4.8 it is enough to prove that F�(M)
is A′-coherent, which in turn is reduced to prove that

�
nF�(M)/�

n+1F�(M)

is a coherent A′
0-module by Theorem 2.6 together with Corollary 4.9.

Since �
nF�(M)/�

n+1F�(M) = �
nF�(M)n 
 �

nF(Mn) the result follows. �

PROPOSITION 4.14. Consider the case where each Sn coincides with the stack
Modcoh(An). Assume, in addition, that F�(A) is �-torsion free. Then:

(1) F�(A) is c�c.
(2) For any M ∈ Modcoh(A), F�(M) is c�c.

Proof. Let us start by noting that, by the assumption, ModS (A) coincides with
Modcoh(A).

(1) The statement follows by Proposition 2.12, together with Propositions 4.10
and 4.9.

(2) Let us consider a local presentation

AN → AL → M → 0

for some N, L ∈ �. We get an exact sequence

F�(A)N → F�(A)L → F�(M) → 0,

and the result follows by Lemma 2.8. �
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4.2. The case of exact functors. Throughout this section we shall assume that F(U)
is exact for any open subset U ⊂ X .

In this case, applying Lemmas 2.19 and 4.8, we get a family of exact sequences

0 → F�(M)0
�n→ F�(M)n

h→ F�(M)n, ∀n.

Thus, again by Lemma 2.19, we conclude the following.

COROLLARY 4.15. Given M ∈ ModS (A), if M is �-torsion free, then so is F�(M).

THEOREM 4.16. F� is also an exact functor.

To prove this we shall need the following results.

LEMMA 4.17. The sequence of A′-modules

0 → F�(M�−tor) → F�(M) → F�(M�−tf ) → 0 (16)

is exact.

Proof. For each n ≥ 0, applying the exactness of F to (5), we obtain an exact
sequence of projective systems with elements in S ′:

0 → F((M�−tor)n) → F(Mn) → F((M�−tf )n) → 0. (17)

Thus, for every sufficiently small set � in a basisB′ in the conditions of Assumption
2.2 or Assumption 2.3, we get a projective system of exact sequences

0 → �(�; F((M�−tor)n)) → �(�; F(Mn)) → �(�; F((M�−tf )n)) → 0, (18)

and the result follows by a similar argument to that used in the proof of Lemma 4.8. �

COROLLARY 4.18. For every M ∈ ModS (A) and n ≥ 0 one has

nF�(M) 
 F(nM).

Proof. Fix n ≥ 0. By Proposition 4.5, F�(M�−tor) 
 F(M�−tor) in Mod(A′).
Then Lemma 4.17 and Corollary 4.15 together with the exactness of F imply the

chain of isomorphisms:

nF�(M) 
n F�(M�−tor) 
n F(M�−tor) 
 F(nM�−tor) 
 F(nM).

�

LEMMA 4.19. For any M ∈ ModS (A), F�(M) is c�c.

Proof. By virtue of Corollaries 4.9 and 4.15 and Propositions 4.10 and 2.12 the
assertion holds for M �-torsion free. To treat the general case, we observe that the
statement is of local nature on Y . We can cover Y by open subsets of the form �(U)
and consider integers NU such that �

NU F�(M�−tor)|�(U) 
 �
NU F(M�−tor|U ) = 0. Since

A′loc 
 �
NUA′loc, it follows that in �(U)

RHomA′(A′loc, F�(M�−tor)) = 0,
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hence F�(M�−tor) is c�c and so is F�(M) by Lemma 4.17. �
As a consequence of Corollary 4.18 together with Lemma 4.8 we get the following.

COROLLARY 4.20. For every M ∈ ModS (A) and n ≥ 0, we have a family of
isomorphisms in Mod(A′

n) :

Hj(grn
�
(F�(M))) 
 F(Hjgrn

�
(M)), ∀j ∈ �. (19)

End of the proof of Theorem 4.16
Given an exact sequence in ModS (A)

0 → M′ → M → M′′ → 0 (20)

we deduce that

0 → F�(M′) → F�(M) → F�(M′′) → 0

is exact, thanks to Lemma 4.19 and Corollary 4.20 by applying gr� to (20). This
achieves the proof of Theorem 4.16.

4.3. Unicity of extensions. Let us now discuss the unicity of the extensions of the
functors treated above.

Consider Serre substacks S and S ′ and a functor � : Op(X) → Op(Y ) as above.
Let G : S → �∗S ′ be a �[[�]]-linear functor. Let G be a functor from ModS (A) to
Mod(A′) such that G|S takes values in S ′.

DEFINITION 4.21. We shall say that G extends G(X) if G|S and G are isomorphic
functors.

In particular, if G extends G(X), the natural morphisms

G(M) → G(Mn) 
 G(Mn)

define a morphism of functors:

G(·) → G�(·).

PROPOSITION 4.22. Consider the case where each Sn coincides with the stack
Modcoh(An).

Assume that G(X) is right exact. Then, up to isomorphism, G� is the unique
right exact functor G : Modcoh(A) → Mod(A′) that extends G(X) and verifies G(A) =
lim←−

n

G(An).

Proof. Recall that ModS (A) coincides with Modcoh(A). First of all, it is clear that
G� satisfies the statement.

Suppose that G is another right exact functor that extends G(X). Taking a local
presentation of M ∈ Modcoh(A), say

AN → AL → M → 0,

https://doi.org/10.1017/S0017089513000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000116


120 A. RITA MARTINS, T. MONTEIRO FERNANDES AND D. RAIMUNDO

and applying G and G�, one gets the below diagram with exact rows:

G(A)N → G(A)L → G(M) → 0 → 0
↓ ↓ ↓ ↓ ↓

(G�(A))N → (G�(A))L → G�(M) → 0 → 0.

The statement then follows by the Five Lemma in view of the hypothesisG(A) = G�(A).
�

PROPOSITION 4.23. Consider the case where G(U) : S(U) → S ′(U) is an exact
functor for any U ∈ Op(X). Then up to isomorphism, G� is the unique (exact)
functor G that extends G(X), takes values in the category of c�c objects and verifies
nG(M) 
 G(nM) and G(M)n 
 G(Mn) (the last isomorphisms being associated to the
canonical morphisms).

Proof. Clearly, G� satisfies the statement.
On the other hand, consider a right exact functor G which extends G, goes to the

category of c�c A′-modules and commutes with n(·) and (·)n. Then applying gr to the
morphism G → G�, one concludes the isomorphism G 
 G�. �

We can now sum up the above discussion and state the main result of this section.

THEOREM 4.24. Let X and Y be complex manifolds, let A (resp. A′) be an algebra
of formal deformation on X (resp. on Y), let S (resp. S ′) be a full Serre substack
of M odcoh(A) (resp. a full Serre substack of a full substack C ′ of abelian categories of
M od(A′)) and let be given a functor � : Op(X) → Op(Y ) in the conditions of Assumption
4.4. Assume that S satisfies Assumption 4.1 and that S ′ satisfies Assumption 4.3 with
respect to C ′. Let F : S → �∗S ′ be a �[[�]]-linear functor and assume that for each open
subset U, F(U) is right exact. Then:

(1) F� : ModS (A) → Mod(A′) is a canonical right exact �[[�]]-linear extension
of F.

(2) When C ′ = M odcoh(A′), then F� takes values in ModS ′(A′).
(3) If for each open subset U ⊂ X, F(U) is exact, then so is F�, and up to

isomorphism, it is the unique extension of F that takes values in the category
of c�c objects and commutes with n(·) and (·)n.

REMARK 4.25. F� is canonical in the following sense: Keeping the preceding
notations, if we are given a functor H : S → S̃, a functor H̃ : S′ → S̃′, and a morphism
θ of functors �,
 : Op(X) → Op(Y ), we derive a functor of prestacks H̃∗ : ��S ′ →

�S̃ ′, together with an extension H� : ModS (A) → ModS̃ (A′). If moreover F : S →
�∗S′, F̃ : S̃ → 
∗S̃ ′ are given, one may define a morphism F → F̃ as being a morphism
of functors H̃∗ ◦ F → F̃ ◦ H (cf. diagram below):

S F−→ ��S ′

H ↓ ↓ H̃∗

S̃ F̃−→ 
�S̃ ′.
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In this situation, we get a morphism of functors F� → F̃� ◦ H� (cf. diagram below):

S ↪→ ModS (A)
F�−→ Mod(A′)

H ↓ ↓ H� ||
S̃ ↪→ ModS̃ (A)

F̃�−→ Mod(A′).

5. Application to DX [[�]]-modules. Let X be a complex manifold. Let OX be
the sheaf of holomorphic functions on X and let DX be the sheaf over X of linear
holomorphic differential operators of finite order.

As the title suggests, in this section we apply the results of Sections 2 and 3
for A = DX [[�]]. We shall extend functors defined on full Serre subcategories of
Modcoh(DX ) whose objects are characterized by local properties. As we shall see, these
full subcategories being the data of full Serre substacks, the functors we are interested
in define linear functors to which we apply the results given in Section 3. So we skip the
constant reference to substacks, as stated in Convention 3.1, referring to the categories
most of the time.

Recall that one denotes DX [[�]] by D�

X as well as OX [[�]] by O�

X . Also recall
that D�

X satisfies (i), (ii) and (iv) of Assumption 2.3 taking for B the family of Stein
compact subsets of X , for A0 the �-algebra DX and considering the prestack of good
DX -modules in the sense of [5].

The formal extension functor is defined by

(·)� : Mod(DX ) → Mod(D�

X ),

M 	→ M� = lim←−
n≥0

(D�

X/�
n+1D�

X ⊗DX M).

In particular M� is �-complete for any M ∈ Mod(DX ).
An exhaustive study of D�

X -modules has been done in [2], whose notations we
maintain here.

REMARK 5.1. D�

X induces, for each n ≥ 0, a (left and right) structure of free DX -
module of finite rank (n + 1) on the algebra D�

X,n := D�

X/�
n+1D�

X which becomes a
(D�

X ,DX )-bimodule (resp. a (DX ,D�

X )-bimodule).

Following [8], an object M ∈ Db
coh(D�

X ) is said to be holonomic (resp. regular
holonomic) if gr�(M) is an object of Db

hol(DX ) (resp. of Db
hol(DX )). The full subcategory

of Db
coh(D�

X ) of holonomic (resp. regular holonomic) objects is denoted by Db
hol(D�

X )
(resp. Db

rh(D�

X )).
Denote by �X the sheaf of holomorphic forms of maximal degree on X and set

�⊗−1
X := HomOX (�X ,OX ) as usual. We shall need the following functors:

D′
�� : Db(��

X ) → Db(��

X ), F 	→ RHom��

X
(F, ��

X ),

D′
D� : Db(D�

X ) → Db(D�

X ), M 	→ RHomD�

X
(M,D�

X ),

Sol� : Db
coh(D�

X ) → Db(��

X ), M 	→ RHomD�

X
(M,O�

X ),

DR� : Db
coh(D�

X ) → Db(��

X ), M 	→ RHomD�

X
(O�

X ,M),

�� : Db(D�

X ) → Db(D�

X ), M 	→ RHomD�

X
(M,D�

X ⊗OX �⊗−1
X )[dX ].
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Note that both D′
D� and �� preserve coherence.

When the base ring is fixed and there is no risk of confusion, we shall denote each
of the functors D′

�� and D′
D� simply by D′

�
.

As shown in Theorem 3.15 of [2], the following diagram is commutative:

Db
hol(D�

X )

Sol�
��

DR� �� Db
�−c(��

X )

D′
�������������

Db
�−c(��

X ).

(21)

REMARK 5.2. After [2], and according to our previous notations, the category
Modcoh(D�

X ) equals the category ModS (D�

X ), where the full Serre substack S is

U 	→ S(U) = ∪nM odcoh
(
D�

X ,n

)
(U).

Similarly, the category Modrh(D�

X ) is defined by the Serre substack

U 	→ S(U) = ∪nM odrh
(
D�

X ,n

)
(U).

5.1. Inverse image. Let f : Y → X be a morphism of complex manifolds. One
defines a right exact functor f ∗ :

⋃
n Mod(D�

X,n) → ⋃
n Mod(D�

Y,n) setting

f ∗(M) = OY ⊗f −1OX f −1M.

We refer, among others, to [10] for a quite general study of this functor for n = 0.
Let C ′ be the abelian full subcategory of pseudocoherent D�

Y -modules and let
S ′ ⊂ C ′ be the full subcategory of pseudocoherent D�

Y -modules satisfying Assumption
2.20 with respect to the basis B′ of Stein compact subsets of Y .

LEMMA 5.3. Let S be equal to
⋃

n Modcoh(D�

X,n). Then for any morphism f : Y → X
and any M ∈ S, f ∗(M) ∈ S ′.

Proof. Observe that, for given n ≥ 0, andM ∈ Sn, considering the f −1(DX )-module
structure on f −1(M) referred to in Remark 5.1, we get

f ∗(M) 
 DY→X ⊗f −1DX f −1M.

Recall that any coherent DY -module is locally good, and any pseudocoherent DY -
submodule of a good DY -module is itself good.

By [10], it is known that the inverse image of a coherent DX -module M is a
pseudocoherent DY -module which satisfies the following property:

1. In a suitable neighbourhood of each y ∈ Y , it is an inductive limit of good
DY -submodules.

Since inductive limits commute with cohomology on compact sets, it follows that
f ∗(M) satisfies (8). Also note that condition (1) is closed for quotients and hence for

submodules in the abelian category of pseudocoherent modules. Indeed, given M̃ a
pseudocoherent module satisfying (1) and given a pseudocoherent submodule Ñ of
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M̃, the quotient

M̃/Ñ

is pseudocoherent. If in an open set � we have M̃|� 
 lim−→
α

Mα, for given good

submodules Mα of M̃, since their images in M̃/Ñ are locally finitely generated,
hence coherent, hence good, it follows that each Ñ ∩ Mα is good. By the exactness of
inductive limits we get that Ñ |� 
 lim−→

α

Ñ ∩ Mα. This ends the proof. �

In what follows, we shall denote by S the full Serre substack

U 	→ S(U) =
⋃

n

M odcoh(DX,n)(U)

of M odcoh(D�

X ).
Let us denote by � : Op(X) → Op(Y ) the functor given by �(U) = f −1(U)

together with the inclusions U ⊃ V 	→ �(U) ⊃ �(V ). Clearly, � satisfies Assumption
4.4.

In view of Remark 5.2 and Convention 3.1, by Theorem 4.24 we are in the
conditions to define a right exact functor extending f ∗:

f ∗,� : Modcoh(D�

X ) → Mod
(
D�

Y

)
,

given by

f ∗,�(M) = lim←−
n≥0

(
OY ⊗

f −1(OX )
f −1Mn

)
,

and we have:

f ∗,�
(
O�

X

) 
 O�

Y . (22)

Indeed, one has

f ∗,�(O�

X ) = lim←−
n≥0

(
OY ⊗

f −1(OX )
f −1(O�

X/�
n+1O�

X )
)


 lim←−
n≥0

(
OY ⊗

f −1(OX )
f −1(OX ⊗

�X

(��

X/�
n+1��

X ))
)


 lim←−
n≥0

(
OY ⊗

�Y

(��

Y/�
n+1��

Y )
)


 O�

Y .

Let us consider the (D�

Y , f −1(D�

X ))-bimodule

K := f ∗,�(D�

X ) = lim←−
n≥0

(
OY ⊗

f −1(OX )
f −1(D�

X/�
n+1D�

X )
)

.

Since for each n, f −1(D�

X/�
n+1D�

X ) is isomorphic to f −1(DX ) ⊗�Y ��

Y/�
n+1��

Y we
conclude the following.
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LEMMA 5.4. As a (D�

Y , f −1(D�

X ))-bimodule K is isomorphic to the formal extension
(DY→X )� of the transfer module DY→X . In particular it is �-complete.

PROPOSITION 5.5. Let f : Y → X be a morphism. Then:
1. K is c�c.
2. For each M ∈ Modcoh(D�

X ), f ∗,�(M) is c�c.
3. For M ∈ Modcoh(D�

X ), one has an isomorphism in Mod(D�

Y ):

K ⊗
f −1(D�

X )
f −1M 
 f ∗,�(M). (23)

4. For each M ∈ Db
coh(D�

X ), K
L⊗

f −1(D�

X )
f −1M is c�c.

Proof. (1) Follows by Proposition 4.14(1) since K 
 D�

Y→X is �-torsion free.
(2) Follows by Proposition 4.14(2).
To prove (3), note that M 	→ K ⊗

f −1(D�

X )
f −1(M) is a right exact functor that extends

f ∗ in the sense of Definition 4.21. Hence, the result follows by Proposition 4.22.

(4) Let us now consider M ∈ Db
coh(D�

X ). Given a local free resolution

D�,•
X

QIS→ M,

it yields a quasi-isomorphism

K• QIS→ K
L⊗

f −1(D�

X )
f −1M

in Db(D�

Y ). To conclude the statement, it is enough to apply Lemma 2.8. �

REMARK 5.6. As a consequence of (3) of Proposition 5.5, we give a meaning to
Lf ∗,� as follows:

For M ∈ Db
coh(D�

X ) we set:

Lf ∗,�(M) := K
L⊗

f −1(D�

X )
f −1M.

More precisely, the left-hand side of (23) defines a left derivable right exact
functor If on Mod(D�

X ), which is equivalent to f ∗,� on Modcoh(D�

X ). Since any
M ∈ Modcoh(D�

X ) admits locally a free, hence If -projective, resolution, we may denote

without ambiguity the derived functor K
L⊗

f −1(D�

X )
f −1(·) by Lf ∗,�(·).

PROPOSITION 5.7. Let M ∈ Db
hol(D�

X ). Then Lf ∗,�(M) ∈ Db
hol(D�

Y ). The same
statement holds if we replace the assumption of holonomicity by that of regular
holonomicity.

Proof. Since gr�(Lf ∗,�(M)) 
 DY→X
L⊗

f −1(DX )
f −1gr�(M) (indeed, as shown in

Proposition 1.4.3 of [8], gr� commutes with tensor product and also with f −1), the result
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follows from the analogous property for holonomic D-modules due to Kashiwara ([3])
together with Proposition 2.11. �

5.2. The non-characteristic inverse image. Recall that, in the sense of [6], f is said
to be non-characteristic for M ∈ Modcoh(DX ) if

f −1
π (Char(M)) ∩ ker fd ⊂ Y ×X T∗

X X,

where Char(M) denotes the characteristic variety of M.
Let us now denote by NC(f ) the Serre substack of M odcoh(DX ), which, to each

open subset U ⊂ X , assigns NC(f )(U), the full Serre subcategory whose objects M ∈
Modcoh(DX |U ) are such that f |f −1(U) is non-characteristic for M.

We can restrict f ∗ to NC(f ) as a ��-linear functor of stacks. Then for each
open subset U ⊂ X , f ∗(U) is exact ([6], Proposition 11.2.12), and takes values in
Modcoh(DY |f −1(U)).

Therefore, by Theorem 4.24, the restriction of the extension functor f ∗,� to
ModNC(f )(D�

X ) is an exact functor

f ∗,� : ModNC(f )(D�

X ) → Modcoh
(
D�

Y

)
.

We shall denote by Db
NC(f )(D�

X ) the subcategory of Db
coh(D�

X ) whose objects M are such
that gr�(M) is non-characteristic for f .

In particular, for any f , O�

X ∈ ModNC(f )(D�

X ).
Recall that for any coherent DX -module, one has a well-defined morphism in

Db(DY ):

f −1(RHomDX (M,OX )) → RHomDY (Lf ∗(M),OY ), (24)

which is an isomorphism when M is non-characteristic for f (Cauchy–Kowalewskaia–
Kashiwara’s Theorem).

This result may be generalized to the formal setting as follows.

THEOREM 5.8 Cauchy–Kowalewskaia–Kashiwara. Assume that M belongs to
Db

NC(f )(D�

X ). Then one has a natural isomorphism in Db(��

Y ):

f −1RHomD�

X

(
M,O�

X

) 
 RHomD�

Y

(
Lf ∗,�(M),O�

Y

)
. (25)

Proof. By Propositions 2.13 and 2.15, we have a natural morphism between c�c
objects

f −1RHomD�

X

(
M,O�

X

) → RHomD�

Y

(
K

L⊗
f −1(D�

X )
f −1(M),K

L⊗
f −1(D�

X )
f −1O�

X

)
(see Exercise II.24 in [6] for the construction of the morphism).

Besides, by (22) and (23), K ⊗
f −1(D�

X )
f −1(O�

X ) 
 O�

Y . The result then follows by

Propositions 5.5 and 2.11. �
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We may also introduce the so-called extraordinary inverse image associated to f , which
we denote by Lf !,�:

Lf !,� : Db
coh(D�

X ) → Db(D�

Y ), M 	→ ��(Lf ∗,�(��(M))).

We refer to [12] for that notion in the D-module case.
By Proposition 5.7 and duality we get the following.

COROLLARY 5.9. Let M ∈ Db
hol(D�

X ). Then, Lf !,�(M) ∈ Db
hol(D�

Y ).

5.3. Direct image. In this section we discuss the possible application or
adaptation of our results to the functor of direct image. We shall work with right
D�-modules but all the results are easily adapted to the case of left D�-modules.

We identify the abelian category of right D�-modules with the category
Mod(D�

Y
op

).
Let f : Y → X be a morphism of complex manifolds. Let K denote the associated

transfer module.

5.3.1. The case of a closed embedding. Let us treat the case where f = i : Y ↪→ X ,
the embedding of a closed submanifold. In this caseDY→X is flat overDY and we obtain
an exact functor

i∗ : Modcoh(DY
op) → Modcoh(DX

op), M 	→ i∗(M) := i∗(M ⊗DY DY→X ).

Here the full Serre substacks S and S ′ are respectively M odcoh(DY
op) and

M odcoh(DX
op). We can choose as a candidate for the functor � : Op(Y ) → Op(X)

the data U 	→ �(U) := X \ (Y \ U) which clearly satisfies Assumption 4.4 and we are
in conditions to apply Theorem 4.24 to extend i∗ as an exact functor

i�∗ : Modcoh

(
D�

Y
op

)
→ Modcoh

(
D�

X
op

)
,

i�∗ (M) := lim←−
n≥0

i∗(Mn ⊗DY DY→X ).

5.3.2. Discussion of the general case. By Lemma 5.4 we have K 
 (DY→X )�,
hence

Kn 
 D�

Y,n ⊗DY DY→X .

So for M ∈ Mod(D�

Y
op

), we get natural isomorphisms in Mod(f −1(DX )�

n ):

Mn ⊗D�

Y
K 
 Mn ⊗D�

Y
Kn 


(
Mn ⊗D�

Y
D�

Y,n

)
⊗DY DY→X 
 Mn ⊗DY DY→X . (26)

Since projective limits commute with direct images, (26) entails a morphism

f∗(M ⊗D�

Y
K) → lim←−

n≥0

f∗(Mn ⊗DY DY→X ), (27)
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which defines a ��-linear transformation of functors of stacks. When f is a closed
embedding, as proved in Corollary 5.16, it is an isomorphism of functors. Indeed, we
do not know if it is an isomorphism in general, as explained in Remark 5.15. However,
we have the following partial results.

LEMMA 5.10. If M ∈ Modcoh(D�

Y
op

) is such that M ⊗D�

Y
K is �-complete, then (27)

is an isomorphism.

Proof. If M ⊗D�

Y
K is �-complete, then

M ⊗D�

Y
K 
 lim←−

n≥0

(M ⊗D�

Y
K)n = lim←−

n≥0

(��

Y,n ⊗��

Y
(M ⊗D�

Y
K)) 



 lim←−
n≥0

(Mn ⊗D�

Y
K) 
 lim←−

n≥0

(Mn ⊗DY DY→X ),

and since f∗ commutes with projective limits the result follows. �

LEMMA 5.11. For any M ∈ Modcoh(D�

Y
op

), M ⊗D�

Y
K is c�c.

Proof. By Proposition 5.5, K is c�c. On the other hand, we can choose a local
presentation of M by locally free D�

Y -modules to which we apply the right exact
functor · ⊗D�

Y
K. Hence, M ⊗D�

Y
K is locally the cokernel of a ��

Y -linear morphism of
chc-modules and the result follows by Lemma 2.8. �

COROLLARY 5.12. Let M ∈ Modcoh(D�

Y
op

). Then (27) is an isomorphism in each one
of the following cases:

(i) M is an �-torsion module.
(ii) M ⊗D�

Y
K is �-torsion free.

Proof. By Lemma 5.10 it is enough to prove that in both cases M ⊗D�

Y
K is �-

complete.
(i) If M is an �-torsion module and since the result is local, we may assume that

there exists some N > 0 such that �
NM = 0. This implies that �

N(M ⊗D�

Y
K) 
 0 and,

in particular, M ⊗D�

Y
K is �-complete.

(ii) If M ⊗D�

Y
K is an �-torsion free module, by Lemma 5.11 together with [8],

Lemma 1.5.4, it is �-complete. �
The following result is possibly well known but we find it useful to prove here.

LEMMA 5.13. Let F ∈ Mod�−c(��

X ). Then F is �-complete.

Proof. We shall prove that the natural morphism F → lim←−
n≥0

Fn is an isomorphism.

By the triangulation theorem (Proposition 8.2.5 of [6]) we may assume that F
is a constructible sheaf on the realization of a finite simplicial complex (S,�) (we
refer to [6] for the notation) and, for each n, Fn being the cokernel of the morphism
�

n+1 : F → F , it is also constructible on (S,�). It follows that there exists a locally finite
open covering {U(σ )}σ∈� of S such that, for each σ ∈ � and x ∈ |σ |, �(U(σ ); F) 
 Fx

and �(U(σ ); Fn) 
 (Fn)x for every n ∈ �.
As a finitely generated ��-module, Fx is �-complete and hence

�(U(σ ); F) 
 Fx 
 lim←−
n≥0

(Fx)n 
 lim←−
n≥0

(Fn)x 
 lim←−
n≥0

�(U(σ ); Fn) 
 �(U(σ ); lim←−
n≥0

Fn),
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and the result follows. �

COROLLARY 5.14. If M ∈ Modcoh(D�

Y
op

) is holonomic, then M ⊗D�

Y
O�

Y is �-
complete. In particular, when f : Y → {pt}, (27) is an isomorphism for every holonomic
D�

Y -module M.

Proof. Since in this case K 
 O�

Y , then

M ⊗D�

Y
K 
 H0(RHomD�

Y
(D′

�
M,O�

Y ))

is �-constructible by [2, Theorem 3.13] and the result follows by Lemma 5.13. �
We then infer that (27) is an isomorphism if Y is a complex line,M ∈ Modcoh(D�

Y
op

)
has a discrete support and f is the constant map f : Y → {pt}. Indeed, as proved in
[2], the support of M coincides with the support of M0, so if supp (M) is discrete, M
is holonomic and the statement follows by Corollary 5.14.

REMARK 5.15. As a matter of fact we did not find a counter-example for the
conjecture that if M is D�

Y -coherent, then M ⊗D�

Y
K is always �-complete. Of course,

such a counter-example, to exist, should firstly occur in the smooth case. This difficulty
prevented us from applying successfully our results to extend the functor of proper
direct image except for a closed embedding as above.

COROLLARY 5.16. When f is a local immersion, the morphism (27) is an isomorphism
for every M ∈ Modcoh(D�

Y
op

).

Proof. By Theorem 2.10, K is flat over D�

Y . Moreover, as can be checked by the
reader, (f −1DX )� is an algebra of formal deformation.

Since K is coherent over (f −1DX )�, M ⊗D�

Y
K is coherent over (f −1DX )�, hence it

is �-complete. Since �-completeness is a local property, the result follows.

�

5.3.3. An alternative extension. The idea now is to use the transfer module K
to mimic the D-module construction of direct images. The (D�

Y , f −1(D�

X ))-bimodule
structure on K allows us to define functors

Rf �

∗ , Rf �

!
: Db

(
D�

Y
op

)
→ Db

(
D�

X
op

)
of direct image and proper direct image respectively by

Rf �

∗ (M) := Rf∗(M
L⊗D�

Y
K),

Rf �

!
(M) := Rf!(M

L⊗D�

Y
K).

We remark that Corollary 5.16 implies that these definitions coincide with i�∗ for
a closed embedding i.

LEMMA 5.17. Let M ∈ Db
coh(D�

Y
op

). Then Rf �

∗ (M) is c�c.
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Proof. Recall that K is c�c by Proposition 5.5. Consider the canonical
isomorphisms in Db(��

X ):

M
L⊗D�

Y
K 
 RHomD�

Y
(D′

�
M,D�

Y )
L⊗D�

Y
K 
 RHomD�

Y
(D′

�
M,K).

Hence, M
L⊗D�

Y
K is also c�c. Finally, we conclude that Rf �

∗ (M) is c�c by Proposition
2.14. �

We are now able to extend toD�-modules the classical coherence criterion of direct
images of D-modules.

THEOREM 5.18. Suppose that M ∈ Db
good(D�

Y
op

) (resp. M ∈ Db
hol(D�

Y
op

)) and that f
is proper on supp(M). Then,

Rf �

∗ (M) ∈ Db
good

(
D�

X
op

)
(resp. Rf �

∗ (M) ∈ Db
hol(D�

X
op

).)

Proof. Since by assumption gr�(Rf �

∗ (M)) is an object of Db
good(DX

op) (resp.

Db
hol(DX

op)), the conclusion follows by applying Theorem 2.9 to the object Rf �

∗ (M) ∈
Db(D�

X
op

). �

5.4. Review on specialization, vanishing cycles and nearby-cycles.

5.4.1. Review on Sato’s specialization, vanishing and nearby-cycles. We refer to
Chapters IV and VIII of [6] for a detailed study of the constructions below.

Let X be a complex analytic manifold, and Y be a submanifold of codimension
d. Recall that � denotes a unital commutative Noetherian ring with finite global
dimension. Denote by X̃Y the normal deformation of Y in X . This is a real analytic
manifold endowed with two canonical maps p : X̃Y → X and t : X̃Y → � such that
TY X is identified to the real analytic hypersurface of X̃Y given by the equation t = 0.

Denote by s : TY X ↪→ X̃Y the canonical embedding. Set � = t−1(�+)
j

↪→ X̃Y and
denote by p̃ the restriction of p to �.

Recall that the Sato’s specialization functor on Db(�X ) is given by F 	→
ν�

Y (F) := s−1�j∗̃p−1F . Recall that ν�
Y induces a functor: Db

�−c(�X ) → Db
�−c(�TY X ).

Let us now assume that Y is a complex closed smooth hypersurface of X given as
the zero locus of a holomorphic function f : X → �.

Let �̃∗ be the universal covering of �∗ = �\{0}, and let p : �̃∗ → �∗ be the
projection. Denote by X̃∗ the fibred product X ×� �̃∗ and let p̃ be the projection
associated to id ×� p:

X̃∗ ��

p̃

��

�̃∗

p

��
Y i

�� X
f

�� �.
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Recall that the nearby-cycle functor ψ�
Y : Db(�X ) → Db(�Y ) is defined by

ψ�
Y (F) := i−1R̃p∗̃p−1(F),

and that the vanishing-cycle functor φ�
Y : Db(�X ) → Db(�Y ) assigns to an object F ∈

Db(�X ) the mapping cone of i−1F → ψ�
Y (F). The natural morphism ψ�

Y (F) → φ�
Y (F)

is called the canonical morphism and denoted by can. Both ψ�
Y (F) and φ�

Y (F) induce
functors Db

�−c(�X ) → Db
�−c(�Y ).

LEMMA 5.19.
(a) If g : X → Z is a morphism of complex manifolds and F ∈ Db(��

X ), then in
Db(�Z), �g��

∗ F 
 �g�
∗ F and �g��

! F 
 �g�
! F.

(b) For every F ∈ Db(��

X ), we have ν��

Y (F) 
 ν�
Y (F), and if Y is a smooth

hypersurface of X, we also have ψ��

Y (F) 
 ψ�
Y (F).

Proof. Let I• be a flabby resolution of F in Db(��

X ). Then each Ij is also flabby
in Mod(�X ). Hence, both �g��

∗ F and �g�
∗ F are quasi-isomorphic to g∗(I•). Similarly,

using a c-soft resolution of F instead, we get �g��

! F 
 �g�
! F , which proves (a). (b)

follows as a consequence of (a). �
Henceforth we keep the notations νY , ψY , φY for the specialization or the nearby-

cycle/vanishing-cycle functors on sheaves of ��-modules.

REMARK 5.20. Given F ∈ Db(��

X ), since gr� commutes with inverse and direct
(proper direct) image, we conclude that gr�(νY (F)) 
 νY (gr�(F)), gr�(φY (F)) 

φY (gr�(F)) and gr�(ψY (F)) 
 ψY (gr�(F)).

5.4.2. Review on specialization, vanishing and nearby-cycle functors for D-modules.
We start by recalling the (exact) functor of specialization of DX -modules (along a
submanifold) as developed in [4]. For the basic material besides [4], we refer to [9], [11]
and [13].

Let Y ⊂ X be a submanifold of X and denote by I the defining ideal of Y and
by π : TY X → Y the projection of the normal bundle to Y . One denotes by VY

•(DX )
(or by V• for short once Y is fixed) the Kashiwara–Malgrange V -filtration of DX with
respect to Y :

Vk(DX ) = {
P ∈ DX : P(Ij) ⊂ Ij+k,∀j, k ∈ � j, j + k ≥ 0

}
.

The graduate ring grV (DX ) is isomorphic to π∗D[TY X ], where D[TY X ] denotes the sheaf
of homogeneous differential operators over TY X .

A coherent DX -module M always admits locally a good V -filtration.
Denote by θ the Euler field on TY X .
Recall that a coherent DX -module M is specializable along Y if for every local

good V -filtration V•(M) on M there is locally a non-zero polynomial b ∈ �[s] such
that

b(θ − k)Vk(M) ⊂ Vk+1(M), ∀k ∈ �,

where b is called the Bernstein–Sato polynomial or a b-function associated to the
filtration V•.
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In the sequel, when there is no risk of confusion, we often write specializable
instead of specializable along Y, once the submanifold Y is fixed.

Denote by G a section of the canonical morphism � → �/� and fix on � the
lexicographical order. Let M be a specializable DX -module and denote by VG(M) a
good V -filtration of M admitting locally b-function whose zeros are contained in G.
Such condition defines a global filtration (Kashiwara’s canonical V-filtration) on M,
which is uniquely defined.

The specializable of M along Y is the coherent DTY X -module:

νY (M) = DTY X ⊗D[TY X] π−1grVG (M),

and this definition does not depend on the choice of G.

REMARK 5.21. Let us fix G as above. Given an exact sequence of specializable
DX -modules:

0 → M1 → M → M2 → 0

if bi(s) is the local Bernstein–Sato polynomial for the canonical V -filtration on M1, i =
1, 2, then b1(s) · b2(s) is the Bernstein–Sato polynomial for the canonical V -filtration
on M (see for example [11, Proposition 4.2]).

Denote by Modsp(DX ) the full Serre subcategory of Modcoh(DX ) of specializable
DX -modules along Y . The assignment U 	→ Modsp(DX |U ) defines a full Serre substack
of M odcoh(DX ).

The correspondence M 	→ νY (M) determines an exact functor from Modsp(DX )
to Modcoh(DTY X ).

Now let us suppose that Y is a complex closed smooth hypersurface of X given by
the zero locus of a holomorphic function f : X → �. Recall that in this case, we can
also associate to a specializable DX -module M the nearby-cycle module

ψY (M) 
 gr0
VG

(M) = V0
G(M)

V1
G(M)

,

and the vanishing-cycle module

φY (M) 
 gr−1
VG

(M) = V−1
G (M)

V0
G(M)

.

Thus, ψY , φY : Modsp(DX ) → Modcoh(DY ) are exact functors.

5.5. Specialization, vanishing cycles and nearby-cycles for D�

X -modules. Let Y be
a submanifold of a complex manifold X . According to the preceding section, we fix
a section G of the canonical morphism � → �/� to which all canonical V -filtrations
mentioned below will refer.

Given M ∈ Modcoh(D�

X,n), we say that M is specializable along Y and denote
it by M ∈ Modsp(D�

X,n) if it is so when endowed with the structure of DX -module as
explained in Remark 5.1. We obtain a full Serre substackS of M odcoh(D�

X ) by assigning
to each open subset U ⊂ X the full Serre subcategory S(U) = ∪n≥0Modsp(D�

X,n|U ).
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DEFINITION 5.22. We say that a coherent D�

X -module M is specializable along Y
if M ∈ ModS (D�

X ).

Equivalently, gr�(M) is specializable in the DX -modules sense, that is, both 0M
and M0 are specializable DX -modules along Y .

EXAMPLE 5.23. Every coherent D�

X -module M such that supp(M) ⊂ Y is
specializable along Y . Indeed, we have

supp(gr�(M)) = supp(0M) ∪ supp(M0) ⊂ supp(M) ⊂ Y.

Hence, 0M and M0 are specializable along Y .

In the sequel, for short, we shall often say thatM is specializable omitting reference
to the submanifold Y .

We denote by Modsp(D�

X ) the category ModS (D�

X ).
As a functor � : Op(X) → Op(TY X) satisfying Assumption 4.4, we consider

the data U 	→ �(U) = π−1(U ∩ Y ), where π : TY X → Y denotes the projection.
According to Theorem 4.24, we are in the condition to extend (uniquely up to an
isomorphism) the exact functor

νY : Modsp(DX ) → Modcoh(DTY X )

as an exact functor

ν�

Y : Modsp(D�

X ) → Modcoh(D�

TY X )
M 	→ ν�

Y (M) := lim←−
n≥0

νY (Mn).

DEFINITION 5.24. Given M ∈ Modsp(D�

X ), we shall say that ν�

Y (M) is the
specializable of M (along Y ).

Propositions 3.3 and 4.5 entail the following result.

COROLLARY 5.25. Let M be an �-torsion D�

X -module. Then M is specializable as a
D�

X -module if and only if M is specializable in the DX -modules sense. Moreover, if M is
specializable, then ν�

Y (M) 
 νY (M) in Modcoh(DTY X ).

By Proposition 3.4 we have the following characterization.

COROLLARY 5.26. Let M be a coherent D�

X -module. Then the following properties
are equivalent:

(1) M is a specializable D�

X -module.
(2) M0 is a specializable DX -module.
(3) Mn is specializable as a DX -module for each n ≥ 0.

REMARK 5.27. Let M be a specializable D�

X -module. Regarding gr�(M) as an
object of Db(DX ), we have a specializable complex in the sense of [9]. Since

gr�ν�

Y (M) 
 lim←−
n≥0

gr�νY (Mn)
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and, for each n, by construction, gr�νY (Mn) is isomorphic to νY gr�(Mn), we get a
morphism

gr�ν�

Y (M) → νY gr�(M).

Theorem 4.24 asserts that this morphism is an isomorphism in Db(DTY X ).

REMARK 5.28. Since the ringD�

X is neither filtered by the order nor by V -filtrations,
the notion of Bernstein polynomial for a specializable D�

X -module does not make sense
in general. However, we have the following result.

PROPOSITION 5.29. Let M be a specializable �-torsion freeD�

X -module. Assume that
b(s) is a Bernstein polynomial for the canonical V-filtration on M0 as a specializable
DX -module. Then, bn(s) := (b(s))n+1 is a Bernstein polynomial of Mn for the canonical
V-filtration.

Proof. The sequence

0 → M0
�−→ M1

ρ0,1−→ M0 → 0,

together with Remark 5.21 entails that if b(s) is a Bernstein polynomial for the canonical
V -filtration onM0, then (b(s))2 is a Bernstein polynomial for the canonical V -filtration
on M1, and we proceed by induction applying the same argument to the sequence

0 → Mn−1
�−→ Mn

ρ0,n−→ M0 → 0.

�
In the examples below, we assume X = �m, for some m ∈ �, with coordinates

(t, x1, ..., xm−1), and Y = {(t, x1, ..., xm−1) ∈ �m : t = 0}.
EXAMPLE 5.30. Let M be a D�

X -module with one generator, let us say M 
 D�

X/J
for a coherent ideal J . Then we have a chain of isomorphisms of DX -modules,

Mn 
 D�

X

�n+1D�

X + J

 ⊕i=0,...,nDX �

i

J̃n
,

where J̃n is the submodule of ⊕i=0,...,nDX�
i given by

J̃n = J
�n+1D�

X ∩ J
.

Suppose M = D�

X/D�

X b(t∂t), where b(s) is a polynomial in ��[s], b(s) = ∑m
i=0 ai(�)si

for some m ∈ � and, for i ≥ 0, ai(�) := ∑
j≥0 aij�

j ∈ ��. Set b0(s) = ∑m
i=0 ai0si.

Since M0 
 DX/DX b0(t∂t), M is specializable if and only if b0(s) is a non-zero
polynomial in �[s]. We shall calculate particular cases in the following examples.

EXAMPLE 5.31. Let M = D�

X/D�

X (�t∂t + 1). Clearly, M0 = 0, hence Mn = 0 for
every n, which entails ν�

Y (M) = 0.

EXAMPLE 5.32. Assume that J = D�

X (t∂t − �). Then

J̃n 
 {P0t∂t +
n∑

i=1

(Pit∂t − Pi−1)�i : Pi ∈ DX }.
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Therefore, Mn can be identified with the cokernel of the DX -linear morphism from
Dn+1

X to itself given by the right multiplication of the matrix,

An =

⎡⎢⎢⎢⎢⎣
t∂t −1 0 ... 0 0
0 t∂t −1 ... 0 0
... ... ... ... ... ...

0 0 0 ... t∂t −1
0 0 0 ... 0 t∂t

⎤⎥⎥⎥⎥⎦ .

Denoting by u1,n, ..., un+1,n, respectively, the classes of the elements of the canonical
basis of Dn+1

X in Mn, we obtain a system of generators for Mn satisfying

(t∂t)u1,n = 0, (t∂t)uk,n = uk−1,n,

for k = 2, ..., n + 1. Classically, one derives an isomorphism

DX/DX (t∂t)n+1 → Mn

defined by

1 modDX (t∂t)n+1 	→ un+1,n.

Therefore, denoting by (x, τ ) the associated coordinates in TY X , we obtain νY (Mn) 

DTY X/DTY X (τ∂τ )n+1.

Since t∂t acts by multiplication by � in Mn, the action of � in νY (Mn) coincides
with the multiplication by τ∂τ , hence as a D�

TY X -module

νY (Mn) 
 D�

TY X

D�

TY X (τ∂τ − �) + �n+1D�

TY X

,

and it follows that

ν�

Y (M) = lim←−
n≥0

νY (Mn) 
 D�

TY X

D�

TY X (τ∂τ − �)
.

Now assume that Y is a complex closed smooth hypersurface of X given by the
zero locus of a holomorphic function f : X → �. We can extend the exact functors
ψY , φY : Modsp(DX ) → Modcoh(DY ), respectively, as functors

ψ�

Y : Modsp(D�

X ) → Modcoh(D�

Y )
M 	→ ψ�

Y (M) := lim←−
n≥0

ψY (Mn),

φ�

Y : Modsp(D�

X ) → Modcoh(D�

Y )
M 	→ φ�

Y (M) := lim←−
n≥0

φY (Mn).

One can rewrite Propositions 4.5 and 4.10 and Corollaries 4.18 and 4.20 replacing
the functor F respectively by ψY and φY .
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EXAMPLE 5.33. Keeping the notations of above examples, we infer from the results

of [13] that, for each n ≥ 0, ψY (Mn) is quasi-isomorphic to the complex νY (Mn)
τ−1−−→

νY (Mn), that is,

ψY (Mn) 
 DTY X

DTY X (τ − 1) + DTY X (τ∂τ )n+1

 Dn+1

Y .

Thus,

ψ�

Y (M) 
 D�

TY X

D�

TY X (τ − 1) + D�

TY X (τ∂τ − �)
,

in other words ψ�

Y (M) is quasi-isomorphic to the complex ν�

Y (M)
τ−1−−→ ν�

Y (M).

5.5.1. The (regular) holonomic case. Consider the Serre subcategory S of
holonomic (respectively regular holonomic) DX -modules.

Similar to [2] for the case n = 0, we see by Proposition 3.4 that if M is a holonomic
(respectively, regular holonomic) D�

X -module, then each Mn is a holonomic (regular
holonomic) for the DX -module structure of D�

X,n given in Remark 5.1.
Recall that every holonomic DX -module is specializable along any submanifold

Y , and the specialized module is also a holonomic module. Similarly, we have the
following.

COROLLARY 5.34. Any holonomic D�

X -module M is specializable along any
submanifold Y. Moreover ν�

Y (M) is a holonomic D�

TY X -module. If M is regular
holonomic, so is ν�

Y (M).
When Y is a smooth hypersurface if M is holonomic (resp. regular holonomic),

ψ�

Y (M) and φ�

Y (M) are holonomic (resp. regular holonomic) as D�

Y -modules.

5.5.2. Comparison theorems. Let us recall that Kashiwara constructed in [4,
Theorem 1] for a regular holonomic DX -module M (or, more generally, for an object
of Db

rh(DX )), canonical isomorphisms in Db(�TY X ){
SolDTY X (νY (M)) ∼−→ νY (SolDX (M))

DRDTY X (νY (M)) ∼←− νY (DRDX (M))
,

and, when Y is a smooth hypersurface of X , canonical isomorphisms in Db(�Y ){
SolDY (ψY (M)) ∼−→ ψY (SolDX (M))

SolDY (φY (M)) ∼−→ φY (SolDX (M))

and {
DRDY (ψY (M)) ∼←− ψY (DRDX (M))

DRDY (φY (M)) ∼←− φY (DRDX (M))
.
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More precisely, setting:

ϕ1 = νY ◦ DR : Modrh(DX ) → Db(�TY X ),

ϕ2 = DR ◦ νY : Modrh(DX ) → Db(�TY X ),

Kashiwara’s construction gives a natural transformation ϕ1

K→ ϕ2. In particular,

if the modules are provided with a �� action, for any f ∈ �� we get a commutative
diagram in Db(�TY X ):

νY (DR(M))
f ��


K (M)

��

νY (DR(M))


K (M)

��
DR(νY (M))

f �� DR(νY (M)).

As a consequence, 
K is ��-linear.
We shall now generalize these isomorphisms to the �-setting.
Denote by �

j
X the sheaf of holomorphic forms of degree j on X . Consider the De

Rham complex of X :

0 → �0
X

d→ �1
X → · · · → �n−1

X
d→ �n

X → 0.

Here d denotes the usual exterior derivatives.
For a D�

X -module M we have DR(M) 
 �•
X ⊗OX M� in Db(��

X ). Indeed, each
�

j
X ⊗OX M has a natural structure of ��

X -module and the derivatives turn out to be
��

X -linear.
By definition lim←−

k≥0

(�•
X ⊗OX Mk) is given by the complex:

0 → lim←−
k≥0

(�0
X ⊗OX Mk) → · · · → lim←−

k≥0

(�n
X ⊗OX Mk) → 0. (28)

LEMMA 5.35. LetM be a coherentD�

X -module. Then lim←−
k≥0

(�•
X ⊗OX Mk) is isomorphic

to �•
X ⊗OX M in Cb(��

X ).

Proof. Recall that M is �-complete. For each j, the natural morphism

�
j
X ⊗OX M → lim←−

k≥0

(�j
X ⊗OX Mk)

is an isomorphism because �
j
X is locally finitely free over OX and the projective limit

is additive. Clearly, these isomorphisms are compatible with the derivatives, hence (28)
is isomorphic to �•

X ⊗OX M. �

THEOREM 5.36. For M, a regular holonomic D�

X -module, there are canonical
isomorphisms in Db

�−c(��

TY X ):
(i) DR�(ν�

Y (M)) ∼←− νY (DR�(M)),
(ii) Sol�(ν�

Y (M)) ∼−→ νY (Sol�(M)).
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Proof. For each k ≥ 0, we have a natural morphism in Db(��

TY X ):

νY (DR�(M)) → νY (DR�(Mk)).

Since Mk is an �-torsion regular holonomic D�

X -module, we have νY (DR�(Mk)) 

νY (DR(Mk)) 
 DR(νY (Mk)) 
 DR�(ν�

Y (Mk)) in Db(��

TY X ). In this way we get a
canonical morphism in Db(��

TY X ):

νY (DR�(M)) → DR�(ν�

Y (Mk)), (29)

which entails morphism:

νY (DR�(M)) → �•
TY X ⊗OTY X ν�

Y (Mk).

So we obtain a morphism in Cb(��

TY X ):

νY (DR�(M)) → lim←−
k≥0

(�•
TY X ⊗OTY X ν�

Y (Mk)).

Finally, (i) follows from Lemma 5.35 as the composition of the sequence of
morphisms given below:

νY (DR�(M)) → �•
TY X ⊗OTY X ν�

Y (M) −→
qis

DR�(ν�

Y (M)).

Let us now prove that (i) is an isomorphism. Note that νY (DR�(M)) and
DR�(ν�

Y (M)) are both objects of Db
�−c(��

TY X ), hence they are c�c. Therefore, it is
enough to prove that we obtain an isomorphism when we apply gr� to (i). We have on
one hand: gr�(νY (DR�(M))) 
 νY (DR(gr�(M))). Since gr�(M) ∈ Db

rh(DX ), we have
νY (DR(gr�M)) 
 DRνY (gr�M).

On the other hand: gr�DR�(ν�

Y (M)) 
 DRgr�(ν�

Y (M)) 
 DRνY (gr�M) by
Remark 5.27.

To end the proof, we remark that (ii) follows by the following chain of
isomorphisms:

Sol�(ν�

Y (M)) 
 D′
�
(DR�(ν�

Y (M)))
∼−→ D′

�
νY (DR�(M))


 νY (D′
�
(DR�(M)))


 νY (Solh(M)),

where the first and the fourth isomorphisms follow from (21), the second follows by
applying the contravariant functor D′ to (i) and the third follows by Proposition 8.4.13
of [6]. �

Similarly one proves the following.

COROLLARY 5.37. Let Y be a smooth hypersurface of X and M a regular holonomic
DX -module M. There are canonical isomorphisms in Db

�−c(��

Y ):

(i)

{
Sol�Y (ψ�

Y (M)) ∼−→ ψY (Sol�X (M))

SolD�
(φ�

Y (M)) ∼−→ φY (Sol�(M))
,
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(ii)

{
DRD�

(ψ�

Y (M)) ∼←− ψY (DR�(M))

DR�(φ�

Y (M)) ∼←− φY (DR�(M))
.

5.6. Review on Fourier transforms and micro-localization.

5.6.1. Review of Fourier–Sato transform and micro-localization of sheaves.
Denote by �+ the multiplicative group of positive numbers, and suppose a real
or complex manifold E endowed with an action of �+ is given. One denotes by
Mod�+(�E) the full subcategory of Mod(�E) consisting of sheaves F such that
for any orbit b of �+ in E, F |b is a locally constant sheaf. One also denotes by
D+

�+ (�E) the full subcategory of D+(�E) consisting of objects F such that for all j ∈ �,
Hj(F) ∈ Mod�+ (�E). An object of D+

�+ (�E) is called a conic object.

Let now E
π−→ Y denote a holomorphic vector bundle on a complex analytical

manifold Y, and let E′ π̃−→ Y denote its dual bundle. We will be particularly concerned
with the cases where Y is a submanifold of a manifold X , E = TY X is the tangent
bundle to Y on X and E′ = T∗

Y X is the cotangent bundle to Y on X .
Let F be a sheaf of �-vector spaces over E. One says that F is monodromic if it is

locally constant along the orbits �∗η for each η ∈ E\Y . The category of monodromic
sheaves is a full abelian subcategory of Mod(�E). An object F ∈ Db(�E) is monodromic
if the sheaves Hi(F) are monodromic for every i ∈ �. We denote by Db

mon(�E) the full
subcategory of Db(�E) formed by monodromic objects.

Denote by p1 and p2 the canonical projections from E ×Y E′ to E and E′,
respectively, and set P = {

(x, y) ∈ E ×Y E′ : 〈x, y〉 ≥ 0
}
. The Fourier–Sato transform

is the functor F� : D+
�+ (�E) → D+

�+ (�E′) defined by F�(F) := �p2∗ ◦ ��P ◦ p−1
1 (F).

LEMMA 5.38. Let F ∈ D+
�+ (��

E). Then F��

(F) 
 F�(F) in D+
�+ (�E′).

Proof. Let i : P → E ×Y E′ be the embedding of P. Then ��P 
 �i!i!. Since i! and
p−1

1 are exact functors, the result follows by Lemma 5.19. �
In particular, if F ∈ Db

mon(�E), then F�(F) ∈ Db
mon(�E′).

In the case E = TY X , E′ = T∗
Y X and F� : D+

�+ (�TY X ) → D+
�+ (�T∗

Y X ), the
composition μ�

Y := F� ◦ ν�
Y : Db(�X ) → Db

�+(�T∗
Y X ) is called the geometrical micro-

localization (see [6]).
By Lemmas 5.19 and 5.38, one has the following.

LEMMA 5.39. For F ∈ Db(��

X ) the objects μ��

Y (F) and μ�
Y (F) are isomorphic in

Db(�T∗
Y X ).

5.6.2. Review on Fourier transform and micro-localization for D-modules. Denote
byD[E] ⊂ π∗DE the sheaf of differential operators polynomial in the fibres. Let θ denote
the Euler field on E. A π∗(DE) or a D[E]-left coherent module N is monodromic if N
is generated by local sections satisfying b(θ )u = 0 for some non-vanishing b(θ ) ∈ �[θ ].
We denote this category by Modmon(D[E]), a Serre subcategory of Modcoh(D[E]).

Consider the sheaf �E/Y of relative differential forms to π : E → Y .
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One defines an exact functor F (Fourier transform, cf. [1]) from Modmon(D[E]) to
Modmon(D[E′]) setting for N ∈ Modmon(D[E]):

F(N ) := �E/Y ⊗π−1OY N .

Recall that for each N ∈ Modmon(D[E]) one constructs canonical isomorphisms in
Db(�E′):

F�(Sol(N )) 
 Sol(F(N ))[-codimY ]; (30)

F�(DR(N )) 
 DR(F(N ))[-codimY ]. (31)

Consider E = TY X , E′ = T∗
Y X and denote by τ the projection E′ → Y . Let M ∈

Modsp(DX ). Recall that the composition of F with νY gives an exact functor μY from
Modsp(DX ) to Modmon(D[T∗

Y X ]), the micro-localization along Y (cf [13] for details).

5.7. Fourier transform and micro-localization for monodromic D�-modules.
Let S be the full Serre substack of M odcoh(D�

[E]):

U 	→ S(U) = ∪n≥0Modmon(D�

[E],n|U )

where we consider the structure of D[E]-locally free module on D�

[E],n. We shall denote
by Modmon(D�

[E]) the category ModS (D�

[E]).
Similarly we denote by S ′ the full Serre substack

V 	→ S ′(V ) = ∪n≥0Modmon(D�

[E′],n|V ).

Consider the functor � : Op(E) → Op(E′) given by U 	→ π̃−1π (U). Since F(U) :
S(U) → S(�(U)) is clearly an exact functor, we are in conditions to apply Theorem
4.24 and extend it as an exact functor

F� : Modmon(D�

[E]) → Modmon(D�

[E′])

setting

F�(N ) := lim←−
n≥0

F(Nn) = lim←−
n≥0

�E/Y ⊗π−1OY Nn.

DEFINITION 5.40. We define F� as the Fourier transform for D�

[E]-monodromic
modules.

In view of Definition 4.21 and Theorem 4.24, we have functorial isomorphisms:

F�(N ) 
 �E|Y ⊗π−1OY N

for N ∈ Modmon(D�

[E]).
One can restate Propositions 4.5 and 4.10, Theorem 4.16 and Corollaries 4.18

and 4.20 replacing the functor F� by F�.

LEMMA 5.41.
(a) Let N be a monodromic D�

[E]-module. Then F�(N ) is a monodromic D�

[E′]-
module.
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(b) Let M be a specializable D�

X -module. Then ν�

Y (M) is a monodromic D�

TY X -
module.

Proof. The first property results from the formulas F�(N )0 
 F(N0) and
0F�(N ) 
 F(0N ).

The second one is a consequence of the same property for DX -modules and the
formulas,

ν�

Y (M)0 
 νY (M0), ν�

Y (M) 
 νY (0M).

�

DEFINITION 5.42. The functor of micro-localization for D�

X -modules along a
submanifold Y is given by:

μ�

Y : Modsp(D�

X ) → Modmon(D�

[T∗
Y X ])

M 	→ μ�

Y (M) := F�(ν�

Y (M)).

Since all the functors involved are exact and take values in subcategories of
coherent modules, we conclude functorial isomorphisms:

μ�

Y (M) 
 lim←−
n≥0

μY (Mn),

for M ∈ Modsp(D�

X ).
Similarly we conclude:

THEOREM 5.43. We have natural isomorphisms in Db(��

T∗
Y X ):{

F(Sol�(N )) 
 Sol�(F�(N ))[−codimY ]

F(DR�(N )) 
 DR�(F�(N ))[−codimY ]

for N ∈ Modmon(D�

TY X ).

COROLLARY 5.44. We have natural isomorphisms in Db(��

T∗
Y X ):{

Sol�(μ�

Y (M)) 
 μY (Sol�(M))[codimY ]

DR�(μ�

Y (M)) 
 μY (DR�(M))[codimY ]

for M ∈ Modrh(D�

X ).
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